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What Are Model Objects?

Model Objects Represent Linear Systems

In Control System Toolbox™, System Identification Toolbox, and Robust Control
Toolbox™ software, you represent linear systems as model objects. In System
Identification Toolbox, you also represent nonlinear models as model objects. Model
objects are specialized data containers that encapsulate model data and other attributes
in a structured way. Model objects allow you to manipulate linear systems as single
entities rather than keeping track of multiple data vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or multiple-input,
multiple-output (MIMO) systems. You can represent both continuous- and discrete-time
linear systems.

The main families of model objects are:

* Numeric Models — Basic representation of linear systems with fixed numerical
coefficients. This family also includes identified models that have coefficients
estimated with System Identification Toolbox software.

* Generalized Models — Representations that combine numeric coefficients with
tunable or uncertain coefficients. Generalized models support tasks such as parameter
studies or compensator tuning.

About Model Data

The data encapsulated in your model object depends on the model type you use. For
example:
* Transfer functions store the numerator and denominator coefficients

» State-space models store the A, B, C, and D matrices that describe the dynamics of the
system

* PID controller models store the proportional, integral, and derivative gains

Other model attributes stored as model data include time units, names for the model
inputs or outputs, and time delays.
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Note All model objects are MATLAB® objects, but working with them does not require a
background in object-oriented programming. To learn more about objects and object
syntax, see “Role of Classes in MATLAB” (MATLAB).

See Also

More About
. “Types of Model Objects” on page 1-5
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Types of Model Objects

The following diagram illustrates the relationships between the types of model objects in
Control System Toolbox, Robust Control Toolbox, and System Identification Toolbox
software. Model types that begin with id require System Identification Toolbox software.

Model types that begin with u require Robust Control Toolbox software. All other model
types are available with Control System Toolbox software.
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The diagram illustrates the following two overlapping broad classifications of model

object types:



See Also

Dynamic System Models vs. Static Models — In general, Dynamic System Models
represent systems that have internal dynamics, while Static Models represent static
input/output relationships.

Numeric Models vs. Generalized Models — Numeric Models are the basic numeric
representation of linear systems with fixed coefficients. Generalized Models represent
systems with tunable or uncertain components.

See Also

More About

“What Are Model Objects?” on page 1-3
“Dynamic System Models” on page 1-8
“Numeric Models” on page 1-10
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Dynamic System Models

Dynamic System Models generally represent systems that have internal dynamics or
memory of past states such as integrators, delays, transfer functions, and state-space
models.

Most commands for analyzing linear systems, such as bode, margin, and
linearSystemAnalyzer, work on most Dynamic System Model objects. For Generalized
Models, analysis commands use the current value of tunable parameters and the nominal
value of uncertain parameters. Commands that generate response plots display random
samples of uncertain models.

The following table lists the Dynamic System Models.

Model Family Model Types

Numeric LTI models — Basic numeric tf

representation of linear systems 2pk

(requires Control System Toolbox)
SS

frd

pid

pidstd

pid2

pidstd2

Identified LTT models — Representations of |idtf

linear systems with tunable coefficients,

id
whose values can be identified using l >3
measured input/output data. idfrd
(requires System Identification Toolbox) idgrey

idpoly

idproc
Identified nonlinear models — idnlarx

Representations of nonlinear systems with [

- idnlhw
tunable coefficients, whose values can be
identified using input/output data. Limited

1-8
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Model Family Model Types
support for commands that analyze linear |idnlgrey
systems.

(requires System Identification Toolbox)

Generalized LTI models — Representations |[genss
of systems that include tunable or uncertain
coefficients

(tunable models require Control System uss
Toolbox; uncertain models require Robust |yfrd
Control Toolbox)

Dynamic Control Design Blocks — Tunable, [tunableGain
uncertain., or switch analysis points for tunableTF
constructing models of control systems
(tunable Control Design Blocks and analysis | tunabless
points require Control System Toolbox; tunablePID
uncertain Control Design Blocks require

genfrd

Robust Control Toolbox) Ul A7
ultidyn
udyn
AnalysisPoint

See Also

More About

. “Numeric Linear Time Invariant (LTI) Models” on page 1-10

. “Identified LTT Models” on page 1-11
. “Identified Nonlinear Models” on page 1-11
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Numeric Models

1-10

Numeric Linear Time Invariant (LTl) Models

Numeric LTI models are the basic numeric representation of linear systems or
components of linear systems. Use numeric LTI models for modeling dynamic
components, such as transfer functions or state-space models, whose coefficients are
fixed, numeric values. You can use numeric LTI models for linear analysis or control
design tasks.

The following table summarizes the available types of numeric LTI models.

Model Type Description

tf Transfer function model in polynomial form

zpk Transfer function model in zero-pole-gain (factorized) form
Ss State-space model

frd Frequency response data model

pid Parallel-form PID controller

pidstd Standard-form PID controller

pid2 Parallel-form two-degree-of-freedom (2-DOF) PID controller
pidstd2 Standard-form 2-DOF PID controller

Creating Numeric LTI Models
For information about creating numeric LTI models, see:

* “Transfer Functions” (Control System Toolbox)

» “State-Space Models” (Control System Toolbox)

* “Frequency Response Data (FRD) Models” (Control System Toolbox)

* “Proportional-Integral-Derivative (PID) Controllers” (Control System Toolbox)

Applications of Numeric LTI Models

You can use Numeric LTI models to represent block diagram components such as plant or
sensor dynamics. By connecting Numeric LTT models together, you can derive Numeric
LTI models of block diagrams. Use Numeric LTI models for most modeling, analysis, and
control design tasks, including:



Numeric Models

* Analyzing linear system dynamics using analysis commands such as bode, step, or
impulse.

* Designing controllers for linear systems using the Control System Designer app or
the PID Tuner GUI (Control System Toolbox).

» Designing controllers using control design commands such as pidtune, rlocus, or
lqr/1qg.

Identified LTI Models

Identified LTI Models represent linear systems with coefficients that are identified using
measured input/output data. You can specify initial values and constraints for the
estimation of the coefficients.

The following table summarizes the available types of identified LTT models.

Model Type Description

idtf Transfer function model in polynomial form, with
identifiable parameters

idss State-space model, with identifiable parameters

idpoly Polynomial input-output model, with identifiable parameters

idproc Continuous-time process model, with identifiable
parameters

idfrd Frequency-response model, with identifiable parameters

idgrey Linear ODE (grey-box) model, with identifiable parameters

Identified Nonlinear Models

Identified Nonlinear Models represent nonlinear systems with coefficients that are
identified using measured input/output data. You can specify initial values and constraints
for the estimation of the coefficients.

The following table summarizes the available types of identified nonlinear models.

Model Type Description
idnlarx Nonlinear ARX model, with identifiable
parameters

1-11
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Model Type Description

idnlgrey Nonlinear ODE (grey-box) model, with
identifiable parameters

idnlhw Hammerstein-Wiener model, with
identifiable parameters

1-12
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About Identified Linear Models

What are IDLTI Models?

System Identification Toolbox software uses objects to represent a variety of linear and
nonlinear model structures. These linear model objects are collectively known as
Identified Linear Time-Invariant (IDLTI) models.

IDLTT models contain two distinct dynamic components:

* Measured component — Describes the relationship between the measured inputs
and the measured output (G)

* Noise component — Describes the relationship between the disturbances at the
output and the measured output (H)

Models that only have the noise component H are called time-series or signal models.
Typically, you create such models using time-series data that consist of one or more
outputs y (t) with no corresponding input.

The total output is the sum of the contributions from the measured inputs and the
disturbances: y = G u + H e, where u represents the measured inputs and e the
disturbance. e(t) is modeled as zero-mean Gaussian white noise with variance A. The
following figure illustrates an IDLTI model.

*e

IDLTI

When you simulate an IDLTI model, you study the effect of input u(t) (and possibly initial
conditions) on the output y(t). The noise e(t) is not considered. However, with finite-
horizon prediction of the output, both the measured and the noise components of the
model contribute towards computation of the (predicted) response.

1-13
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_ ¢ H'G
y_measured -
— 1-H"

y_predicted

—

One-step ahead prediction model corresponding to a linear identified model (y =

Gu+He)

Measured and Noise Component Parameterizations

The various linear model structures provide different ways of parameterizing the transfer
functions G and H. When you construct an IDLTT model or estimate a model directly using
input-output data, you can configure the structure of both G and H, as described in the

following table:

Model
Type

Transfer Functions G and H

Configuration Method

State space

model
(idss)

Represents an identified state-space
model structure, governed by the
equations:

x =Ax+ Bu+ Ke
y=Cx+Du+e

where the transfer function between the
measured input u and output y is

G(s)=C(sI - A)"' B+ D and the noise
transfer function is

H(s)=C(s[-A) 'K +1.

Construction: Use idss to create a model,
specifying values of state-space matrices
A, B, C, D and K as input arguments
(using NaNs to denote unknown entries).

Estimation: Use ssest or n4sid,
specifying name-value pairs for various
configurations, such as, canonical
parameterization of the measured
dynamics (' Form'/'canonical'),
denoting absence of feedthrough by fixing
D to zero (' Feedthrough'/false), and
absence of noise dynamics by fixing K to
zero ('DisturbanceModel'/'none"’).

1-14
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Model Transfer Functions G and H Configuration Method
Type
Polynomial |Represents a polynomial model such as Construction: Use idpoly to create a
model ARX, ARMAX and BJ. An ARMAX model, |[model using values of active polynomials
(idpoly) |for example, uses the input-output as input arguments. For example, to
equation Ay(t) = Bu(t)+Ce(t), so that the |create an Output-Error model which uses
measured transfer function G is G = B/F as the measured component and
1 . . has a trivial noise component (H = 1).
G(s)= A7 B, while the noise transfer enter:
function is H(s) = A™'C. y = idpoly([1,8,11,[1,F)
The ARMAX model is a special Estimation: Use the armax, arx, or bj,
configuration of the general polynomial  |specifying the orders of the polynomials as
model whose governing equation is: input arguments. For example, bj
requires you to specify the orders of the B,
B C C, D, and F polynomials to construct a
Ay@) = F u(®) + D e@®) model with governing equation
The autoregressive component, A, is _B C
common between the measured and noise o) = F ult)+ D 20
components. The polynomials B and F
constitute the measured component while
the polynomials C and D constitute the
noise component.
Transfer Represents an identified transfer function |Construction: Use idtf to create a model,
function model, which has no dynamic elements to |specifying values of the numerator and
model model noise behavior. This object uses the |denominator coefficients as input
(idtf) trivial noise model H(s) = I. The governing |arguments. The numerator and

equation is

num u(t)+e(t)

yo)= den

denominator vectors constitute the
measured component G = num(s)/
den(s). The noise component is fixed to H
= 1.

Estimation: Use tfest, specifying the
number of poles and zeros of the
measured component G.
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Model Transfer Functions G and H Configuration Method

Type

Process Represents a process model, which For process (and grey-box) models, the
model provides options to represent the noise noise component is often treated as an on-
(idproc) |dynamics as either first- or second-order |demand extension to an otherwise

1-16

ARMA process (that is, H(s)= C(s)/A(s),
where C(s) and A(s) are monic
polynomials of equal degree). The
measured component, G(s), is represented
by a transfer function expressed in pole-
zero form.

measured component-centric
representation. For these models, you can
add a noise component by using the
DisturbanceModel estimation option.
For example:

model = procest(data, 'P1D")

estimates a model whose equation is:

_ 1 -sTd
W) =K, (T—e s

u(s) + e(s).
pls + 1)

To add a second order noise component to
the model, use:

Options = procestOptions('Disturbance
model = procest(data,'P1D',Options);

This model has the equation:

1 _ 1+c¢s
Ty 1712,

(8 =K, ———
Y P(Tps+1) 1+dys

where the coefficients ¢l and d!
parameterize the noise component of the
model. If you are constructing a process
model using the idproc command,
specify the structure of the measured
component using the Type input
argument and the noise component by
using the NoiseTF name-value pair. For

example,

Model', 'AF

s)
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Model Transfer Functions G and H Configuration Method
Type

model = idproc('P1','Kp',1,'Tpl",1, "NoiseTF", ..
struct('num',[1 0.1], 'den',[1 0.5]))

creates the process model y(s) = 1/(s+1)
u(s) + (s + 0.1)/(s + 0.5) e(s)

Sometimes, fixing coefficients or specifying bounds on the parameters are not sufficient.
For example, you may have unrelated parameter dependencies in the model or
parameters may be a function of a different set of parameters that you want to identify
exclusively. For example, in a mass-spring-damper system, the A and B parameters both
depend on the mass of the system. To achieve such parameterization of linear models, you
can use grey-box modeling where you establish the link between the actual parameters
and model coefficients by writing an ODE file. To learn more, see “Grey-Box Model
Estimation”.

Linear Model Estimation

You typically use estimation to create models in System Identification Toolbox. You
execute one of the estimation commands, specifying as input arguments the measured
data, along with other inputs necessary to define the structure of a model. To illustrate,
the following example uses the state-space estimation command, ssest, to create a state
space model. The first input argument data specifies the measured input-output data.
The second input argument specifies the order of the model.

sys = ssest(data,4)

The estimation function treats the noise variable e(t) as prediction error - the residual
portion of the output that cannot be attributed to the measured inputs. All estimation
algorithms work to minimize a weighted norm of e(t) over the span of available
measurements. The weighting function is defined by the nature of the noise transfer
function H and the focus of estimation, such as simulation or prediction error
minimization.

Black Box (“Cold Start”) Estimation

In a black-box estimation, you only have to specify the order to configure the structure of
the model.

sys = estimator(data,orders)
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where estimator is the name of an estimation command to use for the desired model
type.

For example, you use tfest to estimate transfer function models, arx for ARX-structure
polynomial models, and procest for process models.

The first argument, data, is time- or frequency domain data represented as an iddata or
idfrd object. The second argument, orders, represents one or more numbers whose
definitions depends upon the model type:

» For transfer functions, orders refers to the number of poles and zeros.
» For state-space models, orders refers to the number of states.

» For process models, orders denotes the structural elements of a process model, such
as, the number of poles and presence of delay and integrator.

When working with the app, you specify the orders in the appropriate edit fields of
corresponding model estimation dialogs.

Structured Estimations

In some situations, you want to configure the structure of the desired model more closely
than what is achieved by simply specifying the orders. In such cases, you construct a
template model and configure its properties. You then pass that template model as an
input argument to the estimation commands in place of orders.

To illustrate, the following example assigns initial guess values to the numerator and the
denominator polynomials of a transfer function model, imposes minimum and maximum
bounds on their estimated values, and then passes the object to the estimator function.

% Initial guess for numerator

num = [1 21;

den = [1 21 1];

% Initial guess for the denominator

sys = idtf(num,den);

% Set min bound on den coefficients to 0.1
sys.Structure.Denominator.Minimum = [1 0.1 0.1 0.1];
sysEstimated = tfest(data,sys);

The estimation algorithm uses the provided initial guesses to kick-start the estimation and
delivers a model that respects the specified bounds.



See Also

You can use such a model template to also configure auxiliary model properties such as
input/output names and units. If the values of some of the model’s parameters are initially
unknown, you can use NaNs for them in the template.

Estimation Options

There are many options associated with a model’s estimation algorithm that configure the
estimation objective function, initial conditions and numerical search algorithm, among
other things. For every estimation command, estimator, there is a corresponding option
command named estimatorOptions. To specify options for a particular estimator
command, such as tfest, use the options command that corresponds to the estimation
command, in this case, tfestOptions. The options command returns an options set that
you then pass as an input argument to the corresponding estimation command.

For example, to estimate an Output-Error structure polynomial model, you use oe. To
specify simulation as the focus and lsgnonlin as the search method, you use
oeOptions:

load iddatal z1
Options = oeOptions('Focus','simulation', 'SearchMethod', 'lsgnonlin');
sys= oe(z1,[2 2 1],0ptions);

Information about the options used to create an estimated model is stored in the
OptionsUsed field of the model’s Report property. For more information, see
“Estimation Report” on page 1-29.

See Also

More About

. “Types of Model Objects” on page 1-5
. “Available Linear Models” on page 1-25
. “About Identified Nonlinear Models” on page 11-2
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Linear Model Structures

1-20

About System Identification Toolbox Model Objects

Objects are instances of model classes. Each class is a blueprint that defines the following
information about your model:

* How the object stores data
*  Which operations you can perform on the object

This toolbox includes nine classes for representing models. For example, idss represents
linear state-space models and idnlarx represents nonlinear ARX models. For a complete
list of available model objects, see “Available Linear Models” on page 1-25 and “Available
Nonlinear Models” on page 11-12.

Model properties define how a model object stores information. Model objects store
information about a model, such as the mathematical form of a model, names of input and
output channels, units, names and values of estimated parameters, parameter
uncertainties, and estimation report. For example, an idss model has an InputName
property for storing one or more input channel names.

The allowed operations on an object are called methods. In System Identification Toolbox
software, some methods have the same name but apply to multiple model objects. For
example, step creates a step response plot for all dynamic system objects. However,
other methods are unique to a specific model object. For example, canon is unique to
state-space idss models and linearize to nonlinear black-box models.

Every class has a special method, called the constructor, for creating objects of that class.
Using a constructor creates an instance of the corresponding class or instantiates the
object. The constructor name is the same as the class name. For example, idss and
idnlarx are both the name of the class and the name of the constructor for instantiating
the linear state-space models and nonlinear ARX models, respectively.

When to Construct a Model Structure Independently of
Estimation

You use model constructors to create a model object at the command line by specifying all
required model properties explicitly.

You must construct the model object independently of estimation when you want to:
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* Simulate or analyze the effect of model parameters on its response, independent of
estimation.

* Specify an initial guess for specific model parameter values before estimation. You can
specify bounds on parameter values, or set up the auxiliary model information in
advance, or both. Auxiliary model information includes specifying input/output names,
units, notes, user data, and so on.

In most cases, you can use the estimation commands to both construct and estimate the
model—without having to construct the model object independently. For example, the
estimation command tfest creates a transfer function model using data and the number
of poles and zeros of the model. Similarly, nlarx creates a nonlinear ARX model using
data and model orders and delays that define the regressor configuration. For information
about how to both construct and estimate models with a single command, see “Model
Estimation Commands” on page 1-44.

In case of grey-box models, you must always construct the model object first and then
estimate the parameters of the ordinary differential or difference equation.

Commands for Constructing Linear Model Structures

The following table summarizes the model constructors available in the System
Identification Toolbox product for representing various types of linear models.

After model estimation, you can recognize the corresponding model objects in the
MATLAB Workspace browser by their class names. The name of the constructor matches
the name of the object it creates.

For information about how to both construct and estimate models with a single command,
see “Model Estimation Commands” on page 1-44.
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Summary of Model Constructors

Model Constructor Resulting Model Class
idfrd Nonparametric frequency-response model.
idproc Continuous-time, low-order transfer functions
(process models).
idpoly Linear input-output polynomial models:
*+ ARX
e ARMAX

e OQutput-Error
* Box-Jenkins

idss Linear state-space models.
idtf Linear transfer function models.
idgrey Linear ordinary differential or difference equations

(grey-box models). You write a function that translates
user parameters to state-space matrices. Can also be
viewed as state-space models with user-specified
parameterization.

For more information about when to use these commands, see “When to Construct a
Model Structure Independently of Estimation” on page 1-20.

Model Properties
Categories of Model Properties

The way a model object stores information is defined by the properties of the
corresponding model class.

Each model object has properties for storing information that are relevant only to that
specific model type. The idtf, idgrey, idpoly, idproc, and idss model objects are
based on the id1ti superclass and inherit all id1ti properties.

In general, all model objects have properties that belong to the following categories:

* Names of input and output channels, such as InputName and OutputName
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Sample time of the model, such as Ts

Units for time or frequency

Model order and mathematical structure (for example, ODE or nonlinearities)
Properties that store estimation results (Report)

User comments, such as Notes and Userdata

For information about getting help on object properties, see the model reference pages.

Viewing Model Properties and Estimated Parameters

The following table summarizes the commands for viewing and changing model property
values. Property names are not case sensitive. You do not need to type the entire property
name if the first few letters uniquely identify the property.

Task Command Example
View all model get Load sample data, compute an ARX model, and
properties and list the model properties:
their values
load iddata8
m arx=arx(z8,[4 32 3 0 0 0]);
get(m_arx)
Access a specific |Use dot notation View the A matrix containing the estimated
model property parameters in the previous model:
m arx.A
For properties, such as View the method used in ARX model estimation:
Report, that are configured
like structures, use dot m_arx.Report.Method
notation of the form
model.PropertyName.Fiel
dName.
FieldName is the name of
any field of the property.
Change model dot notation Change the input delays for all three input
property values channelsto [1 1 1] for an ARX model:
m arx.InputDelay = [1 1 1]
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Task Command Example
Access model Use getpar, getpvec and * View a table of all parameter attributes:
parameter values |getcov
and uncertainty |See Also: polydata, getpar(m_arx)
information idssdata, tfdata, zpkdata|s View the A polynomial and 1 standard
uncertainty of an ARX model:
[a,~,~,~,~,da] = polydata(m arx)
Set model Use setpar, setpvec and * Set default parameter labels:
property values setcov . o .
and uncertainty m _arx = setpar(m arx, 'label', 'default
information * Set parameter covariance data:
m _arx = setcov(m arx,cov)
Get number of Use nparams Get the number of parameters:
parameters
nparams (sys)
See Also

Validate each model directly after estimation to help fine-tune your modeling strategy.
When you do not achieve a satisfactory model, you can try a different model structure and
order, or try another identification algorithm. For more information about validating and
troubleshooting models, see “Validating Models After Estimation” on page 17-3.
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Available Linear Models

A linear model is often sufficient to accurately describe the system dynamics and, in most
cases, you should first try to fit linear models. Available linear structures include transfer
functions and state-space models, summarized in the following table.

Model Type

Usage

Learn More

Transfer function (idtf)

Use this structure to
represent transfer functions:

num
y= u+e

den

where num and den are
polynomials of arbitrary
lengths. You can specify
initial guesses for, and
estimate, num, den, and
transport delays.

“Transfer Function Models”

Process model (idproc)

Use this structure to
represent process models
that are low order transfer
functions expressed in pole-
zero form. They include
integrator, delay, zero, and
up to 3 poles.

“Process Models”
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Model Type

Usage

Learn More

State-space model (idss)

Use this structure to
represent known state-space
structures and black-box
structures. You can fix
certain parameters to
known values and estimate
the remaining parameters.
You can also prescribe
minimum/maximum bounds
on the values of the free
parameters. If you need to
specify parameter
dependencies or
parameterize the state-
space matrices using your
own parameters, use a grey-
box model.

“State-Space Models”




Available Linear Models

Model Type

Usage

Learn More

Polynomial models (idpoly)

Use to represent linear
transfer functions based on
the general form input-
output polynomial form:

Ay = Eu+£e
F D

where A, B, C, D and F are
polynomials with
coefficients that the toolbox
estimates from data.

Typically, you begin
modeling using simpler
forms of this generalized
structure (such as ARX:

Ay = Bu+e and OE:

¥ :Eu +e) and, if
nece@sary, increase the
model complexity.

“Input-Output Polynomial
Models”

Grey-box model (idgrey)

Use to represent arbitrary
parameterizations of state-
space models. For example,
you can use this structure to
represent your ordinary
differential or difference
equation (ODE) and to
define parameter
dependencies.

“Linear Grey-Box Models”
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See Also
More About

. “Linear Model Structures” on page 1-20
. “About Identified Linear Models” on page 1-13
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Estimation Report

What is an Estimation Report?

The estimation report contains information about the results and options used for a model
estimation. This report is stored in the Report property of the estimated model. The
exact contents of the report depend on the estimator function you use to obtain the
model.

Specifically, the estimation report has the following information:

Status of the model — whether the model is constructed or estimated
How the initial conditions are handled during estimation
Termination conditions for iterative estimation algorithms

Final prediction error (FPE), percent fit to estimation data, and mean-square error
(MSE)

Raw, normalized, and small sample-size corrected Akaike Information Criteria (AIC)
and Bayesian Information Criterion (BIC)

Type and properties of the estimation data

All estimated quantities — parameter values, initial states for state-space and grey-box
models, and their covariances

The option set used for configuring the estimation algorithm

To learn more about the report produced for a specific estimator, see the corresponding
reference page.

You can use the report to:

Keep an estimation log, such as the data, default and other settings used, and
estimated results such as parameter values, initial conditions, and fit. See “Access
Estimation Report” on page 1-30.

Compare options or results of separate estimations. See “Compare Estimated Models
Using Estimation Report” on page 1-31.

Configure another estimation using the previously specified options. See “Analyze and
Refine Estimation Results Using Estimation Report” on page 1-32.
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Access Estimation Report
This example shows how to access the estimation report.

The estimation report keeps a log of information such as the data used, default and other
settings used, and estimated results such as parameter values, initial conditions, and fit.

After you estimate a model, use dot notation to access the estimation report. For example:

load iddatal z1;
np = 2;
sys = tfest(zl,np);

sys report = sys.Report

sys_report =
Status: 'Estimated using TFEST'
Method: 'TFEST'
InitializeMethod: 'IV'
N4wWeight: 'Not applicable'’
N4Horizon: 'Not applicable'
InitialCondition: 'estimate'
Fit: [1x1 struct]
Parameters: [1x1 struct]
OptionsUsed: [1x1 idoptions.tfest]
RandState: []
DataUsed: [1x1 struct]
Termination: [1x1 struct]

Explore the options used during the estimation.

sys.Report.OptionsUsed

Option set for the tfest command:

InitializeMethod: 'iv'
InitializeOptions: [1x1 struct]
InitialCondition: 'auto'
Display: 'off'
InputOffset: []
OutputOffset: []
EstimateCovariance: 1
Regularization: [1x1 struct]
SearchMethod: 'auto'

SearchOptions:

1-30
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WeightingFilter:
EnforceStability:
OutputWeight:
Advanced:

]

—_——

]
1x1 struct]

View the fit of the transfer function model with the estimation data.
sys.Report.Fit

ans = struct with fields:
FitPercent: 70.7720
LossFcn: 1.6575

MSE: 1.6575
FPE: 1.7252
AIC: 1.0150e+03
AICc: 1.0153e+03
nAIC: 0.5453
BIC: 1.0372e+03

Compare Estimated Models Using Estimation Report

This example shows how to compare multiple estimated models using the estimation
report.

Load estimation data.
load iddatal z1;

Estimate a transfer function model.

np = 2;
sys _tf = tfest(zl,np);

Estimate a state-space model.
sys _ss = ssest(z1,2);
Estimate an ARX model.
sys_arx = arx(zl, [2 2 1]);

Compare the percentage fit of the estimated models to the estimation data.
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fit tf = sys tf.Report.Fit.FitPercent
fit tf = 70.7720
fit ss = sys ss.Report.Fit.FitPercent
fit ss = 76.3808

fit arx = sys arx.Report.Fit.FitPercent

fit arx = 68.7220

The comparison shows that the state-space model provides the best percent fit to the
data.

Analyze and Refine Estimation Results Using Estimation
Report

This example shows how to analyze an estimation and configure another estimation using
the estimation report.

Estimate a state-space model that minimizes the 1-step ahead prediction error.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data’', 'mrdamper.mat'));
z = iddata(F,V,Ts);

opt = ssestOptions;

opt.Focus = 'prediction';

opt.Display = 'on';

sysl = ssest(z,2,o0pt);

sys1 has good 1-step prediction ability as indicated by >90% fit of the prediction results
to the data.

Use compare(z,sysl) to check the model's ability to simulate the measured output F
using the input V. The model's simulated response has only 45% fit to the data.

Perform another estimation where you retain the original options used for sys1 except
that you change the focus to minimize the simulation error.

Fetch the options used by sys1 stored in its Report property. This approach is useful
when you have saved the estimated model but not the corresponding option set used for
the estimation.



See Also

opt2 = sysl.Report.OptionsUsed;

Change the focus to simulation and re-estimate the model.

opt2.Focus = 'simulation';
sys2 = ssest(z,sysl,opt2);

Compare the simulated response to the estimation data using compare(z,sysl,sys2).
The fit improves to 53%.

See Also

More About
. “About Identified Linear Models” on page 1-13
. “About Identified Nonlinear Models” on page 11-2
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Imposing Constraints on Model Parameter Values
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All identified linear (IDLTI) models, except idfrd, contain a Structure property. The
Structure property contains the adjustable entities (parameters) of the model. Each
parameter has attributes such as value, minimum/maximum bounds, and free/fixed status
that allow you to constrain them to desired values or a range of values during estimation.
You use the Structure property to impose constraints on the values of various model
parameters.

The Structure property contains the essential parameters that define the structure of a
given model:

» For identified transfer functions, includes the numerator, denominator, and delay
parameters
* For polynomial models, includes the list of active polynomials

» For state-space models, includes the list of state-space matrices
For information about other model types, see the model reference pages.

For example, the following example constructs an idtf model, specifying values for the
Numerator and Denominator parameters:

num = [1 2];
den = [1 2 2];
sys = idtf(num,den)

You can update the value of the Numerator and Denominator properties after you
create the object as follows:

new den = [1 1 10];
sys.Denominator = new den;

To fix the denominator to the value you specified (treat its coefficients as fixed
parameters), use the Structure property of the object as follows:

sys.Structure.Denominator.Value = new_den;
sys.Structure.Denominator.Free = false(1,3);

For a transfer function model, the Numerator, Denominator, and I0Delay model
properties are simply pointers to the Value attribute of the corresponding parameter in
the Structure property.



Imposing Constraints on Model Parameter Values

IDTF Model Properties Parameters

num double vector — = num:
Value: double vector

Minimum: double vector
Maximum: double vector
. Free: logical vector
ioDelay  scalar Scale: double vector
Info: struct

den double vector\

Structure

den:
InputDelay scalar Value:
Minimum:
Maximum:

Ts scalar Free:
Scale:
Info:

ioDelay:
Value:
Minimum:
Maximum:

Free:
Scale:
Info:

Similar relationships exist for other model structures. For example, the A property of a
state-space model contains the double value of the state matrix. It is an alias to the A
parameter value stored in Structure.A.Value.
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Recommended Model Estimation Sequence
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System identification is an iterative process, where you identify models with different
structures from data and compare model performance. You start by estimating the
parameters of simple model structures. If the model performance is poor, you gradually
increase the complexity of the model structure. Ultimately, you choose the simplest model
that best describes the dynamics of your system.

Another reason to start with simple model structures is that higher-order models are not
always more accurate. Increasing model complexity increases the uncertainties in
parameter estimates and typically requires more data (which is common in the case of
nonlinear models).

Note Model structure is not the only factor that determines model accuracy. If your
model is poor, you might need to preprocess your data by removing outliers or filtering
noise. For more information, see “Ways to Prepare Data for System Identification” on
page 2-6.

Estimate impulse-response and frequency-response models first to gain insight into the
system dynamics and assess whether a linear model is sufficient. For more information,
see “Correlation Models” and “Frequency-Response Models”. Then, estimate parametric
models in the following order:

1 Transfer function, ARX polynomial, and state-space models provide the simplest
structures. Estimation of ARX and state-space models let you determine the model
orders.

In the System Identification app. Choose to estimate the Transfer function models,
ARX polynomial models, and the state-space model using the n4sid method.

At the command line. Use the tfest, arx, and the n4sid commands, respectively.
For more information, see “Input-Output Polynomial Models” and “State-Space

Models”.

2 ARMAX and B] polynomial models provide more complex structures and require
iterative estimation. Try several model orders and keep the model orders as low as
possible.

In the System Identification app. Select to estimate the B] and ARMAX polynomial
models.



Recommended Model Estimation Sequence

At the command line. Use the bj or armax commands.

For more information, see “Input-Output Polynomial Models”.

3 Nonlinear ARX or Hammerstein-Wiener models provide nonlinear structures. For
more information, see “Nonlinear Model Identification”.

For general information about choosing you model strategy, see “System Identification
Overview”. For information about validating models, see “Validating Models After
Estimation” on page 17-3.
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Supported Models for Time- and Frequency-Domain

Data
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Supported Models for Time-Domain Data
Continuous-Time Models

You can directly estimate the following types of continuous-time models:

e Transfer function models.
* Process models.
* State-space models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time
model.

Discrete-Time Models

You can estimate all linear on page 1-20 and nonlinear on page 11-7 models supported
by the System Identification Toolbox product as discrete-time models, except process
models, which are defined only in continuous-time..

ODEs (Grey-Box Models)

You can estimate both continuous-time and discrete-time models from time-domain data
for linear and nonlinear differential and difference equations.

Nonlinear Models

You can estimate discrete-time Hammerstein-Wiener and nonlinear ARX models from
time-domain data.

You can also estimate nonlinear grey-box models from time-domain data. See “Estimate
Nonlinear Grey-Box Models” on page 13-34.

Supported Models for Frequency-Domain Data

There are two types of frequency-domain data:



Supported Models for Time- and Frequency-Domain Data

* Frequency response data
* Frequency domain input/output signals which are Fourier Transforms of the
corresponding time domain signals.

The data is considered continuous-time if its sample time (Ts) is 0, and is considered
discrete-time if the sample time is nonzero.

Continuous-Time Models
You can estimate the following types of continuous-time models directly:

» Transfer function models using continuous- or discrete-time data.

* Process models using continuous- or discrete-time data.

* Input-output polynomial models of output-error structure using continuous time data.
» State-space models using continuous- or discrete-time data.

From continuous-time frequency-domain data, you can only estimate continuous-time
models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time
model.

Discrete-Time Models

You can estimate all linear model types supported by the System Identification Toolbox
product as discrete-time models, except process models, which are defined in continuous-
time only. For estimation of discrete-time models, you must use discrete-time data.

The noise component of a model cannot be estimated using frequency domain data,
except for ARX models. Thus, the K matrix of an identified state-space model, the noise
component, is zero. An identified polynomial model has output-error (OE) or ARX
structure; BJJ/ARMAX or other polynomial structure with nontrivial values of C or D
polynomials cannot be estimated.

ODEs (Grey-Box Models)

For linear grey-box models, you can estimate both continuous-time and discrete-time
models from frequency-domain data. The noise component of the model, the K matrix,
cannot be estimated using frequency domain data; it remains fixed to 0.

Nonlinear grey-box models are supported only for time-domain data.
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Nonlinear Black-Box Models

Nonlinear black box (nonlinear ARX and Hammerstein-Wiener models) cannot be
estimated using frequency domain data.

See Also

“Supported Continuous- and Discrete-Time Models” on page 1-41
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Supported Continuous- and Discrete-Time Models

For linear and nonlinear ODEs (grey-box models), you can specify any ordinary
differential or difference equation to represent your continuous-time or discrete-time
model in state-space form, respectively. In the linear case, both time-domain and
frequency-domain data are supported. In the nonlinear case, only time-domain data is
supported.

For black-box models, the following tables summarize supported continuous-time and
discrete-time models.
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Supported Continuous-Time Models

Model Type

Description

Transfer function models

Estimate continuous-time transfer function models directly
using tfest from either time- and frequency-domain data.

If you estimated a discrete-time transfer function model from
time-domain data, then use d2c to transform it into a
continuous-time model.

Low-order transfer functions
(process models)

Estimate low-order process models for up to three free poles
from either time- or frequency-domain data.

Linear input-output polynomial
models

To get a linear, continuous-time model of arbitrary structure
from time-domain data, you can estimate a discrete-time
model, and then use d2c¢ to transform it into a continuous-time
model.

You can estimate only polynomial models of Output Error
structure using continuous-time frequency domain data.. Other
structures that include noise models, such as Box-Jenkins (B])
and ARMAX, are not supported for frequency-domain data.

State-space models

Estimate continuous-time state-space models directly using the
estimation commands from either time- and frequency-domain
data.

If you estimated a discrete-time state-space model from time-
domain data, then use d2c to transform it into a continuous-
time model.

Linear ODEs (grey-box) models

If the MATLARB file returns continuous-time model matrices,
then estimate the ordinary differential equation (ODE)
coefficients using either time- or frequency-domain data.

Nonlinear ODEs (grey-box) models

If the MATLARB file returns continuous-time output and state
derivative values, estimate arbitrary differential equations
(ODEs) from time-domain data.
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Supported Discrete-Time Models

Model Type

Description

Linear input-output polynomial
models

Estimate arbitrary-order, linear parametric models from time-
or frequency-domain data.

To get a discrete-time model, your data sample time must be
set to the (nonzero) value you used to sample in your
experiment.

“Nonlinear Model Identification”

Estimate from time-domain data only.

Linear ODEs (grey-box) models

If the MATLAB file returns discrete-time model matrices, then
estimate ordinary difference equation coefficients from time-
domain or discrete-time frequency-domain data.

Nonlinear ODEs (grey-box) models

If the MATLAB file returns discrete-time output and state
update values, estimate ordinary difference equations from
time-domain data.
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Model Estimation Commands

In most cases, a model can be created by using a model estimation command on a
dataset. For example, ssest(data, nx) creates a continuous-time state-space model of
order Nx using the input/output of frequency response data DATA.

Note For ODEs (grey-box models), you must first construct the model structure and then
apply an estimation command (either greyest or pem) to the resulting model object.

The following table summarizes System Identification Toolbox estimation commands. For
detailed information about using each command, see the corresponding reference page.

Commands for Constructing and Estimating Models

Model Type Estimation Commands
Transfer function models tfest
Process models procest

Linear input-output polynomial armax (ARMAX only)
models arx (ARX only)

bj (B] only)

iv4 (ARX only)

oe (OE only)

polyest (for all models)

State-space models n4sid
ssest
Time-series models ar
arx (for multiple outputs)
ivar
nlarx(for nonlinear time-series models)
Nonlinear ARX models nlarx
Hammerstein-Wiener models nlhw
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Modeling Multiple-Output Systems

About Modeling Multiple-Output Systems

You can estimate multiple-output model directly using all the measured inputs and
outputs, or you can try building models for subsets of the most important input and
output channels. To learn more about each approach, see:

* “Modeling Multiple Outputs Directly” on page 1-45
* “Modeling Multiple Outputs as a Combination of Single-Output Models” on page 1-45

Modeling multiple-output systems is more challenging because input/output couplings
require additional parameters to obtain a good fit and involve more complex models. In
general, a model is better when more data inputs are included during modeling. Including
more outputs typically leads to worse simulation results because it is harder to reproduce
the behavior of several outputs simultaneously.

If you know that some of the outputs have poor accuracy and should be less important
during estimation, you can control how much each output is weighed in the estimation.

For more information, see “Improving Multiple-Output Estimation Results by Weighing
Outputs During Estimation” on page 1-46.

Modeling Multiple Outputs Directly

You can perform estimation with linear and nonlinear models for multiple-output data.

Tip Estimating multiple-output state-space models directly generally produces better
results than estimating other types of multiple-output models directly.

Modeling Multiple Outputs as a Combination of Single-Output
Models

You may find that it is harder for a single model to explain the behavior of several outputs.
If you get a poor fit estimating a multiple-output model directly, you can try building
models for subsets of the most important input and output channels.
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Use this approach when no feedback is present in the dynamic system and there are no
couplings between the outputs. If you are unsure about the presence of feedback, see
“How to Analyze Data Using the advice Command” on page 2-101.

To construct partial models, use subreferencing to create partial data sets, such that each
data set contains all inputs and one output. For more information about creating partial
data sets, see the following topics:

» For working in the System Identification app, see “Create Data Sets from a Subset of
Signal Channels” on page 2-33.

» For working at the command line, see the “Select Data Channels, I/O Data and
Experiments in iddata Objects” on page 2-54.

After validating the single-output models, use vertical concatenation to combine these
partial models into a single multiple-output model. For more information about
concatenation, see “Increasing Number of Channels or Data Points of iddata Objects” on
page 2-58 or “Adding Input or Output Channels in idfrd Objects” on page 2-87.

You can try refining the concatenated multiple-output model using the original (multiple-
output) data set.

Improving Multiple-Output Estimation Results by Weighing
Outputs During Estimation

When estimating linear and nonlinear black-box models for multiple-output systems, you
can control the relative importance of output channels during the estimation process. The
ability to control how much each output is weighed during estimation is useful when some
of the measured outputs have poor accuracy or should be treated as less important during
estimation. For example, if you have already modeled one output well, you might want to
focus the estimation on modeling the remaining outputs. Similarly, you might want to
refine a model for a subset of outputs.

Use the QutputWeight estimation option to indicate the desired output weighting. If you
set this option to 'noise’, an automatic weighting, equal to the inverse of the estimated
noise variance, is used for model estimation. You can also specify a custom weighting
matrix, which must be a positive semi-definite matrix.

Note
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* The OutputWeight option is not available for polynomial models, except ARX models,
since their estimation algorithm estimates the parameters one output at a time.

* Transfer function (idtf) and process models (idproc) ignore OutputWeight when
they contain nonzero or free transport delays. In the presence of delays, the
estimation is carried out one output at a time.

For more information about the OutputWeight option, see the estimation option sets,
such as arxOptions, ssestOptions, tfestOptions, nlarxOptions, and
nlhwOptions.

Note For multiple-output idnlarx models containing neuralnet or treepartition
nonlinearity estimators, output weighting is ignored because each output is estimated
independently.
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Regularized Estimates of Model Parameters

1-48

What Is Regularization?

Regularization is the technique for specifying constraints on the flexibility of a model,
thereby reducing uncertainty in the estimated parameter values.

Model parameters are obtained by fitting measured data to the predicted model response,
such as a transfer function with three poles or a second-order state-space model. The
model order is a measure of its flexibility — higher the order, the greater the flexibility.
For example, a model with three poles is more flexible than one with two poles.
Increasing the order causes the model to fit the observed data with increasing accuracy.
However, the increased flexibility comes with the price of higher uncertainty in the
estimates, measured by a higher value of random or variance error. On the other hand,
choosing a model with too low an order leads to larger systematic errors. Such errors
cannot be attributed to measurement noise and are also known as bias error.

Ideally, the parameters of a good model should minimize the mean square error (MSE),
given by a sum of systematic error (bias) and random error (variance):

MSE = |Bias|? + Variance

The minimization is thus a tradeoff in constraining the model. A flexible (high order)
model gives small bias and large variance, whereas a simpler (low order) model results in
larger bias and smaller variance errors. Typically, you can investigate this tradeoff
between bias and variance errors by cross-validation tests on a set of models of
increasing flexibility. However, such tests do not always give full control in managing the
parameter estimation behavior. For example:

* You cannot use the known (a priori) information about the model to influence the
quality of the fits.

* In grey-box and other structured models, the order is fixed by the underlying ODEs
and cannot be changed. If the data is not rich enough to capture the full range of
dynamic behavior, this typically leads to high uncertainty in the estimated values.

* Varying the model order does not let you explicitly shape the variance of the
underlying parameters.

Regularization gives you a better control over the bias versus variance tradeoff by
introducing an additional term in the minimization criterion that penalizes the model
flexibility. Without regularization, for a model with one output and no weighting, the
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parameter estimates are obtained by minimizing a weighted quadratic norm of the
prediction errors £(t,0):

1Y,
Vn (9)=N2£ t,0)
t=1

where t is the time variable, N is the number of data samples, and £(t,0) is the predicted
error computed as the difference between the observed output and the predicted output
of the model.

Regularization modifies the cost function by adding a term proportional to the square of
the norm of the parameter vector 6, so that the parameters 6 are obtained by minimizing:

S 1 N 9 1 2
iy 0)-13 200+ Lajo
t=1

where A is a positive constant that has the effect of trading variance error in V() for
bias error — the larger the value of A, the higher the bias and lower the variance of 8. The
added term penalizes the parameter values with the effect of keeping their values small
during estimation. In statistics, this type of regularization is called ridge regression. For
more information, see “Ridge Regression” (Statistics and Machine Learning Toolbox).

Note Another choice for the norm of 6 vector is the L;-norm, known as lasso
regularization. However, System Identification Toolbox supports only the 2-norm based
penalty, known as L, regularization, as shown in the previous equation.

The penalty term is made more effective by using a positive definite matrix R, which
allows weighting and/or rotation of the parameter vector:

\% e—iN 2(1.0)+2 207 Ro
N<)—Nze(,>+N
t=1

The square matrix R gives additional freedom for:

* Shaping the penalty term to meet the required constraints, such as keeping the model
stable
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* Adding known information about the model parameters, such as reliability of the
individual parameters in the 6 vector

For structured models such as grey-box models, you may want to keep the estimated
parameters close to their guess values to maintain the physical validity of the estimated

w\T *
model. This can be achieved by generalizing the penalty term to 1(9 -6 ) R (0 -6 ) ,
such that the cost function becomes:

Vy (e):%i? (t,9)+%1(9—9*)TR(6—9*)

Minimizing this cost function has the effect of estimating 8 such that their values remain
close to initial guesses 6*.

In regularization:

* O* represents prior knowledge about the unknown parameters.

* A*R represents the confidence in the prior knowledge of the unknown parameters.
This implies that the larger the value, the higher the confidence.

A formal interpretation in a Bayesian setting is that 6 has a prior distribution that is

Gaussian with mean 6* and covariance matrix 2/ AR} , where 02 is the variance of g(t).
The use of regularization can therefore be linked to some prior information about the
system. This could be quite soft, such as the system is stable.

You can use the regularization variables A and R as tools to find a good model that
balances complexity and provides the best tradeoff between bias and variance. You can
obtain regularized estimates of parameters for transfer function, state-space, polynomial,
grey-box, process, and nonlinear black-box models. The three terms defining the penalty
term, A, R and 6%, are represented by regularization options Lambda, R, and Nominal,
respectively in the toolbox. You can specify their values in the estimation option sets for
both linear and nonlinear models. In the System Identification app, click Regularization
in the linear model estimation dialog box or Estimation Options in the Nonlinear Models
dialog box.

When to Use Regularization

Use regularization for:
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» Identifying overparameterized models.
* Imposing a priori knowledge of model parameters in structured models.
* Incorporating knowledge of system behavior in ARX and FIR models.

Identifying Overparameterized Models

Over-parameterized models are rich in parameters. Their estimation typically yields
parameter values with a high level of uncertainty. Over-parameterization is common for
nonlinear ARX (idnlarx) models and can also be for linear state-space models using free
parameterization.

In such cases, regularization improves the numerical conditioning of the estimation. You
can explore the bias-vs.-variance tradeoff using various values of the regularization
constant Lambda. Typically, the Nominal option is its default value of 0, and R is an
identity matrix such that the following cost function is minimized:

A~

1 N 9 1 2
U (0) =15 2 o)+ Laje)
t=1

In the following example, a nonlinear ARX model estimation using a large number of
neurons leads to an ill-conditioned estimation problem.

% Load estimation data.

load regularizationExampleData.mat nldata
% Estimate model without regularization.
Orders = [1 2 11;

NL = sigmoidnet('NumberOfUnits',30);

sys = nlarx(nldata,Orders,NL);
compare(nldata,sys)

Applying even a small regularizing penalty produces a good fit for the model to the data.
% Estimate model using regularization constant A = le-8.

opt = nlarxOptions;

opt.Regularization.Lambda = le-8;

sysr = nlarx(nldata,Orders,NL,opt);

compare(nldata,sysr)

Imposing A Priori Knowledge of Model Parameters in Structured Models

In models derived from differential equations, the parameters have physical significance.
You may have a good guess for typical values of those parameters even if the reliability of
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the guess may be different for each parameter. Because the model structure is fixed in
such cases, you cannot simplify the structure to reduce variance errors.

Using the regularization constant Nominal, you can keep the estimated values close to
their initial guesses. You can also design R to reflect the confidence in the initial guesses
of the parameters. For example, if 0 is a 2-element vector and you can guess the value of
the first element with more confidence than the second one, set R to be a diagonal matrix
of size 2-by-2 such that R(1,1) >> R(2,2).

In the following example, a model of a DC motor is parameterized by static gain G and
time constant t. From prior knowledge, suppose you know that G is about 4 and T is about
1. Also, assume that you have more confidence in the value of T than G and would like to
guide the estimation to remain close to the initial guess.

% Load estimation data.

load regularizationExampleData.mat motorData

% Create idgrey model for DC motor dynamics.

mi = idgrey(@DCMotorODE,{'G"',4; 'Tau',1},"'cd",{}, 0);
mi = setpar(mi, 'label', 'default');

% Configure Regularization options.

opt = greyestOptions;

opt.Regularization.Lambda = 100;

% Specify that the second parameter better known than the first.
opt.Regularization.R = [1, 1000];

% Specify initial guess as Nominal.
opt.Regularization.Nominal = 'model’;

% Estimate model.

sys = greyest(motorData,mi,opt)

getpar(sys)

Incorporating Knowledge of System Behavior in ARX and FIR Models

In many situations, you may know the shape of the system impulse response from impact
tests. For example, it is quite common for stable systems to have an impulse response
that is smooth and exponentially decaying. You can use such prior knowledge of system
behavior to derive good values of regularization constants for linear-in-parameter models
such as ARX and FIR structure models using the arxRegul command.

For black-box models of arbitrary structure, it is often difficult to determine the optimal
values of Lambda and R that yield the best bias-vs.-variance tradeoff. Therefore, it is
recommended that you start by obtaining the regularized estimate of an ARX or FIR
structure model. Then, convert the model to a state-space, transfer function or polynomial
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model using the idtf, idss, or idpoly commands, followed by order reduction if
required.

In the following example, direct estimation of a 15th order continuous-time transfer
function model fails due to numerical ill-conditioning.

% Load estimation data.

load dryer2

Dryer = iddata(y2,u2,0.08);

Dryerd = detrend(Dryer,0);

Dryerde = Dryerd(1:500);

xe = Dryerd(1:500);

ze = Dryerd(1:500);

zv = Dryerd(501:end);

% Estimate model without regularization.
sysl = tfest(ze,15);

Therefore, use regularized ARX estimation and then convert the model to transfer
function structure.

% Specify regularization constants.
[L, R] = arxRegul(ze,[15 15 1]);
optARX = arxOptions;
optARX.Regularization.Lambda = L;
optARX.Regularization.R = R;

% Estimate ARX model.

sysARX = arx(ze,[15 15 1],0ptARX);

% Convert model to continuous time.
sysc = d2c(sysARX);

% Convert model to transfer function.
sys2 = idtf(sysc);

% Validate the models sysl and sys?2.
compare(zv,sysl,sys2)

Choosing Regularization Constants

A guideline for selecting the regularization constants A and R is in the Bayesian
interpretation. The added penalty term is an assumption that the parameter vector 0 is a

Gaussian random vector with mean 0* and covariance matrix 62/ AR 1.

You can relate naturally to such an assumption for a grey-box model, where the
parameters are of known physical interpretation. In other cases, this may be more
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difficult. Then, you have to use ridge regression (R = 1; 6* = 0) and tune A by trial and
error.

Use the following techniques for determining A and R values:

* Incorporate prior information using tunable kernels.
* Perform cross-validation tests.

Incorporate Prior Information Using Tunable Kernels

Tuning the regularization constants for ARX models in arxRegul is based on simple
assumptions about the properties of the true impulse responses.

In the case of an FIR model, the parameter vector contains the impulse response
coefficients by for the system. From prior knowledge of the system, it is often known that
the impulse response is smooth and exponentially decaying:

2
E[b,]" =Cu*, corr{byb, }=p

where corr means correlation. The equation is a parameterization of the regularization
constants in terms of coefficients C, j1, and p and the chosen shape (decaying polynomial)
is called a kernel. The kernel thus contains information about parameterization of the
prior covariance of the impulse response coefficients.

You can estimate the parameters of the kernel by adjusting them to the measured data
using the RegularizationKernel input of the arxRegul command. For example, the

DC kernel estimates all three parameters while the TC kernel links p =/u . This
technique of tuning kernels applies to all linear-in-parameter models such as ARX and FIR
models.

Perform Cross-Validation Tests

A general way to test and evaluate any regularization parameters is to estimate a model
based on certain parameters on an estimation data set, and evaluate the model fit for
another validation data set. This is known as cross-validation.

Cross-validation is entirely analogous to the method for selecting model order:

1 Generate a list of candidate A and R values to be tested.
2 Estimate a model for each candidate regularization constant set.
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3 Compare the model fit to the validation data.
4 Use the constants that give the best fit to the validation data.

For example:

% Create estimation and validation data sets.
= z(1:N/2);

= z(N/2:end);
% Specify regularization options and estimate models.
opt = ssestOptions;
for tests = 1:M
opt.Regularization.Lambda = Lvalue(test);
opt.Regularization.R = Rvalue(test);
m{test} = ssest(ze,order,opt);
end
% Compare models with validation data for model fit.
[~,fit] = compare(zv,m{:))

ze
zv
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Related Examples

. “Estimate Regularized ARX Model Using System Identification App” on page 1-57
. “Regularized Identification of Dynamic Systems” on page 1-77
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More About
. “Loss Function and Model Quality Metrics” on page 1-64
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Estimate Regularized ARX Model Using System
Identification App

This example shows how to estimate regularized ARX models using automatically
generated regularization constants in the System Identification app.

Open a saved System Identification App session.
filename = fullfile(matlabroot, 'help', 'toolbox',...

'ident', 'examples', 'ex_arxregul.sid');
systemIdentification(filename)

The session imports the following data and model into the System Identification app:

» Estimation data eData

The data is collected by simulating a system with the following known transfer
function:

_ 0.02008+0.04017z"" +0.02008z "2
1-1.562"" +0.6414272

G(z)
» Transfer function model trueSys
trueSys is the transfer function model used to generate the estimation data eData

described previously. You also use the impulse response of this model later to compare
the impulse responses of estimated ARX models.

Import data - Impart madels -
; Operations l

m_f L ,f’

=-- Preprocess hi

eData 1‘ trueSys
"'\.ﬁ‘( e
= elata
Working Data
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Estimate a 50th-order ARX model.

1 In the System Identification app, select Estimate > Polynomial Models to open the
Polynomial Models dialog box.

2 Verify that ARX is selected in the Structure list.

3 In the Orders field, specify [0 50 0] as the ARX model order and delay.

Pelynomial Models E\@
Structure: ARX: [na nb nk] -
Orders: [a500]
Equation: Ay=Bu+e
Method: @ ARX 0\
Domain: Continuous @ Discrete ( 1 seconds)

Add noise integration ("ARK" model)

Input delay: 0
Name: arx0500
FOCUS:| pregiction - Initial state: Auto -

Regularization... Covariance! | pofimate =

Display progress Stop iterations
| Order Selection | | Qrder Editor... |
[ Estmate | [ close | | Hep |

4  Click Estimate to estimate the model.

A model arx0500 is added to the System Identification app.
Estimate a 50th-order regularized ARX model.

1 In the Polynomial Models dialog box, click Regularization.
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2 In the Regularization Options dialog box, select TC from the Regularization Kernel
drop-down list.

-

o

Regularization Kernel: INune
Bias-variance trade

4

Weighting matrix (

Default

4\ Regularization Options

==

Mane
Custom

SE
55
HF
DI
DC

T

ns)):

| Close | | Help |

Specifying this option automatically determines regularization constants using the TC
regularization kernel. To learn more, see the arxRegul reference page.

Click Close to close the dialog box.
3 In the Name field in the Polynomial Models dialog box, type arx0500reg.

4 (Click Estimate.

A model arx0500reg is added to the System Identification app.

/]

truesSys

Import models

!

arx0500 \ arx0500regy
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Compare the unregularized and regularized model outputs to estimation data.
Select the Model output check box in the System Identification app.

The Measured and simulated model output plot shows that both the models have an 84%
fit with the data.

Measured and simulated model output

Best Fits
arx0500:; 84.58
05t | [ar=0500rey: 54,15
: | _

05} I ®

1] 200 400 ] 200 1000
Time

Determine if regularization leads to parameter values with less variance.

Because the model fit to the estimation data is similar with and without using
regularization, compare the impulse response of the ARX models with the impulse
responses of trueSys, the system used to collect the estimation data.

1 Click the trueSys icon in the model board of the System Identification app.
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2

3

4

Import models -

1

trueSys || am0500 ||ar0500req
Laj

Select the Transient resp check box to open the Transient Response plot window.

KModel Views
Model cutput I{_:‘\\l?Tra nzient resp Monline
[] Model resids [] Freguency resp Ha

[] Zeros and poles

By default, the plot shows the step response.

In the Transient response plot window, select Options > Impulse response to
change to plot to display the impulse response.

Select Options > Show 99% confidence intervals to plot the confidence intervals.
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Impulse Response
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The plot shows that the impulse response of the unregularized model arx0500 is far
off from the true system and has huge uncertainties.

To get a closer look at the model fits to the data and the variances, magnify a portion
of the plot.
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Impulse Response
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The fit of the regularized ARX model arx0500reg closely matches the impulse
response of the true system and the variance is greatly reduced as compared to the
unregularized model.

See Also

Related Examples

. “Regularized Identification of Dynamic Systems” on page 1-77
More About
. “Regularized Estimates of Model Parameters” on page 1-48
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Loss Function and Model Quality Metrics

1-64

What is a Loss Function?

The System Identification Toolbox software estimates model parameters by minimizing
the error between the model output and the measured response. This error, called loss
function or cost function, is a positive function of prediction errors e(t). In general, this
function is a weighted sum of squares of the errors. For a model with ny-outputs, the loss
function V(0) has the following general form:

Ve =Ly
©)="-Ye" (t,60)W(6)e(t,0)
Nt—l

where:

* N s the number of data samples.

* e(t,0) is ny-by-1 error vector at a given time t, parameterized by the parameter vector
0.

* W(0) is the weighting matrix, specified as a positive semidefinite matrix. If Wis a
diagonal matrix, you can think of it as a way to control the relative importance of
outputs during multi-output estimations. When W is a fixed or known weight, it does
not depend on 6.

The software determines the parameter values by minimizing V(68) with respect to 6.

For notational convenience, V(0) is expressed in its matrix form:
V(6)= %tr(we(ET (0)E(0)W(©))
E(0) is the error matrix of size N-by-ny. The i:th row of E(0) represents the error value at
time t = i.
The exact form of V() depends on the following factors:

* Model structure. For example, whether the model that you want to estimate is an ARX
or a state-space model.

» Estimator and estimation options. For example, whether you are using n4sid or
ssest estimator and specifying options such as Focus and OutputWeight.
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Options to Configure the Loss Function

You can configure the loss function for your application needs. The following estimation
options, when available for the estimator, configure the loss function:

Estimation Description Notes
Option
Focus Focus option affects how e(t) in the loss function is * Specify the Focus

computed:

* When Focus is 'prediction’, e(t) represents 1-
step ahead prediction error:

€p (t) = Ymeasured (t) — Ypredicted @)

* When Focus is 'simulation’, e(t) represents
the simulation error:

€s (t) = Ymeasured (t) _ysimulated(t)

Note For models whose noise component is trivial,
(H(q) = 1), e,(t), and e((t) are equivalent.

The Focus option can also be interpreted as a
weighting filter in the loss function. For more
information, see “Effect of Focus and WeightingFilter
Options on the Loss Function” on page 1-70.

option in the estimation
option sets.

The estimation option
sets for oe and tfest
do not have a Focus
option because the
noise-component for
the estimated models is
trivial, and so e,(t) and
e (t) are equivalent.

1-65



1 Choosing Your System Identification Approach

Estimation Description Notes
Option
WeightingFil |When you specify a weighting filter, prefiltered » Specify the
ter prediction or simulation error is minimized: WeightingFilter
option in the estimation
er(t)=1L(e(®)) option sets. Not all

options for
WeightingFilter are
where 1.(.) is a linear filter. The WeightingFilter available for all

option can be interpreted as a custom weighting filter estimation commands.
that is applied to the loss function. For more
information, see “Effect of Focus and WeightingFilter
Options on the Loss Function” on page 1-70.
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Estimation Description Notes

Option

EnforceStabi |When EnforceStability is true, the minimization Specify the

lity objective also contains a constraint that the estimated EnforceStability

model must be stable.

option in the estimation
option sets.

The estimation option
sets for procest and
ssregest commands
do not have an
EnforceStability
option. These
estimation commands
always yield a stable
model.

The estimation
commands tfest and
oe always yield a stable
model when used with
time-domain estimation
data.

Identifying unstable
plants requires data
collection under a
closed loop with a
stabilizing feedback
controller. A reliable
estimation of the plant
dynamics requires a
sufficiently rich noise
component in the
model structure to
separate out the plant
dynamics from
feedback effects. As a
result, models that use
a trivial noise
component (H(q) = 1),
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Estimation
Option

Description

Notes

such as models
estimated by tfest
and oe commands, do
not estimate good
results for unstable
plants.

OutputWeight

OutputWeight option configures the weighting
matrix W(0) in the loss function and lets you control
the relative importance of output channels during
multi-output estimations.

When OutputWeight is 'noise', W(0) equals the
inverse of the estimated variance of error e(t):

-1

w(o)=( 5 B @)E )
N

Because W depends on 6, the weighting is

determined as a part of the estimation.

Minimization of the loss function with this weight

simplifies the loss function to:

V()= det(%ET(e)E(e)j

Using the inverse of the noise variance is the
optimal weighting in the maximum likelihood
sense.

When OutputWeight is an ny-by-ny positive
semidefinite matrix, a constant weighting is used.
This loss function then becomes a weighted sum of
squared errors.

Specify the
OutputWeight option
in the estimation option
sets. Not all options for
OutputWeight are
available for all
estimation commands.

QutputWeight is not
available for polynomial
model estimation
because such models
are always estimated
one output at a time.

OQutputWeight cannot
be 'noise' when
SearchMethod is
‘Lsgnonlin’.
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Estimation Description Notes

Option

ErrorThresho |ErrorThreshold option specifies the threshold for [ Specify the

1d when to adjust the weight of large errors from ErrorThreshold

quadratic to linear. Errors larger than
ErrorThreshold times the estimated standard
deviation have a linear weight in the loss function.

V(0)=% ST (6,0)W(0)e(t,0)+ 30T (4,0)W (0)
tel ted

where:

* I represents those time instants for which

&
|e(t)| spro , where p is the error threshold.

* Jrepresents the complement of I, that is, the time

instants for which |e(t)| >=p*o.
¢ 0 is the estimated standard deviation of the error.

The error v(t,0) is defined as:

v(t,60) = e(t,0) 0 —L—

|e (t,9)|

option in the estimation

option sets.

* A typical value for the

error threshold p =

1.6

inimizes the effect of
( ,TIL

a outliers on the
estimation results.
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Estimation Description Notes

Option

Regularizati |Regularization option modifies the loss function to | Specify the

on add a penalty on the variance of the estimated Regularization
parameters. option in the estimation

option sets.
The loss function is set up with the goal of minimizing |,

the prediction errors. It does not include specific
constraints on the variance (a measure of reliability)
of estimated parameters. This can sometimes lead to
models with large uncertainty in estimated model
parameters, especially when the model has many
parameters.

For linear-in-parameter
models (FIR models)
and ARX models, you
can compute optimal
values of the
regularization variables
R and A using the

Regularization introduces an additional term in arxRegul command.

the loss function that penalizes the model flexibility:

V() =%i€ (t,G)W(B)e(t,0)+%l(0—0*)

t=1

r

R(6-6")

The second term is a weighted (R) and scaled ()
variance of the estimated parameter set 0 about its
nominal value 0*.

Effect of Focus and WeightingFilter Options on the Loss Function

The Focus option can be interpreted as a weighting filter in the loss function. The
WeightingFilter option is an additional custom weighting filter that is applied to the
loss function.

To understand the effect of Focus and WeightingFilter, consider a linear single-input
single-output model:

y(t) = G(q,0) w(t) + H(q,0) e(t)

Where G(q,0) is the measured transfer function, H(q,0) is the noise model, and e(t)
represents the additive disturbances modeled as white Gaussian noise. q is the time-shift
operator.

In frequency domain, the linear model can be represented as:
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Y(w) = G(0,0)U(w)+ H(w,0)E(w)

where Y(w), U(w), and E(w) are the Fourier transforms of the output, input, and output
error, respectively. G(w,8) and H(w,0) represent the frequency response of the input-
output and noise transfer functions, respectively.

The loss function to be minimized for the SISO model is given by:
Vo)== ieT (£,6)e(,6
N =
Using Parseval’s Identity, the loss function in frequency-domain is:
V(6,m) =l||E(co)||2
N

Substituting for E(w) gives:

? U
|H @, 0

V(O,0)= ium—
N |U(w)

Thus, you can interpret minimizing the loss function V as fitting G(6,w) to the empirical

2
Ulw

transfer function Y(a)) /U(w), using M as a weighting filter. This corresponds to

specifying Focus as 'prediction'’ ||Hl@;sfstﬂmat10n emphasizes frequencies where input

has more power (|U (a))||2 is greater) and de-emphasizes frequencies where noise is

significant (|H (¢9,a))||2 is large).

When Focus is specified as 'simulation’, the inverse weighting with |H (9,co)||2 is not
used. That is, only the input spectrum is used to weigh the relative importance of the
estimation fit in a specific frequency range.

When you specify a linear filter 1. as WeightingFilter, it is used as an additional
custom weighting in the loss function.
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Here L(w) is the frequency response of the filter. Use L(w) to enhance the fit of the
model response to observed data in certain frequencies, such as to emphasize the fit close
to system resonant frequencies.

The estimated value of input-output transfer function G is the same as what you get if you
instead first prefilter the estimation data with 1.(.) using idfilt, and then estimate the

model without specifying WeightingFilter. However, the effect of L(.) on the
estimated noise model H depends on the choice of Focus:
* Focus is 'prediction' — The software minimizes the weighted prediction error

er(t)=TL(ep®), and the estimated model has the form:

¥(t) = G(Qu(t)+ Hy(ge(?)

Where H,(q) = H(q)/ L(g) . Thus, the estimation with prediction focus creates a biased
estimate of H. This is the same estimated noise model you get if you instead first

prefilter the estimation data with 1.(.) using idfilt, and then estimate the model.

When H is parameterized independent of G, you can treat the filter 1.(.) as a way of
affecting the estimation bias distribution. That is, you can shape the trade-off between

fitting G to the system frequency response and fitting H /L to the disturbance
spectrum when minimizing the loss function. For more details see, section 14.4 in
System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice
Hall PTR, 1999.

* Focus is 'simulation' — The software first estimates G by minimizing the
weighted simulation error e (¢) = L(es(¢)) , where

e () = Ymeasured (£) — @y eqsureq () - Once G is estimated, the software fixes it and
computes H by minimizing pure prediction errors e(t) using unfiltered data. The

estimated model has the form:
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() = G(qu(t) + He(t)

If you prefilter the data first, and then estimate the model, you get the same estimate

for G but get a biased noise model H /L.

Thus, the WeightingFilter has the same effect as prefiltering the estimation data for
estimation of G. For estimation of H, the effect of WeightingFilter depends upon the

choice of Focus. A prediction focus estimates a biased version of the noise model H /L,
while a simulation focus estimates H. Prefiltering the estimation data, and then

estimating the model always gives H /1. as the noise model.

Model Quality Metrics

After you estimate a model, use model quality metrics to assess the quality of identified
models, compare different models, and pick the best one. The Report.Fit property of an
identified model stores various metrics such as FitPercent, LossFcn, FPE, MSE, AIC,
nAIC, AICc, and BIC values.

FitPercent, LossFcn, and MSE are measures of the actual quantity that is minimized
during the estimation. For example, if Focus is 'simulation’, these quantities are
computed for the simulation error e, (t). Similarly, if you specify the
WeightingFilter option, then LossFcn, FPE, and MSE are computed using filtered
residuals e (t).

FPE, AIC, nAIC, AICc, and BIC measures are computed as properties of the output
disturbance according to the relationship:

y(t)=G(q)u(t)+H (q)e®

G(q) and H(q) represent the measured and noise components of the estimated model.

Regardless of how the loss function is configured, the error vector e(t) is computed as
1-step ahead prediction error using a given model and a given dataset. This implies
that even when the model is obtained by minimizing the simulation error e, (t), the
FPE and various AIC values are still computed using the prediction error e, (t). The
actual value of e, (t) is determined using the pe command with prediction horizon of 1
and using the initial conditions specified for the estimation.
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These metrics contain two terms — one for describing the model accuracy and another

to describe its complexity. For example, in FPE, det(% ET E] describes the model

accuracy and

1+
N
n,

describes the model complexity.

By comparing mod¥ls using these criteria, you can pick a model that gives the best
(smallest criterion value) trade-off between accuracy and complexity.

Quality Metric

Description

FitPercent Normalized Root Mean Squared Error (NRMSE) expressed as a
percentage, defined as:
FitPercent =100| 1 — "ymeasured — Ymodel "
“y measured — Ymeasured
where:
Vmeasured 1S the measured output data.
Ymeasured 1S its (channel-wise) mean.
Vmodel 1S the simulated or predicted response of the model, governed
by the Focus.
* ||.]| indicates the 2-norm of a vector.
FitPercent varies between -Inf (bad fit) to 100 (perfect fit). If the
value is equal to zero, then the model is no better at fitting the measured
data than a straight line equal to the mean of the data.
LossFcn Value of the loss function when the estimation completes. It contains

effects of error thresholds, output weight, and regularization used for
estimation.
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Quality Metric

Description

MSE

Mean Squared Error measure, defined as:
MSE=1 ]§V“eT (t)e(t)
NS

where:

* e(t) is the signal whose norm is minimized for estimation.
* N s the number of data samples in the estimation dataset.

FPE

Akaike’s Final Prediction Error (FPE), defined as:

s

102\ PN

FPE:det(—E E) —

N [

N
where:

* 1, is the number of free parameters in the model. n, includes the
number of estimated initial states.
* N s the number of samples in the estimation dataset.

* Eis the N-by-n, matrix of prediction errors, where n, is the number of
output channels.

AIC

A raw measure of Akaike's Information Criterion, defined as:

AIC = N*log(det [%ET E]J+2*np +N(ny *log(2m)+1)
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Quality Metric

Description

AICc

Small sample-size corrected Akaike's Information Criterion, defined as:

n, +1
AICec =AIC+2#+n +—P2 "~
p (N-n,-1

This metric is often more reliable for picking a model of optimal
complexity from a list of candidate models when the data size N is small.

nAIC

Normalized measure of Akaike's Information Criterion, defined as:

D %
nAIC = log(det[%ET ED+ "p

N

BIC

Bayesian Information Criterion, defined as:

BIC = N*log(det(%ET ED+ N #(n, *log(27)+1) +n, *log(N)

See Also

aic | fpe | goodnessofFit | nparams | pe | predict | sim

More About

. “System Identification Overview”
. “Why Simulate or Predict Model Output?” on page 17-9
. “Assigning Estimation Weightings” on page 6-21

. “Modeling Multiple-Output Systems” on page 1-45

. “Regularized Estimates of Model Parameters” on page 1-48
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Regularized Identification of Dynamic Systems

This example shows the benefits of regularization for identification of linear and nonlinear
models.

What is Regularization

When a dynamic system is identified using measured data, the parameter estimates are
determined as:

0 arg min Vy(#)
[}

where the criterion typically is a weighted quadratic norm of the prediction errors £(t.8),
An L2 regularized criterion is modified as:

il r:ry]ufj]]'l'_x'[f.i]1}'.[{1 0V RO — 0)

A common special case of this is when ¢* = 0. [ = I This is called ridge regression in
statistics, e.g, see the ridge command in Statistics and Machine Learning Toolbox™.

A useful way of thinking about regularization is that #* represents prior knowledge about
the unknown parameter vector and that A = i describes the confidence in this knowledge.
(The larger A = H, the higher confidence). A formal interpretation in a Bayesian setting is
that ¢ has a prior distribution that is Gaussian with mean #* and covariance matrix

a” /A" \where o is the variance of the innovations.

The use of regularization can therefore be linked to some prior information about the
system. This could be quite soft, like that the system is stable. The regularization
variables A and I can be seen as tools to find a good model complexity for best tradeoff
between bias and variance. The regularization constants A and [t are represented by
options called Lambda and R respectively in System Identification Toolbox™. The choice
of " is controlled by the Nominal regularization option.

Bias - Variance Tradeoff in FIR modeling

Consider the problem of estimating the impulse response of a linear system as an FIR
model:

1-77



1 Choosing Your System Identification Approach

1-78

I.llll
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k=0

These are estimated by the command: m = arx(z,[0 nb 0]). The choice of order nb is
a tradeoff between bias (large nb is required to capture slowly decaying impulse
responses without too much error) and variance (large nb gives many parameters to
estimate which gives large variance).

Let us illustrate it with a simulated example. We pick a simple second order butterworth
filter as system:

0.02008 + 0.04017z"1 + 0.02008=z"2

Gz -
[ :I 1—-1.561="1+0.6414=—2

Its impulse response is shown in Figure 1:

trueSys = idtf([0.02008 0.04017 0.02008],[1 -1.561 0.6414]1,1);

[y0,t] = impulse(trueSys);

plot(t,y0)

xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
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Amplitude

Impulse Response

0.16 T

012} |
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Figure 1: The true impulse response.

The impulse response has decayed to zero after less than 50 samples. Let us estimate it
from data generated by the system. We simulate the system with low-pass filtered white
noise as input and add a small white noise output disturbance with variance 0.0025 to the

output. 1000 samples are collected. This data is saved in the
regularizationExampleData.mat file and shown in Figure 2.

load regularizationExampleData.mat eData
plot(eData)
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Input-Output Data
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Figure 2: The data used for estimation.

To determine a good value for nb we basically have to try a few values and by some
validation procedure evaluate which is best. That can be done in several ways, but since
we know the true system in this case, we can determine the theoretically best possible
value, by trying out all models with nb=1, ...,50 and find which one has the best fit to
the true impulse response. Such a test shows that nb = 13 gives the best error norm
(mse = 0.2522) to the impulse response. This estimated impulse response is shown
together with the true one in Figure 3.

nb = ;
ml3 = arx(eData, [0 nb 0]);
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Amplitude

[yl3,~,~,y13sd] = impulse(ml3,t);

plot(t,y0,t,yl3)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system', '13:th order FIR model')

Impulse Response

0.25 T T

True system
13:th order FIR model

0.2

=
-

0.05

-0.05

0 5 10 15 20 25 30 35
Time (seconds)

Figure 3: The true impulse response together with the estimate for order nb = 13.

Despite the 1000 data points with very good signal to noise ratio the estimate is not
impressive. The uncertainty in the response is also quite large as shown by the 1 standard
deviation values of response. The reason is that the low pass input has poor excitation.

plot(t,y0,t,yl3,t,yl3+4yl3sd, 'r:"',t,y1l3-y13sd, 'r:")

xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','13:th order FIR model', 'Bounds')
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Amplitude
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Impulse Response
DS T T T T T T

True system
04 F . 13:th order FIR model | _

Bounds

01k /-/ A \:‘H\ /| | '.-:: 4

0 5 10 15 20 25 30 35
Time (seconds)

Figure 4: Estimated response with confidence bounds corresponding to 1 s.d.

Let us therefore try to reach a good bias-variance trade-off by ridge regression for a FIR

model of order 50. Use arxOptions to configure the regularization constants. For this
¥

exercise we apply a simple penalty of |61,

aopt = arxOptions;

aopt.Regularization.Lambda = 1;
m50r = arx(eData, [0 50 0], aopt);

The resulting estimate has an error norm of 0.1171 to the true impulse response and is
shown in Figure 5 along with the confidence bounds.
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Amplitude

[y50r,~,~,y50rsd] = impulse(m50r,t);

plot(t,y0,t,y50r,t,y50r+y50rsd, 'r:"',t,y50r-y50rsd, 'r:")

xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','50:th order regularized estimate')

Impulse Response
0.2 . ; . .

True system
50:th order regularized estimate

0.1 ]
0.05 [/ ]
i Al S A |
--.".". [\ AT AL A / \“x o
! H'I-I;—\_\*F_ ._I . _'I“_F'I: -_f} : IL- . . .\\-ﬂ:l' III .'I
Ib/. ’ II_ . o ! Illlll:
0.05 . . - : ' '
0 5 10 15 20 25 30 35

Time (seconds)

Figure 5: The true impulse response together with the ridge-regularized estimate for
order nb = 50.

Clearly even this simple choice of regularization gives a much better bias-variance
tradeoff, than selecting an optimal FIR order with no regularization.
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Automatic Determination of Regularization Constants for FIR Models

We can do even better. By using the insight that the true impulse response decays to zero

and is smooth, we can tailor the choice of f: A to the data. This is achieved by the
arxRegul function.

[L,R] = arxRegul(eData, [0 50 0],arxRegulOptions('RegularizationKernel','TC"));
aopt.Regularization.Lambda = L;

aopt.Regularization.R = R;

mrtc = arx(eData, [0 50 0], aopt);

[ytc,~,~,ytcsd] = impulse(mrtc,t);

arxRegul uses fmincon from Optimization Toolbox™ to compute the hyper-parameters
associated with the regularization kernel ("TC" here). If Optimization Toolbox is not
available, a simple Gauss-Newton search scheme is used instead; use the
"Advanced.SearchMethod" option of arxRegulOptions to choose the search method
explicitly. The estimated hyper-parameters are then used to derive the values of /i and A.

Using the estimated values of [f and A in ARX leads to an error norm of 0.0461 and the
response is shown in Figure 6. This kind of tuned regularization is what is achieved also
by the impulseest command. As the figure shows, the fit to the impulse response as well
as the variance is greatly reduced as compared to the unregularized estimates. The price
is a bias in the response estimate, which seems to be insignificant for this example.

plot(t,y0,t,ytc,t,ytc+ytcsd, 'r:',t,ytc-ytcsd, 'r: ")
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system', '50:th order tuned regularized estimate')
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Figure 6: The true impulse response together with the tuned regularized estimate for
order nb = 50.

Using Regularized ARX-models for Estimating State-Space Models

Consider a system m0, which is a 30:th order linear system with colored measurement
noise:

yit) = Glglult) + H{qg)e(t)
where G(q) is the input-to-output transfer function and H(q) is the disturbance transfer

function. This system is stored in the regularizationExampleData.mat data file. The
impulse responses of G(q) and H(qg) are shown in Figure 7.
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load regularizationExampleData.mat m0@

mOH = noise2meas(m0@); % the extracted noise component of the model
[yG,t] = impulse(m0);

yH = impulse(mOH,t);

clf

subplot(211)

plot(t, yG)

title('Impulse Response of G(q)'), ylabel('Amplitude')

subplot(212)

plot(t, yH)

title('Impulse Response of H(qg)'), ylabel('Amplitude')
xlabel('Time (seconds)"')

Impulse Response of G(q)

02r [} ' ' ]
N\
o of | NN\ — :
EPIN
s02r| | -
E | f
<04t | | 1
ool | _
1] 10 20 30 40 50 &0
1 Impulse Response of H(q)
II
W H -
= 0.5 II
g ol " - .
| /
|
_[]5 i i i i i

0 10 20 a0 40 a0 &0
Time (seconds)
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Amplitude

Figure 7: The impulse responses of G(q) (top) and H(q) (bottom).

We have collected 210 data points by simulating m0@ with a white noise input u with
variance 1, and a noise level e with variance 0.1. This data is saved in
regularizationExampleData.mat and is plotted below.

load regularizationExampleData.mat mOsimdata
clf
plot(mO@simdata)

Input-Output Data
y1

L
T AT
0 ;f|“| ||,,J LAJ u LJ Il’lﬂd ﬁ w'wj |H|L1" l‘l,fll ||JPHU|"“'||I ||'||' U |'||||N| |

-2 F

ui

50 100 150 200 250
Time (seconds)

Figure 8: The data to be used for estimation.

To estimate the impulse responses of m@ from these data, we can naturally employ state-
space models in the innovations form (or equivalently ARMAX models) and compute the
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impulse response using the impulse command as before. For computing the state-space
model, we can use a syntax such as:

mk = ssest(mOsimdata, k, 'Ts', 1);
The catch is to determine a good order k. There are two commonly used methods:

* Cross validation CV: Estimate mk for k = 1,...,maxo using the first half of the data
ze = mOsimdata(1l:150) and evaluate the fit to the second half of the data zv =
mOsimdata(151:end) using the compare command: [~, fitk] = compare(zv,
mk, compareOptions('InitialCondition', 'z')). Determine the order k that
maximizes the fit. Then reestimate the model using the whole data record.

* Use the Akaike criterion AIC: Estimate models for orders k = 1,...,maxo using the
whole data set, and then pick that model that minimizes aic(mk).

Applying these techniques to the data with a maximal order maxo = 30 shows that CV
picks k = 15 and AIC picks k = 3.

The "Oracle" test: In addition to the CV and AIC tests, one can also check for what order k
the fit between the true impulse response of G(q) (or H(q)) and the estimated model is
maximized. This of course requires knowledge of the true system m0@ which is impractical.
However, if we do carry on this comparison for our example where m0 is known, we find
that k = 12 gives the best fit of estimated model's impulse response to that of mo (=|
G(qg)|). Similarly, we find that k = 3 gives the best fit of estimated model's noise
component's impulse response to that of the noise component of m0 (=|H(q)|). The Oracle
test sets a reference point for comparison of the quality of models generated by using
various orders and regularization parameters.

Let us compare the impulse responses computed for various order selection criteria:

m3 = ssest(mO@simdata, 3, 'Ts', 1);
ml2 ssest(mO@simdata, 12, 'Ts', 1);
ml5 ssest(mO@simdata, 15, 'Ts', 1);

y3 = impulse(m3, t);
y1l2 = impulse(ml2, t);
y15 = impulse(ml5, t);

plot(t,yG, t,yl2, t,yl5, t,y3)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True G(q)"',...

sprintf('Oracle choice: %2.40%%',100*goodnessOfFit(y12,yG, '"NRMSE')), ...
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Amplitude

sprintf('CV choice: %2.40%%',100*goodnessOfFit(y15,yG, '"NRMSE"')),
sprintf('AIC choice: %2.40%%',100*goodnessOfFit(y3,yG, 'NRMSE"')))

Impulse Response
D:]' T T T T T

True G(qg)
02r Oracle choice: 83.01% | 7
} CV choice: 77.1%

AIC choice: 79.34% 7

0 10 20 30 40 50 60
Time (seconds)

Figure 9: The true impulse response of G(q) compared to estimated models of various
orders.

yH3 = impulse(noise2meas(m3), t);
yH15 = impulse(noise2meas(ml5), t);

plot(t,yH, t,yH3, t,yH15, t,yH3)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True H(q)',...

sprintf('Oracle choice: %2.49%%',100*goodnessOfFit(yH3,yH, '"NRMSE')), ...
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',100*goodnessOfFit (yH15,yH, '"NRMSE"))

sprintf('CV choice: %2.4 ,
',100*goodnessOfFit(yH3,yH, '"NRMSE"')))

g
sprintf('AIC choice: %2.40%%
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Figure 10: The true impulse response of H(q) compared to estimated noise models of

various orders.

We see that a fit as good as 83% is possible to achieve for G(q) among the state-space
models, but the order selection procedure may not find that best order.

We then turn to what can be obtained with regularization. We estimate a rather high
order, regularized ARX-model by doing:

aopt = arxOptions;
[5 60 0], arxRegulOptions('RegularizationKernel','TC

[Lambda, R] = arxRegul(mOsimdata,
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aopt.Regularization.R = R;

aopt.Regularization.Lambda = Lambda;

mr = arx(mOsimdata, [5 60 0], aopt);

nmr = noise2meas(mr);

ymr impulse(mr, t);

yHmr = impulse(nmr, t);

fprintf('Goodness of fit for ARX model is: %2.49%%\n',100*goodnessOfFit(ymr,yG, 'NRMSE'
fprintf('Goodness of fit for noise component of ARX model is: %2.4g%%\n',100*goodnessO

Goodness of fit for ARX model is: 83.12%
Goodness of fit for noise component of ARX model is: 78.71%

It turns out that this regularized ARX model shows a fit to the true G(q) that is even
better than the Oracle choice. The fit to H(q) is more than 80% which also is better that
the Oracle choice of order for best noise model. It could be argued that mr is a high order
(60 states) model, and it is unfair to compare it with lower order state space models. But
this high order model can be reduced to, say, order 7 by using the balred command
(requires Control System Toolbox™ ):

mred7 = balred(idss(mr),7);
nmred7 = noise2meas(mred7);
y7mr = impulse(mred7, t);

y7Hmr = impulse(nmred7, t);

Figures 11 and 12 show how the regularized and reduced order regularized models
compare with the Oracle choice of state-space order for ssest without any loss of
accuracy.

plot(t,yG, t,yl2, t,ymr, t,y7mr)

xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')

legend('True G(q)',...
sprintf('Oracle choice: %2.40%%',100*goodnessOfFit(y12,yG, '"NRMSE')),...
sprintf('High order regularized: %2.49%%',100*goodnessOfFit(ymr,yG, 'NRMSE")), ...
sprintf('Reduced order: %2.49%%',100*goodnessOfFit(y7mr,yG, 'NRMSE"')))
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Figure 11: The regularized models compared to the Oracle choice for G(q).

plot(t,yH, t,yH3, t,yHmr, t,y7Hmr)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True H(q)',...

sprintf('Oracle choice: %2.49%%',100*goodnessOfFit(yH3,yH, 'NRMSE")), ...

sprintf('High order regularized: %2.49%%',100*goodnessOfFit(yHmr,yH, '"NRMSE"')), ...

sprintf('Reduced order: %2.49%%',100*goodnessOfFit(y7Hmr,yH, '"NRMSE")))
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Figure 12: The regularized models compared to the Oracle choice for H(q).

A natural question to ask is whether the choice of orders in the ARX model is as sensitive
a decision as the state space model order in ssest. Simple test, using e.g. arx(z, [10
50 0], aopt), shows only minor changes in the fit of G(q).

State Space Model Estimation by Regularized Reduction Technique

The above steps of estimating a high-order ARX model, followed by a conversion to state-
space and reduction to the desired order can be automated using the ssregest
command. ssregest greatly simplifies this procedure while also facilitating other useful
options such as search for optimal order and fine tuning of model structure by
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specification of feedthrough and delay values. Here we simply reestimate the reduced
model similar to mred7 using ssregest:

opt = ssregestOptions('ARXOrder',[5 60 0]);
mred7 direct = ssregest(mOsimdata, 7, 'Feedthrough', true, opt);
compare(m@simdata, mred7, mred7 direct)

Simulated Response Comparison

3 T T

mOsimdata (y1)
i mred?: 61.97%
2 mred?_direct: 61.6%

Amplitude
vl

_4 1 1
20 40 60 80 100 120 140 160 180 200

Time (seconds)

Figure 13: Comparing responses of state space models to estimation data.

h = impulseplot(mred7, mred7 direct, 40);
showConfidence(h,1l) % 1 s.d. "zero interval"
hold on

s = stem(t,yG,'r');
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Amplitude

s.DisplayName = 'True
legend('show")
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Figure 14: Comparing impulse responses of state space models.

40

In Figure 14, the confidence bound is only shown for the model mred7 direct since it
was not calculated for the model mred7. You can use the translatecov command for
generating confidence bounds for arbitrary transformations (here balred) of identified

models. Note also that the ssregest command does not require you to provide the

"ARXOrder" option value. It makes an automatic selection based on data length when no

value is explicitly set.
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Basic Bias - Variance Tradeoff in Grey Box Models

We shall discuss here grey box estimation which is a typical case where prior information
meets information in observed data. It will be good to obtain a well balanced tradeoff
between these information sources, and regularization is a prime tool for that.

Consider a DC motor (see e.g., iddemo7) with static gain G to angular velocity and time
constant 7:

Had

Gls) = ——
() s(1 4 s7)

In state-space form we have:

r)] = 2

where © = [1: 22] is the state vector composed of the angle 1 and the velocity 2. We
observe both states in noise as suggested by the output equation.

From prior knowledge and experience we think that & is about 4 and 7 is about 1. We
collect in motorData 400 data points from the system, with a substantial amount of noise
(standard deviation of e is 50 in each component. We also save noise-free simulation data
for the same model for comparison purposes. The data is shown in Figure 15.

load regularizationExampleData.mat motorData motorData NoiseFree
t = motorData.SamplingInstants;

subplot(311)

plot(t, [motorData NoiseFree.y(:,1),motorData.y(:,1)])
ylabel('Output 1)

subplot(312)

plot(t, [motorData NoiseFree.y(:,2),motorData.y(:,2)])
ylabel('Output 2')

subplot(313)

plot(t,motorData NoiseFree.u) % input is the same for both datasets
ylabel('Input')

xlabel('Time (seconds)')
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Figure 15: The noisy data to be used for grey box estimation superimposed over noise-
free simulation data to be used for qualifications. From top to bottom: Angle, Angular

Velocity, Input voltage.

The true parameter values in this simulation are G = 2.2 and 7 = 0.8. To estimate the
model we create an idgrey model file DCMotorODE.m.

type('DCMotorODE")

function [A,B,C,D] = DCMotorODE(G,Tau,Ts)
%DCMOTORODE ODE file representing the dynamics of a DC motor parameterized

)
©

%by gain G and time constant Tau.
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[A,B,C,D,K,X0] = DCMOTORODE(G,Tau,Ts) returns the state space matrices
of the DC-motor with time-constant Tau and static gain G. The sample
time is Ts.

This file returns continuous-time representation if input argument Ts
is zero. If Ts>0, a discrete-time representation is returned.

0° 0° 0° 0° o d° o° o°

See also IDGREY, GREYEST.

o°

Copyright 2013 The MathWorks, Inc.

A=1[01;0 -1/Taul;
B = [0; G/Taul;

C = eye(2);

D = [0;0];

if Ts>0 % Sample the model with sample time Ts
s = expm([[A B]*Ts; zeros(1,3)1);
A s(1:2,1:2);
B s(1:2,3);

end

An idgrey object is then created as:
mi = idgrey(@DCMotorODE,{'G', 4; 'Tau', 1},'cd',{}, 0);

where we have inserted the guessed parameter value as initial values. This model is
adjusted to the information in observed data by using the greyest command:

m = greyest(motorData, mi)

m =
Continuous-time linear grey box model defined by @DCMotorODE function:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)
A =
x1 X2
x1 0 1
x2 0 -1.741
B =
ul
x1 0
x2 3.721
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C:
x1 x2
yl 1 0
y2 0 1
D:
ul
yl 0
y2 0
K:
yl y2
x1 0 0
X2 0 0
Model parameters:
G =12.138
Tau = 0.5745
Parameterization:

ODE Function: @DCMotorODE

(parameterizes both continuous- and discrete-time equations)
Disturbance component: none

Initial state: 'auto'

Number of free coefficients: 2

Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using GREYEST on time domain data "motorData".
Fit to estimation data: [29.46;4.167]1%

FPE: 6.074e+06, MSE: 4908

The model m has the parameters 7 = 0.57 and G = 2.14 and reproduces the data is shown
in Figure 16.

copt = compareOptions('InitialCondition', 'z");
[ymi, fiti] = compare(motorData, mi, copt);

[ym, fit] = compare(motorData, m, copt);

t = motorData.SamplingInstants;

subplot(211)

plot(t, [motorData.y(:,1), ymi.y(:,1), ym.y(:,1)])
axis tight

ylabel('Output 1')

legend({'Measured output', ...
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sprintf('Initial: %2.49¢%%',fiti(1)),...
sprintf('Estimated: %2.49%%',fit(1))},...
'Location', 'BestOutside')

subplot(212)

plot(t, [motorData.y(:,2), ymi.y(:,2), ym.y(:,2)])

ylabel('Output 2')

axis tight

legend({'Measured output', ...
sprintf('Initial: %2.49%%',fiti(2)),...
sprintf('Estimated: %2.49%%',fit(2))},...
'Location', 'BestOutside')

Measured output

Initial: 7.827%
100 Estimated: 29.46%
2 0
b=
O
=100 p
=200 L
40
Measured output
100 Initial: 1.037%
Estimated: 4.167%
_,r:,l | | ||I‘
2 " ‘1'L], LAY i " .
s | ||' II TI i i
O g |
=100
10 20 30 40

Figure 16: Measured output and model outputs for initial and estimated models.
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In this simulated case we have also access to the noise-free data
(motorData NoiseFree) and depict the fit to the noise-free data in Figure 17.

[ymi, fiti] = compare(motorData NoiseFree, mi, copt);
[ym, fit] = compare(motorData NoiseFree, m, copt);
subplot(211)
plot(t, [motorData NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1)])
axis tight
ylabel('Output 1)
legend({'Noise-free output',...
sprintf('Initial: %2.49%%',fiti(1)),...
sprintf('Estimated: %2.49%%',fit(1))},...
'Location', 'BestOutside')
subplot(212)
plot(t, [motorData NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Noise-free output',...
sprintf('Initial: %2.49%%',fiti(2)),...
sprintf('Estimated: %2.49%%',fit(2))},...
'Location', 'BestOutside')
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Figure 17: Noise-free output and model outputs for initial and estimated models.

We can look at the parameter estimates and see that the noisy data themselves give

estimates that not quite agree with our prior physical information. To merge the data
information with the prior information we use regularization:

opt = greyestOptions;
opt.Regularization.Lambda = 100;

opt.Regularization.R = [1, 1000]; % second parameter better known than first
opt.Regularization.Nominal = 'model’;

mr = greyest(motorData, mi, opt)

mr
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Continuous-time linear grey box model defined by @DCMotorODE function:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)
A =
x1 X2
x1 0 1
x2 0 -1.119
B =
ul
x1 0
X2 2.447
C =
x1 x2
yl 1 0
y2 0 1
D =
ul
yl 0
y2 0
K =
yl y2
x1 0 0
X2 0 0
Model parameters:
G = 2.187
Tau = 0.8938
Parameterization:

ODE Function: @DCMotorODE

(parameterizes both continuous- and discrete-time equations)
Disturbance component: none

Initial state: 'auto'

Number of free coefficients: 2

Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using GREYEST on time domain data "motorData".
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Fit to estimation data: [29.34;3.848]%
FPE: 6.135e+06, MSE: 4933

We have here told the estimation process that we have some confidence in the initial
parameter values, and believe more in our guess of 7 than in our guess of G. The resulting
regularized estimate mr considers this information together with the information in
measured data. They are weighed together with the help of Lambda and R. In Figure 18 it
is shown how the resulting model can reproduce the output. Clearly, the regularized
model does a better job than both the initial model (to which the parameters are
"attracted") and the unregularized model.

[ymr, fitr] = compare(motorData NoiseFree, mr, copt);
subplot(211)
plot(t, [motorData NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1), ymr.y(:,1)]1)
axis tight
ylabel('Output 1')
legend({'Noise-free output',...
sprintf('Initial: %2.49%%',fiti(1)),...
sprintf('Estimated: %2.49%%',fit(1l)),...
sprintf('Regularized: %2.49%%',fitr(1))},...
'"Location', 'BestOutside')
subplot(212)
plot(t, [motorData NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2), ymr.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Noise-free output',...
sprintf('Initial: %2.49%%',fiti(2)),...
sprintf('Estimated: %2.49%%',fit(2)),...
sprintf('Regularized: %2.49%%',fitr(2))},...
'Location', 'BestOutside')
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Figure 18: Noise-Free measured output and model outputs for initial, estimated and
regularized models.

The regularized estimation also has reduced parameter variance as compared to the
unregularized estimates. This is shown by tighter confidence bounds on the Bode plot of
mr compare to that of m:

clf

showConfidence(bodeplot(m,mr,logspace(-1,1.4,100)),3) % 3 s.d.

region
legend('show")
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Magnitude (dB) ; Phase (deg)
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Bode Diagram
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Figure 19: Bode plot of m and mr with confidence bounds

This was an illustration of how the merging prior and measurement information works. In
practice we need a procedure to tune the size of Lambda to the existing information
sources. A commonly used method is to use cross validation. That is:

» Split the data into two parts - the estimation and the validation data

* Compute the regularized model using the estimation data for various values of Lambda

* Evaluate how well these models can reproduce the validation data: tabulate NRMSE
fit values delivered by the compare command or the goodnessOfFit command.

* Pick that Lambda which gives the model with the best fit to the validation data.
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Use of Regularization to Robustify Large Nonlinear Models

Another use of regularization is to numerically stabilize the estimation of large (often
nonlinear) models. We have given a data record nldata that has nonlinear dynamics. We
try nonlinear ARX-model of neural network character, with more and more neurons:

load regularizationExampleData.mat nldata

opt = nlarxOptions('SearchMethod','lm");

ml0 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',10),opt);
m20 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',20),opt);
m30 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',30),opt);

compare(nldata, ml0, m20) % compare responses of ml0, m20 to measured response

Simulated Response Comparison

150 T T T T T T T T .
nidata (y1)
m10: 94.35%
m20: 99.21%
100 ]
4 50 7
=
2 -
a =
E
< 0
-50
-100 ' ' ' ' ' ' ' ' '

100 200 300 400 500 600 700 BOOD 900 1000
Time (seconds)
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Figure 20: Comparison plot for models m10 and m20.

fprintf('Number of parameters (ml®, m20, m30): %s\n',...
mat2str([nparams(ml@),nparams(m20),nparams(m30)1))
compare(nldata, m30, mlO, m20) % compare all three models

axis([1 800 -57 45])
Number of parameters (ml0, m20, m30): [54 104 154]

Simulated Response Comparison
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Figure 21: Comparison plot for models m10, m20 and m30.

The first two models show good and improving fits. But when estimating the 154
parameters of m30, numerical problems seem to occur. We can then apply a small amount
of regularization to get better conditioned matrices:
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opt.Regularization.Lambda = le-8;
m30r = nlarx(nldata, [1 2 1], sigmoidnet('num',30), opt);

compare(nldata, m30r, ml0, m20)

Simulated Response Comparison
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Figure 22: Comparison plot for models m10, m20 and regularized model m30r.

The fit to estimation data has significantly improved for the model with 30 neurons. As
discussed before, a systematic search for the Lambda value to use would require cross

validation tests.

Conclusions

We discussed the benefit of regularization for estimation of FIR models, linear grey-box
models and Nonlinear ARX models. Regularization can have significant impact on the
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quality of the identified model provided the regularization constants Lambda and R are
chosen appropriately. For ARX models, this can be done very easily using the arxRegul
function. These automatic choices also feed into the dedicated state-space estimation
algorithm ssregest.

For other types of estimations, you must rely on cross validation based search to
determine Lambda. For structured models such as grey box models, R can be used to
indicate the reliability of the corresponding initial value of the parameter. Then, using the
Nominal regularization option, you can merge the prior knowledge of the parameter
values with the information in the data.

Regularization options are available for all linear and nonlinear models including transfer
functions and process models, state-space and polynomial models, Nonlinear ARX,
Hammerstein-Wiener and linear/nonlinear grey box models.
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Supported Data

System Identification Toolbox software supports estimation of linear models from both
time- and frequency-domain data. For nonlinear models, this toolbox supports only time-
domain data. For more information, see “Supported Models for Time- and Frequency-
Domain Data” on page 1-38.

The data can have single or multiple inputs and outputs, and can be either real or
complex.

Your time-domain data should be sampled at discrete and uniformly spaced time instants
to obtain an input sequence

u={u(?),u2T),...,u(NT)}

and a corresponding output sequence

y={y(D),y2D),...y(NT)}
u(t) and y(t) are the values of the input and output signals at time t, respectively.

This toolbox supports modeling both single- or multiple-channel input-output data or time-
series data.

Supported Data Description

Time-domain I/O data One or more input variables u(t) and one or more
output variables y(t), sampled as a function of time.
Time-domain data can be either real or complex

Time-series data Contains one or more outputs y(t) and no measured
input. Can be time-domain or frequency-domain
data.

Frequency-domain data Fourier transform of the input and output time-

domain signals. The data is the set of input and
output signals in frequency domain; the frequency
grid need not be uniform.
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Supported Data

Description

Frequency-response data

Complex frequency-response values for a linear
system characterized by its transfer function G,
measurable directly using a spectrum analyzer. Also
called frequency function data. Represented by frd
or idfrd objects. The data sample time may be zero
or nonzero. The frequency vector need not be
uniformly spaced.

Note If your data is complex valued, see “Manipulating Complex-Valued Data” on page 2-
140 for information about supported operations for complex data.
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Ways to Obtain Identification Data

You can obtain identification data by:

Measuring input and output signals from a physical system.

Your data must capture the important system dynamics, such as dominant time
constants. After measuring the signals, organize the data into variables, as described
in “Representing Data in MATLAB Workspace” on page 2-9. Then, import it in the
System Identification app or represent it as a data object for estimating models at the
command line.

Generating an input signal with desired characteristics, such as a random Gaussian or
binary signal or a sinusoid, using idinput. Then, generate an output signal using this
input to simulate a model with known coefficients. For more information, see
“Generate Data Using Simulation” on page 2-135.

Using input/output data thus generated helps you study the impact of input signal
characteristics and noise on estimation.

Logging signals from Simulink models.
This technique is useful when you want to replace complex components in your model
with identified models to speed up simulations or simplify control design tasks. For

more information on how to log signals, see “Export Signal Data Using Signal
Logging” (Simulink).
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Ways to Prepare Data for System ldentification
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Before you can perform any task in this toolbox, your data must be in the MATLAB
workspace. You can import the data from external data files or manually create data
arrays at the command line. For more information about importing data, see
“Representing Data in MATLAB Workspace” on page 2-9.

The following tasks help to prepare your data for identifying models from data:

Represent data for system identification

You can represent data in the format of this toolbox by doing one of the following:

For working in the app, import data into the System Identification app.

See “Represent Data”.
For working at the command line, create an iddata or idfrd object.

For time-domain or frequency-domain data, see “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50.

For frequency-response data, see “Representing Frequency-Response Data Using idfrd
Objects” on page 2-84.

To simulate data with and without noise, see “Generate Data Using Simulation” on
page 2-135.

Analyze data quality

You can analyze your data by doing either of the following:

Plotting data to examine both time- and frequency-domain behavior.

See “How to Plot Data in the App” on page 2-92 and “How to Plot Data at the
Command Line” on page 2-99.

Using the advice command to analyze the data for the presence of constant offsets
and trends, delay, possible feedback, and signal excitation levels.

See “How to Analyze Data Using the advice Command” on page 2-101.
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Preprocess data

Review the data characteristics for any of the following features to determine if there is a
need for preprocessing:

» Missing or faulty values (also known as outliers). For example, you might see gaps that
indicate missing data, values that do not fit with the rest of the data, or noninformative
values.

See “Handling Missing Data and Outliers” on page 2-106.
* Offsets and drifts in signal levels (low-frequency disturbances).

See “Handling Offsets and Trends in Data” on page 2-112 for information about
subtracting means and linear trends, and “Filtering Data” on page 2-127 for
information about filtering.

* High-frequency disturbances above the frequency interval of interest for the system
dynamics.

See “Resampling Data” on page 2-118 for information about decimating and
interpolating values, and “Filtering Data” on page 2-127 for information about
filtering.

Select a subset of your data

You can use data selection as a way to clean the data and exclude parts with noisy or
missing information. You can also use data selection to create independent data sets for
estimation and validation.

To learn more about selecting data, see “Select Subsets of Data” on page 2-103.
Combine data from multiple experiments

You can combine data from several experiments into a single data set. The model you
estimate from a data set containing several experiments describes the average system
that represents these experiments.

To learn more about creating multiple-experiment data sets, see “Create Multiexperiment

Data Sets in the App” on page 2-35 or “Create Multiexperiment Data at the Command
Line” on page 2-60.
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Requirements on Data Sampling
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A sample time is the time between successive data samples. It is sometimes also referred
to as sampling time or sample interval.

The System Identification app only supports uniformly sampled data.

The System Identification Toolbox product provides limited support for nonuniformly
sampled data. For more information about specifying uniform and nonuniform time
vectors, see “Constructing an iddata Object for Time-Domain Data” on page 2-50.
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Representing Data in MATLAB Workspace

Time-Domain Data Representation

Time-domain data consists of one or more input variables u(t) and one or more output
variables y(t), sampled as a function of time. If there is no input variable, see “Time-Series
Data Representation” on page 2-10.

You must organize time-domain input/output data in the following format:

* For single-input/single-output (SISO) data, the sampled data values must be double
column vectors.

¢ For multi-input/multi-output (MIMO) data with N, inputs and N, outputs, and N,
number of data samples (measurements):

* The input data must be an N-by-N, matrix
* The output data must be an N-by-N; matrix

To use time-domain data for identification, you must know the sample time. If you are
working with uniformly sampled data, use the actual sample time from your experiment.
Each data value is assigned a time instant, which is calculated from the start time and
sample time. You can work with nonuniformly sampled data only at the command line by
specifying a vector of time instants using the SamplingInstants property of iddata, as
described in “Constructing an iddata Object for Time-Domain Data” on page 2-50.

For continuous-time models, you must also know the input intersample behavior, such as
zero-order hold and first-order-hold.

For more information about importing data into MATLAB, see “Data Import and Export”
(MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Import Time-Domain Data into the App” on page 2-16 and
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-50.
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Time-Series Data Representation

Time-series data is time-domain or frequency-domain data that consist of one or more
outputs y(t) with no corresponding input. For more information on how to obtain
identification data, see “Ways to Obtain Identification Data” on page 2-5.

You must organize time-series data in the following format:

* For single-input/single-output (SISO) data, the output data values must be a column
vector.

* For data with N, outputs, the output is an N-by-N; matrix, where N is the number of
output data samples (measurements).

To use time-series data for identification, you also need the sample time. If you are
working with uniformly sampled data, use the actual sample time from your experiment.
Each data value is assigned a sample time, which is calculated from the start time and the
sample time. If you are working with nonuniformly sampled data at the command line,
you can specify a vector of time instants using the iddata SamplingInstants property,
as described in “Constructing an iddata Object for Time-Domain Data” on page 2-50.

Note that model estimation cannot be performed using non-uniformly sampled data.

For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Import Time-Domain Data into the App” on page 2-16 and
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-50.

For information about estimating time-series model parameters, see “Time Series
Analysis”.
Frequency-Domain Data Representation

Frequency-domain data consists of either transformed input and output time-domain
signals on page 2-11 or system frequency response on page 2-13 sampled as a function
of the independent variable frequency.
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Frequency-Domain Input/Output Signal Representation

What Is Frequency-Domain Input/Output Signal?

Frequency-domain data is the Fourier transform of the input and output time-domain
signals. For continuous-time signals, the Fourier transform over the entire time axis is
defined as follows:

Y Giw) = j y(t)e gt

Uliw) = j u(t)e W dy

—oo

In the context of numerical computations, continuous equations are replaced by their
discretized equivalents to handle discrete data values. For a discrete-time system with a
sample time T, the frequency-domain output Y(e) and input U(e™™) is the time-discrete
Fourier transform (TDFT):

. N .
Y(ele) — TZ y(kT)e—lwkT
k=1

In this example, k = 1,2, ...,N, where N is the number of samples in the sequence.

Note This form only discretizes the time. The frequency is continuous.

In practice, the Fourier transform cannot be handled for all continuous frequencies and
you must specify a finite number of frequencies. The discrete Fourier transform (DFT) of
time-domain data for N equally spaced frequencies between 0 and the sampling
frequency 2m/N is:

. N .
Y(elw”T) — 2 y(kT)e—lwnkT
k=1

w =2 5012, N-1
T

n
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The DFT is useful because it can be calculated very efficiently using the fast Fourier
transform (FFT) method. Fourier transforms of the input and output data are complex
numbers.

For more information on how to obtain identification data, see “Ways to Obtain
Identification Data” on page 2-5.

How to Represent Frequency-Domain Data in MATLAB

You must organize frequency-domain data in the following format:
* Input and output

* For single-input/single-output (SISO) data:

The input data must be a column vector containing the values u(ei“’kT )

The output data must be a column vector containing the values y (ei“’kT)

k=1, 2, ..., N;, where N; is the number of frequencies.
¢ For multi-input/multi-output data with N,, inputs, N outputs and N¢ frequency
measurements:
* The input data must be an Nrby-N, matrix
 The output data must be an N¢by-N; matrix
* Frequencies

* Must be a column vector.

For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Importing Frequency-Domain Input/Output Signals into the App” on
page 2-19 and “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-50.
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Frequency-Response Data Representation

What Is Frequency-Response Data?

Frequency-response data, also called frequency-function data, consists of complex
frequency-response values for a linear system characterized by its transfer function G.
Frequency-response data tells you how the system handles sinusoidal inputs. You can
measure frequency-response data values directly using a spectrum analyzer, for example,
which provides a compact representation of the input-output relationship (compared to
storing input and output independently).

The transfer function G is an operator that takes the input u of a linear system to the
output y:

y=Gu

For a continuous-time system, the transfer function relates the Laplace transforms of the
input U(s) and output Y(s):
Y(s)=G(s)U(s)

In this case, the frequency function G(iw) is the transfer function evaluated on the
imaginary axis s=iw.

For a discrete-time system sampled with a time interval T, the transfer function relates
the Z-transforms of the input U(z) and output Y(2):

Y(2) = G(2U(z)

In this case, the frequency function G(e™7) is the transfer function G(z) evaluated on the
unit circle. The argument of the frequency function G(e™7) is scaled by the sample time T

to make the frequency function periodic with the sampling frequency 2%..
When the input to the system is a sinusoid of a specific frequency, the output is also a

sinusoid with the same frequency. The amplitude of the output is |G| times the amplitude

of the input. The phase of the shifted from the input by ¢ = argG . G is evaluated at the
frequency of the input sinusoid.

Frequency-response data represents a (nonparametric) model of the relationship between
the input and the outputs as a function of frequency. You might use such a model, which
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consists of a table or plot of values, to study the system frequency response. However,
this model is not suitable for simulation and prediction. You should create parametric
model from the frequency-response data.

For more information on how to obtain identification data, see “Ways to Obtain
Identification Data” on page 2-5.

How to Represent Frequency-Response Data in MATLAB

You can represent frequency-response data in two ways:

« Complex-values G(e'*) , for given frequencies w

Amplitude |G| and phase shift ¢ = argG values

You can import both the formats directly in the System Identification app. At the
command line, you must represent complex data using an frd or idfrd object. If the
data is in amplitude and phase format, convert it to complex frequency-response vector
using h(w) = A(w)el*®),

You must organize frequency-response data in the following format:

Frequency- For Single-Input Single-Output |For Multi-Input Multi-Output (MIMO)
Response Data (SISO) Data Data
Representation

Complex Values * Frequency function must be a Frequency function must be an Ny-
column vector. by-N,-by-N; array, where N, is the
number of inputs, Ny is the number
of outputs, and N; is the number of
frequency measurements.

» Frequency values must be a
column vector.

» Frequency values must be a column
vector.

Amplitude and phase Amplitude and phase must each|* Amplitude and phase must each be
shift values be a column vector. an Ny-by-N,-by-N; array, where N, is
the number of inputs, Ny is the
number of outputs, and N; is the
number of frequency measurements.

* Frequency values must be a
column vector.

* Frequency values must be a column
vector.
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For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information about importing data into the app, see “Importing Frequency-Response Data
into the App” on page 2-21. To learn more about creating a data object, see
“Representing Frequency-Response Data Using idfrd Objects” on page 2-84.
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Import Time-Domain Data into the App

2-16

Before you can import time-domain data into the System Identification app, you must
import the data into the MATLAB workspace, as described in “Time-Domain Data
Representation” on page 2-9.

Note Your time-domain data must be sampled at equal time intervals. The input and
output signals must have the same number of data samples.

To import data into the app:

1

Type the following command in the MATLAB Command Window to open the app:

systemIdentification

In the System Identification app window, select Import data > Time domain data.
This action opens the Import Data dialog box.

Import data -

Time domain data...
Freg. domain data...
Data object...
Example...

Specify the following options:

Note For time series, only import the output signal and enter [ ] for the input.

* Input — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the input data. The expression must evaluate
to a column vector or matrix.

*  Output — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the output data. The expression must
evaluate to a column vector or matrix.

* Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.
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Starting time — Enter the starting value of the time axis for time plots.

Sample time — Enter the actual sample time in the experiment. For more
information about this setting, see “Specifying the Data Sample Time” on page 2-
28.

Tip The System Identification Toolbox product uses the sample time during model
estimation and to set the horizontal axis on time plots. If you transform a time-
domain signal to a frequency-domain signal, the Fourier transforms are computed
as discrete Fourier transforms (DFTs) using this sample time.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following settings:

Input Properties

InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

* zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

» foh (first-order hold) indicates that the output was piecewise-linear during
data acquisition.

* bl (bandwidth-limited behavior) specifies that the continuous-time input signal
has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note See the d2c and c2d reference pages for more information about
transforming between discrete-time and continuous-time models.

Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain
data was periodic over an integer number of periods, enter the period of the input
signal.

Note If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names
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* Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input-
output signals, you can specify the names of individual Input and Output
channels, separated by commas.

* Output — Enter the name of one or more output channels.

Physical Units of Variables

* Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

*  Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

Click Close to close the Import Data dialog box.
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Import Frequency-Domain Data into the App

Importing Frequency-Domain Input/Output Signals into the

App

Frequency-domain data consists of Fourier transforms of time-domain data (a function of
frequency).

Before you can import frequency-domain data into the System Identification app, you
must import the data into the MATLAB workspace, as described in “Frequency-Domain
Input/Output Signal Representation” on page 2-11.

Note The input and output signals must have the same number of data samples.

To import data into the app:

1

Type the following command in the MATLAB Command Window to open the app:

systemIdentification

In the System Identification app window, select Import data > Freq. domain data.
This action opens the Import Data dialog box.

Specify the following options:

Input — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the input data. The expression must evaluate
to a column vector or matrix.

Output — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the output data. The expression must
evaluate to a column vector or matrix.

Frequency — Enter the MATLAB variable name of a vector or a MATLAB
expression that represents the frequencies. The expression must evaluate to a
column vector.

The frequency vector must have the same number of rows as the input and output
signals.

Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.
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Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

Sample time — Enter the actual sample time in the experiment. For continuous-
time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

4 (Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Input Properties

InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

* zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

» foh (first-order hold) indicates that the output was piecewise-linear during
data acquisition.

* bl (bandwidth-limited behavior) specifies that the continuous-time input signal
has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain
data was periodic over an integer number of periods, enter the period of the input
signal.

Note If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names

2-20

Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Qutput
channels, separated by commas.
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* Output — Enter the name of one or more output channels.

Physical Units of Variables

o Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

* Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

Click Close to close the Import Data dialog box.

Importing Frequency-Response Data into the App

Prerequisite

Before you can import frequency-response data into the System Identification app, you
must import the data into the MATLAB workspace, as described in “Frequency-Response
Data Representation” on page 2-13.

Importing Complex-Valued Frequency-Response Data

To import frequency-response data consisting of complex-valued frequency values at
specified frequencies:

1

Type the following command in the MATLAB Command Window to open the app:

systemIdentification

In the System Identification app window, select Import data > Freq. domain data.
This action opens the Import Data dialog box.

In the Data Format for Signals list, select Freq. Function (Complex).

Specify the following options:
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Response — Enter the MATLAB variable name or a MATLAB expression that
represents the complex frequency-response data G(e').

Frequency — Enter the MATLAB variable name of a vector or a MATLAB
expression that represents the frequencies. The expression must evaluate to a
column vector.

Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

Sample time — Enter the actual sample time in the experiment. For continuous-
time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Channel Names

Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

Output — Enter the name of one or more output channels.

Physical Units of Variables

Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.
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7

Click Close to close the Import Data dialog box.

Importing Amplitude and Phase Frequency-Response Data

To import frequency-response data consisting of amplitude and phase values at specified
frequencies:

1

Type the following command in the MATLAB Command Window to open the app:

systemIdentification

In the System Identification app window, select Import data > Freq. domain data.
This action opens the Import Data dialog box.

In the Data Format for Signals list, select Freq. Function (Amp/Phase).

Specify the following options:

Amplitude — Enter the MATLAB variable name or a MATLAB expression that

represents the amplitude |G.
Phase (deg) — Enter the MATLAB variable name or a MATLAB expression that

represents the phase ¢ =argG.

Frequency — Enter the MATLAB variable name of a vector or a MATLAB
expression that represents the frequencies. The expression must evaluate to a
column vector.

Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

Sample time — Enter the actual sample time in the experiment. For continuous-
time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Channel Names

Input — Enter the name of one or more input channels.
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Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

* Output — Enter the name of one or more output channels.

Physical Units of Variables

* Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

* Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

Click Close to close the Import Data dialog box.
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Import Data Objects into the App

You can import the System Identification Toolbox iddata and idfrd data objects into the
System Identification app.

Before you can import a data object into the System Identification app, you must create
the data object in the MATLAB workspace, as described in “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-50 or “Representing
Frequency-Response Data Using idfrd Objects” on page 2-84.

Note You can also import a Control System Toolbox frd object. Importing an frd object
converts it to an idfrd object.

Select Import data > Data object to open the Import Data dialog box.
Import iddata, idfrd, or frd data object in the MATLAB workspace.
To import a data object into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Data object.

Import data -

Import data

Time domain data...
Freq. domain data...
Data object...

Example. ..

This action opens the Import Data dialog box. IDDATA or IDFRD/FRD is already
selected in the Data Format for Signals list.

3  Specify the following options:

* Object — Enter the name of the MATLAB variable that represents the data object
in the MATLAB workspace. Press Enter.
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Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

(Only for time-domain iddata object) Starting time — Enter the starting value
of the time axis for time plots.

(Only for frequency domain iddata or idfrd object) Frequency unit — Enter
the frequency unit for response plots.

Sample time — Enter the actual sample time in the experiment. For more
information about this setting, see “Specifying the Data Sample Time” on page 2-
28.

Tip The System Identification Toolbox product uses the sample time during model
estimation and to set the horizontal axis on time plots. If you transform a time-
domain signal to a frequency-domain signal, the Fourier transforms are computed
as discrete Fourier transforms (DFTs) using this sample time.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

(Only for iddata object) Input Properties

InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

* zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

» foh (first-order hold) indicates that the input was piecewise-linear during data
acquisition.

* bl (bandwidth-limited behavior) specifies that the continuous-time input signal
has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain
data was periodic over an integer number of periods, enter the period of the input
signal.
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Note If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names

* Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

*  Output — Enter the name of one or more output channels.
Physical Units of Variables

o Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

*  Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

Click Close to close the Import Data dialog box.
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Specifying the Data Sample Time
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When you import data into the app, you must specify the data sample time.

The sample time is the time between successive data samples in your experiment and
must be the numerical time interval at which your data is sampled in any units. For
example, enter 0.5 if your data was sampled every 0.5 s, and enter 1 if your data was
sampled every 1 s.

You can also use the sample time as a flag to specify continuous-time data. When
importing continuous-time frequency domain or frequency-response data, set the Sample
time to 0.

The sample time is used during model estimation. For time-domain data, the sample time
is used together with the start time to calculate the sampling time instants. When you
transform time-domain signals to frequency-domain signals (see the fft reference page),
the Fourier transforms are computed as discrete Fourier transforms (DFTs) for this
sample time. In addition, the sampling instants are used to set the horizontal axis on time
plots.



Specifying the Data Sample Time

4 Import Dats =] Sl
Data Format for Signals
IDDATA or IDFRDVFRD x|
Workspace Variable

Object:
Type:
Data Information
Data name: mydata
Starting time: 1
Sample time: 1
[ Import ] [ Reset ]
[ Close ] [ Help ]

Sample Time in the Import Data dialog box
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Specify Estimation and Validation Data in the App
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You should use different data sets to estimate and validate your model for best validation
results.

In the System Identification app, Working Data refers to estimation data. Similarly,
Validation Data refers to the data set you use to validate a model. For example, when
you plot the model output, the input to the model is the input signal from the validation
data set. This plot compares model output to the measured output in the validation data
set. Selecting Model resids performs residual analysis using the validation data.

To specify Working Data, drag and drop the corresponding data icon into the Working
Data rectangle, as shown in the following figure. Similarly, to specify Validation Data,
drag and drop the corresponding data icon into the Validation Data rectangle.
Alternatively, right-click the icon to open the Data/model Info dialog box. Select the Use
as Working Data or Use as Validation Data and click Apply to specify estimation and
validation data, respectively.



See Also

Drag and drop estimation data set

A

=

data datad

data_est data_val

A

Data Views
[¥] Time plot
[7] Data spectra

[] Frequency functpn

N
data_est
Working Data

4

=

Estimate —> i

To To
(Workspace || LTI Viewer

Trash

idation data changed to data_val.

B system Identification - Untjfled
File Options Window/ Help
Import data ) Import model§ v:
J L Opkrations 4
,\I\ <— Preprodess i

Model output

Model resids

ta_val
Validation Data

Model Views

Transient resp
Frequency resp
Zeros and poies

Noise spectrum

Nenlinear ARX

Hamm-Wiener

Drag and drop validation data set

See Also

More About

. “Select Subsets of Data” on page 2-103
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Preprocess Data Using Quick Start
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As a preprocessing shortcut for time-domain data, select Preprocess > Quick start to
simultaneously perform the following four actions:

Subtract the mean value from each channel.

Note For information about when to subtract mean values from the data, see
“Handling Offsets and Trends in Data” on page 2-112.

Split data into two parts.
Specify the first part as estimation data for models (or Working Data).
Specify the second part as Validation Data.
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Create Data Sets from a Subset of Signal Channels

You can create a new data set in the System Identification app by extracting subsets of
input and output channels from an existing data set.

To create a new data set from selected channels:

1

In the System Identification app, drag the icon of the data from which you want to
select channels to the Working Data rectangle.

Select Preprocess > Select channels to open the Select Channels dialog box.

-

Bl select Channels | = |[ @ || 22|

Working data: Z

Power N
Inputs: Concentration _
Qutputs: temperature
Data name: 7r
[ Insert | Revert |
[ Close [ Help ]

The Inputs list displays the input channels and the Outputs list displays the output
channels in the selected data set.

In the Inputs list, select one or more channels in any of following ways:

» Select one channel by clicking its name.

* Select adjacent channels by pressing the Shift key while clicking the first and last

channel names.

* Select nonadjacent channels by pressing the Ctrl key while clicking each channel

name.

2-33



2 Data Import and Processing

2-34

Tip To exclude input channels and create time-series data, clear all selections by
holding down the Ctrl key and clicking each selection. To reset selections, click
Revert.

In the Outputs list, select one or more channels in any of following ways:

» Select one channel by clicking its name.

* Select adjacent channels by pressing the Shift key while clicking the first and last
channel names.

* Select nonadjacent channels by pressing the Ctrl key while clicking each channel
name.

Tip To reset selections, click Revert.

In the Data name field, type the name of the new data set. Use a name that is unique
in the Data Board.

Click Insert to add the new data set to the Data Board in the System Identification
app.

Click Close.
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Create Multiexperiment Data Sets in the App

Why Create Multiexperiment Data?

You can create a time-domain or frequency-domain data set in the System Identification
app that includes several experiments. Identifying models for multiexperiment data
results in an average model.

Experiments can mean data that was collected during different sessions, or portions of
the data collected during a single session. In the latter situation, you can create
multiexperiment data by splitting a single data set into multiple segments that exclude
corrupt data, and then merge the good data segments.

Limitations on Data Sets

You can only merge data sets that have all of the following characteristics:

* Same number of input and output channels.

» Different names. The name of each data set becomes the experiment name in the
merged data set.

* Same input and output channel names.

* Same data domain (that is, time-domain data or frequency-domain data only).
Merging Data Sets

You can merge data sets using the System Identification app.

For example, suppose that you want to combine the data sets tdata, tdata2, tdata3s,
tdata4 shown in the following figure.
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Import models ~7)
Operations ;
Fomm Prepru CESS -
tdata tdata2 .
tdatad tdatad MW
=
tdata
Working Data
Estimate —= -
Data Views To To Model Views
[] Time plot Workspace | | LTI Viewer Model output Transient resp Nonlinear ARX
|:| Data spectra | esids Frequency resp Hamm-Wiener
|:| Freguency function ” Zeros and poles
tdata o
Trash Noise spectrum

Validation Data
Data set tdata4 inserted. Double click on icon (right mouse) for text information.

App Contains Four Data Sets to Merge
To merge data sets in the app:

1 In the Operations area, select <--Preprocess > Merge experiments from the
drop-down menu to open the Merge Experiments dialog box.
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Import data - Import models -

Operations / “

<— Preprocess =
tdata tdata2
<— Preprocess 7
W w Select channels...
tdata3 tdatad Select experiments.. 4

Merge experiments...

Select range. ..

Remove means

Remove trends

Fitter...

Data Views Resample... Model Views

Tranzform data...
[*] Time plot Quick start Model output Transient resp Monlinear ARX
|:| Data spectra Model resids Frequency resp Hamm-Wiener
|:| Freguency function ” M’!INM Zeros and poles

tdata

Noizse spectrum
== Validation Data
Data set tdatad inserted. Double click on icon (right mouse) for text information.

In the System Identification app window, drag a data set icon to the Merge
Experiments dialog box, to the drop them here to be merged rectangle.

The name of the data set is added to the List of sets. Repeat for each data set you
want to merge.
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u Merge Experiments E'@
Drag data sets
from data boards List of sets
and...
drop them here E:IZE i
to be merged tdata3
Data name: tdatam
[ Insert ] [ Revert ]
[ Close ] [ Help ]

tdata and tdata2 to Be Merged

Tip To empty the list, click Revert.

3 Inthe Data name field, type the name of the new data set. This name must be
unique in the Data Board.

4  Click Insert to add the new data set to the Data Board in the System Identification
app window.
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Import data =

1

tdata tdata2
tdatad tdatad

IR

tdatam \

Data Board Now Contains tdatam with Merged Experiments
5 Click Close to close the Merge Experiments dialog box.

Tip To get information about a data set in the System Identification app, right-click the
data icon to open the Data/model Info dialog box.

Extracting Specific Experiments from a Multiexperiment Data
Set into a New Data Set

When a data set already consists of several experiments, you can extract one or more of
these experiments into a new data set, using the System Identification app.

For example, suppose that tdatam consists of four experiments.
To create a new data set that includes only the first and third experiments in this data set:

1 In the System Identification app window, drag and drop the tdatam data icon to the
Working Data rectangle.
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Import data -
l Operations

<— Preprocess -
tdata tdataZ 1‘ .
tdata3 \ tdatad — %Wmh

P e
_,,...-""'-— Working Data
tdatam

1

Estimate — -

tdatam Is Set to Working Data

2 In the Operations area, select Preprocess > Select experiments from the drop-
down menu to open the Select Experiment dialog box.

3 In the Experiments list, select one or more data sets in either of the following ways:

» Select one data set by clicking its name.

* Select adjacent data sets by pressing the Shift key while clicking the first and last
names.

* Select nonadjacent data sets by pressing the Ctrl key while clicking each name.

u Select Experiment E'@

Working data: tdatam
Experiments:

Data name:

|  mset | |  Revert |
| Cose | | Help |
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4 In the Data name field, type the name of the new data set. This name must be
unique in the Data Board.

5 Click Insert to add the new data set to the Data Board in the System Identification
app.
6 Click Close to close the Select Experiment dialog box.

See Also

More About

. “Select Subsets of Data” on page 2-103
. “Create Multiexperiment Data at the Command Line” on page 2-60
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Managing Data in the App
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Viewing Data Properties

You can get information about each data set in the System Identification app by right-
clicking the corresponding data icon.

The Data/model Info dialog box opens. This dialog box describes the contents and the
properties of the corresponding data set. It also displays any associated notes and the
command-line equivalent of the operations you used to create this data.

Tip To view or modify properties for several data sets, keep this window open and right-
click each data set in the System Identification app. The Data/model Info dialog box
updates as you select each data set.




Managing Data in the App

Data object
description

History of
syntax that
created this
object

« Date’model Info: date est

Lpply

Frezent Expont

To displays the data properties in the MATLAB Command Window, click Present.

Renaming Data and Changing Display Color

You can rename data and change its display color by double-clicking the data icon in the
System Identification app.

The Data/model Info dialog box opens. This dialog box describes both the contents and
the properties of the data. The object description area displays the syntax of the

operations you used to create the data in the app.

The Data/model Info dialog box also lets you rename the data by entering a new name in
the Data name field.
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You can also specify a new display color using three RGB values in the Color field. Each
value is between 0 to 1 and indicates the relative presence of red, green, and blue,
respectively. For more information about specifying default data color, see “Customizing
the System Identification App” on page 21-14.

Tip As an alternative to using three RGB values, you can enter any one of the following:

y |r| |b| |C| |g| |m| |k|

These represent yellow, red, blue, cyan, green, magenta, and black, respectively.
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[ e Date’'mode! Info: date est

N
1

Specify name R
for data set - Tha a7 sata_est
Specify color L 0T
used to display
data set =
.er: ;;’.::e.
1 - - specilised
Duary ana fiotes
y Ispese dst
datad - detrend(gats,l)
gata est &« sataa
¢ a5 Working Data
¢ 35 Vakoshon Oata
Fresemt Expont Close

Information About the Data

You can enter comments about the origin and state of the data in the Diary And Notes
area. For example, you might want to include the experiment name, date, and the
description of experimental conditions. When you estimate models from this data, these

notes are associated with the models.

Clicking Present display portions of this information in the MATLAB Command Window.
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Distinguishing Data Types
The background color of a data icon is color-coded, as follows:

*  White background represents time-domain data.
* Blue background represents frequency-domain data.
* Yellow background represents frequency-response data.

Import data v

5

Time-domain data ———|  4ai5

Frequency-domain —>‘ datafd

data

)

Frequency-response —|  4atats
data

Colors Representing Type of Data

Organizing Data Icons

You can rearrange data icons in the System Identification app by dragging and dropping
the icons to empty Data Board rectangles in the app.

Note You cannot drag and drop a data icon into the model area on the right.

When you need additional space for organizing data or model icons, select Options >
Extra model/data board in the System Identification app. This action opens an extra
session window with blank rectangles for data and models. The new window is an
extension of the current session and does not represent a new session.



Managing Data in the App

Tip When you import or create data sets and there is insufficient space for the icons, an
additional session window opens automatically.

You can drag and drop data between the main System Identification app and any extra
session windows.

Notes: -

 Ciose _
N

Dryer

Type comments in the Notes field to describe the data sets. When you save a session, as
described in “Saving, Merging, and Closing Sessions” on page 21-6, all additional
windows and notes are also saved.

Deleting Data Sets

To delete data sets in the System Identification app, drag and drop the corresponding icon
into Trash. You can also use the Delete key on your keyboard to move items to the
Trash. Moving items to Trash does not permanently delete these items.

Note You cannot delete a data set that is currently designated as Working Data or
Validation Data. You must first specify a different data set in the System Identification
app to be Working Data or Validation Data, as described in “Specify Estimation and
Validation Data in the App” on page 2-30.

To restore a data set from Trash, drag its icon from Trash to the Data or Model Board in
the System Identification app window. You can view the Trash contents by double-clicking
the Trash icon.
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Note You must restore data to the Data Board; you cannot drag data icons to the Model

Board.
Trash [F=8 E= <=
Icons can be dragged back to data/model boards.
Press Empty to permanenthy delete.
]
Dinyer
[ Empty | [ cose | [ Hep |

To permanently delete all items in Trash, select Options > Empty trash.

Exiting a session empties the Trash automatically.

Exporting Data to the MATLAB Workspace

The data you create in the System Identification app is not available in the MATLAB
workspace until you export the data set. Exporting to the MATLAB workspace is
necessary when you need to perform an operation on the data that is only available at the
command line.

To export a data set to the MATLAB workspace, do one of the following:

* Drag and drop the corresponding icon to the To Workspace rectangle.
* Right-click the icon to open the Data/model Info dialog box. Click Export.
When you export data to the MATLAB workspace, the resulting variables have the same

name as in the System Identification app. For example, the following figure shows how to
export the time-domain data object datad.
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Import data -
Operations

'
‘\’/\\" \\/\\‘“ =— Preprocess -
Dinyer Dryerd !
v t

Dryerde Dryerdv W
=3
Dryerde
\ Working Data
\|l Estimate —= -

Data Views To To
[ Time plot Workspace | | LTI Viewer

[7] Data spectra

|:| Freguency function ”

Trash

Exporting Data to the MATLAB Workspace

In this example, the MATLAB workspace contains a variable named data after export.
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Representing Time- and Frequency-Domain Data Using
iddata Objects
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iddata Constructor
Requirements for Constructing an iddata Object

To construct an iddata object, you must have already imported data into the MATLAB
workspace, as described in “Representing Data in MATLAB Workspace” on page 2-9.

Constructing an iddata Object for Time-Domain Data

Use the following syntax to create a time-domain iddata object data:
data = iddata(y,u,Ts)

You can also specify additional properties, as follows:

data = iddata(y,u,Ts, 'Propertyl',Valuel,..., 'PropertyN',6ValueN)
For more information about accessing object properties, see “Properties”.

In this example, Ts is the sample time, or the time interval, between successive data
samples. For uniformly sampled data, Ts is a scalar value equal to the sample time of
your experiment. The default time unit is seconds, but you can set it to a new value using
the TimeUnit property. For more information about iddata time properties, see
“Modifying Time and Frequency Vectors” on page 2-78.

For nonuniformly sampled data, specify Ts as [ ], and set the value of the
SamplingInstants property as a column vector containing individual time values. For
example:

data = iddata(y,u,[], 'SamplingInstants',TimeVector)

Where TimeVector represents a vector of time values.

Note You can modify the property SamplingInstants by setting it to a new vector
with the length equal to the number of data samples.

To represent time-series data, use the following syntax:
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ts data = iddata(y,[],Ts)
where y is the output data, [] indicates empty input data, and Ts is the sample time.

The following example shows how to create an iddata object using single-input/single-
output (SISO) data from dryer2.mat. The input and output each contain 1000 samples
with the sample time of 0.08 second.

% Load input u2 and output y2 .
load dryer2

% Create iddata object.

data = iddata(y2,u2,0.08)

data =

Time domain data set with 1000 samples.
Sample time: 0.08 seconds

Outputs Unit (if specified)
yl

Inputs Unit (if specified)
ul

The default channel name 'y1' is assigned to the first and only output channel. When y2
contains several channels, the channels are assigned default names
'yl','y2','y2"',...,"'yn"'. Similarly, the default channel name 'ul' is assigned to
the first and only input channel. For more information about naming channels, see
“Naming, Adding, and Removing Data Channels” on page 2-81.

Constructing an iddata Object for Frequency-Domain Data

Frequency-domain data is the Fourier transform of the input and output signals at specific
frequency values. To represent frequency-domain data, use the following syntax to create
the iddata object:

data = iddata(y,u,Ts, 'Frequency',w)

'"Frequency' is an iddata property that specifies the frequency values w, where w is the
frequency column vector that defines the frequencies at which the Fourier transform
values of y and u are computed. Ts is the time interval between successive data samples
in seconds for the original time-domain data. w, y, and u have the same number of rows.
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Note You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see “Modifying Time
and Frequency Vectors” on page 2-78.

To specify a continuous-time system, set Ts to 0.

You can specify additional properties when you create the iddata object, as follows:
data = iddata(y,u,Ts, 'Propertyl’',Valuel, ..., 'PropertyN',6ValueN)

For more information about accessing object properties, see “Properties”.

iddata Properties

To view the properties of the iddata object, use the get command. For example, type the
following commands at the prompt:

Load input u2 and output y2.

load dryer2

Create iddata object.
data = iddata(y2,u2,0.08);
% Get property values of data.

get(data)
ans = struct with fields:
Domain: 'Time'
Name: "'
OutputData: [1000x1 double]
y: 'Same as OutputData'
OQutputName: {'yl'}
OutputUnit: {''}
InputData: [1000x1 double]
u: 'Same as InputData’
InputName: {'ul'}
InputUnit: {''}
Period: Inf
InterSample: 'zoh'
Ts: 0.0800
Tstart: []
SamplingInstants: [1000x0 double]
TimeUnit: 'seconds'
ExperimentName: 'Expl'
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Notes: {}
UserData: []

For a complete description of all properties, see the iddata reference page.

You can specify properties when you create an iddata object using the constructor
syntax:

data = iddata(y,u,Ts, 'Propertyl',Valuel,..., 'PropertyN',6ValueN)

To change property values for an existing iddata object, use the set command or dot
notation. For example, to change the sample time to 0. 05, type the following at the
prompt:

set(data, 'Ts',0.05)
or equivalently:
data.ts = 0.05

Property names are not case sensitive. You do not need to type the entire property name
if the first few letters uniquely identify the property.

Tip You can use data.y as an alternative to data.OutputData to access the output
values, or use data.u as an alternative to data.InputData to access the input values.

An iddata object containing frequency-domain data includes frequency-specific
properties, such as Frequency for the frequency vector and Units for frequency units
(instead of Tstart and SamplingInstants).

To view the property list, type the following command sequence at the prompt:

% Load input u2 and output y2.

load dryer2;

Create iddata object.

data = iddata(y2,u2,0.08);

Take the Fourier transform of the data
transforming it to frequency domain.
data = fft(data)

o°

o° of

data =
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Frequency domain data set with responses at 501 frequencies,
ranging from 0 to 39.27 rad/seconds
Sample time: 0.08 seconds

Outputs Unit (if specified)
yl

Inputs Unit (if specified)
ul

% Get property values of data.
get(data)

ans = struct with fields:
Domain: 'Frequency'
Name: *''
OutputData: [501x1 double]
y: 'Same as OutputData'
OutputName: {'yl'}
OutputUnit: {''}
InputData: [501x1 double]
u: 'Same as InputData’
InputName: {'ul'}
InputUnit: {''}

Period: Inf
InterSample: 'zoh'
Ts: 0.0800

FrequencyUnit: 'rad/TimeUnit'
Frequency: [501x1 double]
TimeUnit: 'seconds'
ExperimentName: 'Expl'
Notes: {}
UserData: []

Select Data Channels, 1/0 Data and Experiments in iddata
Objects

Subreferencing Input and Output Data

Subreferencing data and its properties lets you select data values and assign new data
and property values.
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Use the following general syntax to subreference specific data values in iddata objects:

data(samples,outputchannels, inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels and
inputchannels specify channel indexes or channel names, and experimentname
specifies experiment indexes or names.

For example, to retrieve samples 5 through 30 in the iddata object data and store them
in a new iddata object data_ sub, use the following syntax:

data sub = data(5:30)

You can also use logical expressions to subreference data. For example, to retrieve all
data values from a single-experiment data set that fall between sample instants 1.27 and
9.3 in the iddata object data and assign them to data sub, use the following syntax:

data_sub = data(data.sa>1.27&data.sa<9.3)

Note You do not need to type the entire property name. In this example, sa in data.sa
uniquely identifies the SamplingInstants property.

You can retrieve the input signal from an iddata object using the following commands:
u = get(data, 'InputData')

or

data.InputData

or

data.u % u is the abbreviation for InputData

Similarly, you can retrieve the output data using

data.OutputData

or

data.y % y is the abbreviation for OutputData
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Subreferencing Data Channels

Use the following general syntax to subreference specific data channels in iddata
objects:

data(samples,outputchannels, inputchannels,experiment)

In this syntax, samples specify one or more sample indexes, outputchannels and
inputchannels specify channel indexes or channel names, and experimentname
specifies experiment indexes or names.

To specify several channel names, you must use a cell array of character vectors of
names.

For example, suppose the iddata object data contains three output channels (named y1,
y2, and y3), and four input channels (named ul, u2, u3, and u4). To select all data
samples in y3, ul, and u4, type the following command at the prompt:

% Use a cell array to reference
% input channels 'ul' and 'u4'
data sub = data(:,'y3',{'ul','u4'})

or equivalently
% Use channel indexes 1 and 4

% to reference the input channels
data sub = data(:,3,[1 4])

Tip Use a colon (:) to specify all samples or all channels, and the empty matrix ([ ]) to
specify no samples or no channels.

If you want to create a time-series object by extracting only the output data from an
iddata object, type the following command:

data ts = data(:,:,[])

You can assign new values to subreferenced variables. For example, the following
command assigns the first 10 values of output channel 1 of data to values in samples 101
through 110 in the output channel 2 of datal. It also assigns the values in samples 101
through 110 in the input channel 3 of datal to the first 10 values of input channel 1 of
data.
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data(1:10,1,1) = datal(1le1l:110,2,3)

Subreferencing Experiments

Use the following general syntax to subreference specific experiments in iddata objects:
data(samples,outputchannels, inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels and
inputchannels specify channel indexes or channel names, and experimentname
specifies experiment indexes or names.

When specifying several experiment names, you must use a cell array of character vectors
of names. The iddata object stores experiments name in the ExperimentName property.

For example, suppose the iddata object data contains five experiments with default
names, Expl, Exp2, Exp3, Exp4, and Exp5. Use the following syntax to subreference the
first and fifth experiment in data:

data sub = data(:,:,:,{'Expl', 'Exp5'}) % Using experiment name
or
data sub = data(:,:,:,[1 5]) % Using experiment index

Tip Use a colon (:) to denote all samples and all channels, and the empty matrix ([ ]) to
specify no samples and no channels.

Alternatively, you can use the getexp command. The following example shows how to
subreference the first and fifth experiment in data:

data sub = getexp(data,{'Expl', 'Exp5'}) % Using experiment name
or
data_sub = getexp(data,[1l 5]) % Using experiment index

The following example shows how to retrieve the first 100 samples of output channels 2
and 3 and input channels 4 to 8 of Experiment 3:

dat(1:100,[2,3],[4:81,3)
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Increasing Number of Channels or Data Points of iddata
Objects

iddata Properties Storing Input and Output Data

The InputData iddata property stores column-wise input data, and the OutputData
property stores column-wise output data. For more information about accessing iddata
properties, see “iddata Properties” on page 2-52.

Horizontal Concatenation

Horizontal concatenation of iddata objects creates a new iddata object that appends
all InputData information and all OutputData. This type of concatenation produces a
single object with more input and output channels. For example, the following syntax
performs horizontal concatenation on the iddata objects datal,data2,...,dataN:

data = [datal,data2,...,dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =
[datal.InputData,data2.InputData,...,dataN.InputData]

data.OutputData =
[datal.OutputData,data2.0utputData,...,dataN.OutputData]

For horizontal concatenation, datal,data2, ..., dataN must have the same number of
samples and experiments , and the sameTs and Tstart values.

The channels in the concatenated iddata object are named according to the following
rules:

* Combining default channel names — If you concatenate iddata objects with default
channel names, such as ul and y1, channels in the new iddata object are
automatically renamed to avoid name duplication.

* Combining duplicate input channels — If datal,data2, ...,dataN have input
channels with duplicate user-defined names, such that dataK contains channel names
that are already present in dataJ with J < K, the dataK channels are ignored.

* Combining duplicate output channels — If datal,data2, ..., dataN have input
channels with duplicate user-defined names, only the output channels with unique
names are added during the concatenation.
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Vertical Concatenation

Vertical concatenation of iddata objects creates a new iddata object that vertically
stacks the input and output data values in the corresponding data channels. The resulting
object has the same number of channels, but each channel contains more data points. For
example, the following syntax creates a data object such that its total number of samples
is the sum of the samples in datal,data2,...,dataN.

data = [datal;data2;... ;dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =

[datal.InputData;data2.InputData;...;dataN.InputDatal
data.OutputData =

[datal.OutputData;data2.0utputData;...;dataN.OutputData]
For vertical concatenation, datal,data2, ..., dataN must have the same number of

input channels, output channels, and experiments.

See Also
iddata

More About

. “Representing Data in MATLAB Workspace” on page 2-9
. “Managing iddata Objects” on page 2-78
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Create Multiexperiment Data at the Command Line

2-60

Why Create Multiexperiment Data Sets?

You can create iddata objects that contain several experiments. Identifying models for
an iddata object with multiple experiments results in an average model.

In the System Identification Toolbox product, experiments can either mean data collected
during different sessions, or portions of the data collected during a single session. In the
latter situation, you can create a multiexperiment iddata object by splitting the data
from a single session into multiple segments to exclude bad data, and merge the good
data portions.

Note The idfrd object does not support the iddata equivalent of multiexperiment data.

Limitations on Data Sets
You can only merge data sets that have all of the following characteristics:

* Same number of input and output channels.
* Same input and output channel names.
* Same data domain (that is, time-domain data or frequency-domain data).

Entering Multiexperiment Data Directly

To construct an iddata object that includes N data sets, you can use this syntax:
data = iddata(y,u,Ts)

where y, u, and Ts are 1-by-N cell arrays containing data from the different experiments.
Similarly, when you specify Tstart, Period, InterSample, and SamplingInstants
properties of the iddata object, you must assign their values as 1-by-N cell arrays.

Merging Data Sets

This example shows how to create a multiexperiment iddata object by merging iddata
objects, where each contains data from a single experiment or is a multiexperiment data
set.
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Load iddata objects z1 and z3.

load iddatal
load iddata3

Merge experiments z1 and z3 into the iddata object z.

z merge(zl,z3)

Z =

Time domain data set containing 2 experiments.

Experiment Samples Sample Time
Expl 300 0.1
Exp2 300 1

Outputs Unit (if specified)
yl

Inputs Unit (if specified)
ul

These commands create an iddata object that contains two experiments, where the
experiments are assigned default names 'Expl' and 'Exp2', respectively.

Adding Experiments to an Existing iddata Object

You can add experiments individually to an iddata object as an alternative approach to
merging data sets.

For example, to add the experiments in the iddata object dat4 to data, use the
following syntax:

data(:,:,:,'Rund4') = dat4

This syntax explicitly assigns the experiment name 'Run4' to the new experiment. The
Experiment property of the iddata object stores experiment names.

For more information about subreferencing experiments in a multiexperiment data set,
see “Subreferencing Experiments” on page 2-57.
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See Also

More About

. “Select Subsets of Data” on page 2-103

. “Dealing with Multi-Experiment Data and Merging Models” on page 2-63
. “Create Multiexperiment Data Sets in the App” on page 2-35
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Dealing with Multi-Experiment Data and Merging Models

This example shows how to deal with multiple experiments and merging models when
working with System Identification Toolbox™ for estimating and refining models.

Introduction

The analysis and estimation functions in System Identification Toolbox let you work with
multiple batches of data. Essentially, if you have performed multiple experiments and
recorded several input-output datasets, you can group them up into a single IDDATA
object and use them with any estimation routine.

In some cases, you may want to "split up" your (single) measurement dataset to remove
portions where the data quality is not good. For example, portion of data may be unusable
due to external disturbance or a sensor failure. In those cases, each good portion of data
may be separated out and then combined into a single multi-experiment IDDATA object.

For example, let us look at the dataset iddemo8.mat:
load iddemo8

The name of the data object is dat, and let us view it.
dat

dat =

Time domain data set with 1000 samples.
Sample time: 1 seconds

Outputs Unit (if specified)
yl

Inputs Unit (if specified)
ul

plot(dat)
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Amplitude

2-64

Input-Output Data
y1
50 T T T T T T T T T
0
_5 D 1 1 1 1 1 1 1 1 1
u1
| |
0.5 |
D |
0.5 |
-1
100 200 300 400 500 600 T00 800 800 1000

Time (seconds)

We see that there are some problems with the output around sample 250-280 and around
samples 600 to 650. These might have been sensor failures.

Therefore split the data into three separate experiments and put then into a multi-
experiment data object:

dl = dat(1:250);
d2 = dat(281:600);
d3 = dat(651:1000);

d = merge(dl,d2,d3) % merge lets you create multi-exp IDDATA object

Time domain data set containing 3 experiments.
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Experiment Samples Sample Time
Expl 250 1
Exp2 320 1
Exp3 350 1
Outputs Unit (if specified)
yl
Inputs Unit (if specified)
ul

The different experiments can be given other names, for example:
d.exp = {'Period 1';'Day 2';'Phase 3'}
d —

Time domain data set containing 3 experiments.

Experiment Samples Sample Time
Period 1 250 1
Day 2 320 1
Phase 3 350 1
Outputs Unit (if specified)
yl
Inputs Unit (if specified)
ul

To examine it, use plot, as in plot(d).
Performing Estimation Using Multi-Experiment Data

As mentioned before, all model estimation routines accept multi-experiment data and take
into account that they are recorded at different periods. Let us use the two first
experiments for estimation and the third one for validation:

de = getexp(d,[1,2]); % subselection is done using the command GETEXP
dv = getexp(d, 'Phase 3'); % using numbers or names.

ml = arx(de,[2 2 11);

m2 = n4sid(de,2);
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m3 = armax(de,[2 2 2 1]);
compare(dv,ml,m2,m3)

Simulated Response Comparison

15
dv (y1)
mi: 73.05%
10 F o m2: 80.01%
| I : m3: B0.09%,
} |

51 ‘ | ﬂ ' 1, [ | II!1 ;
L '.1 W A ||fh'- \: H.E‘jﬁ iﬁ

é‘; D-,'-!!,l‘ ' PII l"E","*MFI" il ﬁ
e 4'\” L,f, L Y
S f e '|; || P .w IJ ||| = l.i '.-L

l' l | .l IR ﬁi, ! :J

Time (seconds)

The compare command also accepts multiple experiments. Use the right click menu to
pick the experiment to use, one at a time.

compare(d,ml,m2,m3)
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Amplitude
vl

Simulated Response Comparison

107

]
T

d:Period 1 (y1})
mi: 74.2%
m2: 80.41%
ma: 80.35%

100 150 200 250

Time (seconds)

Also, spa, etfe, resid, predict, sim operate in the same way for multi-experiment
data, as they do for single experiment data.

Merging Models After Estimation

There is another way to deal with separate data sets: a model can be computed for each
set, and then the models can be merged:

m4
m5
mo6

armax(getexp(de,1),[2 2 2 11);
armax(getexp(de,2),[2 2 2 11);
merge(m4,m5) ;

% m4 and m5 are merged into m6

This is conceptually the same as computing m from the merged set de, but it is not
numerically the same. Working on de assumes that the signal-to-noise ratios are (about)
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the same in the different experiments, while merging separate models makes independent
estimates of the noise levels. If the conditions are about the same for the different
experiments, it is more efficient to estimate directly on the multi-experiment data.

We can check the models m3 and m6 that are both ARMAX models obtained on the same
data in two different ways:

[m3.a;m6.al
ans = 2x3
1.0000 -1.5034 0.7008
1.0000 -1.5022 0.7000
[m3.b;m6.b]
ans = 2x3
0 1.0023 0.5029
0 1.0035 0.5028
[m3.c;m6.c]
ans = 2x3
1.0000 -0.9744 0.1578

1.0000 -0.9751 0.1584

compare(dv,m3,m6)
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Simulated Response Comparison
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Case Study: Concatenating Vs. Merging Independent Datasets

We now turn to another situation. Let us consider two data sets generated by the system
m0. The system is given by:

mo

mo =

Discrete-time identified state-space model:

X(t+Ts) = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)

A =
x1 X2 X3
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x1
X2
x3

x1
X2
x3

0.5296 -0.476 0.1238
-0.476 -0.09743 0.1354
0.1238 0.1354 -0.8233

ul u2
-1.146 -0.03763
1.191 0.3273

0 0
x1 X2 X3
-0.1867 -0.5883 -0.1364
0.7258 0 0.1139
ul u2
1.067 0
0 0
yl y2
0 0
0 0
0 0

Sample time: 1 seconds

Parameterization:
STRUCTURED form (some fixed coefficients in A, B, C).
Feedthrough: on some input channels
Disturbance component: none
Number of free coefficients: 23
Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Created by direct construction or transformation. Not estimated.

The data sets that have been collected are z1 and z2, obtained from mO0 with different
inputs, noise and initial conditions. These datasets are obtained from iddemo8.mat that
was loaded earlier.

pause off

First data set:
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Amplitude

plot(z1l) %generates a separate plot for each I/0 pair if pause is on; showing only the

Input-Output Data
y1 2
100 y
20
10
50
0
-10 o
ui u2
4 4
2 2
0 1]
-2 -2
50 100 150 200 a0 100 150 200

Time (seconds)

The second set:

plot(z2) %generates a separate plot for each I/0 pair if pause is on; showing only the
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Input-Output Data
y1 y2
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If we just concatenate the data we obtained:

[z1;2z2]

zz1
zz1 =

Time domain data set with 400 samples.
Sample time: 1 seconds

Outputs Unit (if specified)
yl
y2

Inputs Unit (if specified)
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Amplitude

ul
u2
plot(zzl)
Input-Output Data
y1 y2

100

20
10 o0
0 0
10 -50
=20 =100

ul u2

4 4
2

2
0

0
-2

-2
4

100 200 300 400 100 200 300 400
Time (seconds)
pause on

A discrete-time state-space model can be obtained by using ssest:

ml = ssest(zzl,3,'Ts',1, 'Feedthrough', [true, falsel);

Compare the bode response for models m0 and ml:
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clf
bode(m0O,ml)
legend('show")

Bode Diagram

From: ul From: uz

> -
lE -10 \\n

180 == I

! N i

-180 - -
107 1072 10 1074 1072 10
Frequency (rad's)

Magnitude (dB) ; Phase (deg)

To w2

This is not a very good model, as observed from the four Bode plots above.

Now, instead treat the two data sets as different experiments:

zzm = merge(zl,z2)

zzm =
Time domain data set containing 2 experiments.

Experiment Samples Sample Time
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Expl 200 1
Exp2 200 1
Outputs Unit (if specified)
yl
y2
Inputs Unit (if specified)
ul
u2

% The model for this data can be estimated as before (watching progress this time)
mm = ssest(zzm,3,'Ts',1, 'Feedthrough',[true, falsel], ssestOptions('Display', 'on'));

Let us compare the Bode plots of the true system (blue)
the model from concatenated data (green) and the model from the

merged data set (red):
clf

bode(moO, 'b',ml, 'g',mm, " 'r")
legend('show")
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Bode Diagram
From: ul From: uZ

Magnitude (dB) ; Phase (deg)

ml
mm

1074 102 Ik 104 102 10"
Frequency (rad/s)

The merged data give a better model, as observed from the plot above.

Conclusions

In this example we analyzed how to use multiple data sets together for estimation of one
model. This technique is useful when you have multiple datasets from independent
experiment runs or when you segment data into multiple sets to remove bad segments.
Multiple experiments can be packaged into a single IDDATA object, which is then usable
for all estimation and analysis requirements. This technique works for both time and
frequency domain iddata.

It is also possible to merge models after estimation. This technique can be used to
"average out" independently estimated models. If the noise characteristics on multiple
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datasets are different, merging models after estimation works better than merging the
datasets themselves before estimation.

Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.

See Also

More About

. “Select Subsets of Data” on page 2-103
. “Create Multiexperiment Data Sets in the App” on page 2-35
. “Create Multiexperiment Data at the Command Line” on page 2-60
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Managing iddata Objects

Modifying Time and Frequency Vectors

The iddata object stores time-domain data or frequency-domain data and has several
properties that specify the time or frequency values. To modify the time or frequency
values, you must change the corresponding property values.

Note You can modify the property SamplingInstants by setting it to a new vector
with the length equal to the number of data samples. For more information, see
“Constructing an iddata Object for Time-Domain Data” on page 2-50.

The following tables summarize time-vector and frequency-vector properties, respectively,
and provides usage examples. In each example, data is an iddata object.

Note Property names are not case sensitive. You do not need to type the entire property
name if the first few letters uniquely identify the property.
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iddata Time-Vector Properties

Property Description Syntax Example
Ts Sample time. To set the sample time to
0.05:
* For a single experiment, Ts
is a scalar value. set(data, 'ts',0.05)
* For multiexperiment data i
with Ne experiments, Ts is
a 1-by-Ne cell array, and data.ts = 0.05
each cell contains the
sample time of the
corresponding experiment.
Tstart Starting time of the To change starting time of the
experiment. first data sample to 24:
» For a single experiment, Ts |data.Tstart = 24
is a scalar value. ) )
i ) Time units are set by the
. qu mu1t1exper1ment datq property TimeUnit.
with Ne experiments, Ts is
a 1-by-Ne cell array, and
each cell contains the
sample time of the
corresponding experiment.
SamplingInstants Time values in the time vector, |To retrieve the time vector for

computed from the properties
Tstart and Ts.

* For a single experiment,
SamplingInstants is an
N-by-1 vector.

* For multiexperiment data
with Ne experiments, this
property is a 1-by-Ne cell
array, and each cell
contains the sampling
instants of the
corresponding experiment.

iddata object data, use:
get(data, 'sa')

To plot the input data as a
function of time:

plot(data.sa,data.u)

Note sa is the first two letters
of the SamplingInstants
property that uniquely
identifies this property.
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Property

Description

Syntax Example

TimeUnit

Unit of time. Specify as one of
the following:
'nanoseconds’,
'microseconds’,
'milliseconds’,
'seconds', 'minutes’,
"hours', 'days’', 'weeks',
'months', and 'years"'.

To change the unit of the time
vector to milliseconds:

data.ti = 'milliseconds'
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iddata Frequency-Vector Properties

Property Description Syntax Example

Frequency Frequency values at which the |To specify 100 frequency
Fourier transforms of the values in log space, ranging
signals are defined. between 0.1 and 100, use the

following syntax:
» For a single experiment,

Frequency is a scalar data.freq =
value. logspace(-1,2,100)

* For multiexperiment data
with Ne experiments,
Frequency is a 1-by-Ne
cell array, and each cell
contains the frequencies of
the corresponding
experiment.

FrequencyUnit Unit of Frequency. Specify as |Set the frequency unit to Hz:
one of the following: be one of
the following: 'rad/
TimeUnit', 'cycles/
TimeUnit', 'rad/s’', 'Hz"',
"kHz', '"MHz', 'GHz', and,
"rpm'. Default: 'rad/
TimeUnit'

data.FrequencyUnit = 'Hz'

Note that changing the
frequency unit does not scale
the frequency vector. For a
proper translation of units, use
chgFrequnit.

For multi-experiment data with
Ne experiments, Units isa 1-
by-Ne cell array, and each cell
contains the frequency unit for
each experiment.

Naming, Adding, and Removing Data Channels
What Are Input and Output Channels?
A multivariate system might contain several input variables or several output variables, or

both. When an input or output signal includes several measured variables, these variables
are called channels.
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Naming Channels

The iddata properties InputName and OutputName store the channel names for the
input and output signals. When you plot the data, you use channel names to select the
variable displayed on the plot. If you have multivariate data, it is helpful to assign a name
to each channel that describes the measured variable. For more information about
selecting channels on a plot, see “Selecting Measured and Noise Channels in Plots” on
page 21-13.

You can use the set command to specify the names of individual channels. For example,
suppose data contains two input channels (voltage and current) and one output channel
(temperature). To set these channel names, use the following syntax:

set(data, 'InputName',{'Voltage', 'Current'},
‘OutputName’, 'Temperature')

Tip You can also specify channel names as follows:

data.una
data.yna

{'Voltage', 'Current')
'Temperature'

una is equivalent to the property InputName, and yna is equivalent to OutputName.

If you do not specify channel names when you create the iddata object, the toolbox
assigns default names. By default, the output channels are named
'yl','y2',...,'yn', and the input channels are named 'ul', 'u2',...,

un'.
Adding Channels
You can add data channels to an iddata object.

For example, consider an iddata object named data that contains an input signal with
four channels. To add a fifth input channel, stored as the vector Input5, use the following
syntax:

data.u(:,5) = Input5;

Input5 must have the same number of rows as the other input channels. In this example,
data.u(:,5) references all samples as (indicated by :) of the input signal u and sets the
values of the fifth channel. This channel is created when assigning its value to Input5.
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You can also combine input channels and output channels of several iddata objects into
one iddata object using concatenation. For more information, see “Increasing Number of
Channels or Data Points of iddata Objects” on page 2-58.

Modifying Channel Data

After you create an iddata object, you can modify or remove specific input and output
channels, if needed. You can accomplish this by subreferencing the input and output
matrices and assigning new values.

For example, suppose the iddata object data contains three output channels (named y1,

y2, and y3), and four input channels (named ul, u2, u3, and u4). To replace data such
that it only contains samples in y3, ul, and u4, type the following at the prompt:

data = data(:,3,[1 4])

The resulting data object contains one output channel and two input channels.

Subreferencing iddata Objects

See “Select Data Channels, I/0O Data and Experiments in iddata Objects” on page 2-54.

Concatenating iddata Objects

See “Increasing Number of Channels or Data Points of iddata Objects” on page 2-58.
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Representing Frequency-Response Data Using idfrd
Objects

2-84

idfrd Constructor

The idfrd represents complex frequency-response data. Before you can create an idfrd
object, you must import your data as described in “Frequency-Response Data
Representation” on page 2-13.

Note The idfrd object can only encapsulate one frequency-response data set. It does
not support the iddata equivalent of multiexperiment data.

Use the following syntax to create the data object fr data:
fr data = idfrd(response,f,Ts)

Suppose that ny is the number of output channels, nu is the number of input channels,
and nf is a vector of frequency values. response is an ny-by-nu-by-nf 3-D array. f is the
frequency vector that contains the frequencies of the response.Ts is the sample time,
which is used when measuring or computing the frequency response. If you are working
with a continuous-time system, set Ts to 0.

response(ky, ku, kf), where ky, ku, and kf reference the kth output, input, and
frequency value, respectively, is interpreted as the complex-valued frequency response
from input ku to output ky at frequency f (kf).

Note When you work at the command line, you can only create idfrd objects from
complex values of G(e™%). For a SISO system, response can be a vector.

You can specify object properties when you create the idfrd object using the constructor
syntax:

fr_data = idfrd(response,f,Ts,
'Propertyl',Valuel, ..., 'PropertyN',ValueN)
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idfrd Properties

To view the properties of the idf rd object, you can use the get command. The following
example shows how to create an idfrd object that contains 100 frequency-response
values with a sample time of 0.1 s and get its properties:

f = logspace(-1,1,100);

[mag, phase] = bode(idtf([1 .2],[1 2 1 1]1),f);
response = mag.*exp(lj*phase*pi/180);

fr data = idfrd(response,f,0.1);

get(fr_data)

FrequencyUnit: 'rad/TimeUnit'
Report: [1x1 idresults.frdest]
SpectrumData: []
CovarianceData: []
NoiseCovariance: []
InterSample: {'zoh'}
ResponseData: [1x1x100 double]
IODelay: O
InputDelay: 0
OutputDelay: 0O
Ts: 0.1000
TimeUnit: 'seconds'
InputName: {''}
InputUnit: {''}
InputGroup: [1x1 struct]
OQutputName: {''}
QutputUnit: {''}
OutputGroup: [1x1 struct]
Notes: [Ox1 string]
UserData: []
Name: "'
SamplingGrid: [1x1 struct]
Frequency: [100x1 double]

For a complete description of all idfrd object properties, see the idfrd reference page.
To change property values for an existing idfrd object, use the set command or dot

notation. For example, to change the name of the idfrd object, type the following
command sequence at the prompt:

fr data.Name = 'DC Converter';
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Select I/0 Channels and Data in idfrd Objects

You can reference specific data values in the idf rd object using the following syntax:

fr _data(outputchannels, inputchannels)

Reference specific channels by name or by channel index.

Tip Use a colon (:) to specify all channels, and use the empty matrix ([ ]) to specify no
channels.

For example, the following command references frequency-response data from input
channel 3 to output channel 2:

fr _data(2,3)

You can also access the data in specific channels using channel names. To list multiple
channel names, use a cell array. For example, to retrieve the power output, and the
voltage and speed inputs, use the following syntax:

fr_data('power',{'voltage', 'speed'})

To retrieve only the responses corresponding to frequency values between 200 and 300,
use the following command:

fr data sub = fselect(fr data,[200:300])

You can also use logical expressions to subreference data. For example, to retrieve all
frequency-response values between frequencies 1.27 and 9. 3 in the idfrd object
fr_data, use the following syntax:

fr data sub = fselect(fr data,fr data.f>1.27&fr _data.f<9.3)

Tip Use end to reference the last sample number in the data. For example,
data(77:end).

Note You do not need to type the entire property name. In this example, f in fr_data.f
uniquely identifies the Frequency property of the idfrd object.
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Adding Input or Output Channels in idfrd Objects
About Concatenating idfrd Objects

The horizontal and vertical concatenation of idfrd objects combine information in the
ResponseData properties of these objects. ResponseData is an ny-by-nu-by-nf array
that stores the response of the system, where ny is the number of output channels, nu is
the number of input channels, and nf is a vector of frequency values (see “Properties”).

Horizontal Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the horizontal
concatenation of datal,data2,...,dataN:

data = [datal,data2,...,dataN]

data contains the frequency responses from all of the inputs in
datal,data2,...,dataN to the same outputs. The following diagram is a graphical
representation of horizontal concatenation of frequency-response data. The (j,i,:)
vector of the resulting response data represents the frequency response from the ith
input to the jth output at all frequencies.

ul— Data 1 — 1 5| Data 2 — 1
w—| 2by-2-bynf | o M 2-by-1-by-nf | o
: u1— Horizonal Concatenation |— y1
i(;grdwtt;med u2—  of Data 1 and Data 2 (?Strggts
U3 — 2-by-3-by-nf — y2

Note Horizontal concatenation of idfrd objects requires that they have the same
outputs and frequency vectors. If the output channel names are different and their
dimensions are the same, the concatenation operation resets the output names to their
default values.
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Vertical Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the vertical
concatenation of datal,data2,...,dataN:

data =

[datal;data2;...

;dataN]

The resulting idfrd object data contains the frequency responses from the same inputs
in datal,data2,...,dataN to all the outputs. The following diagram is a graphical
representation of vertical concatenation of frequency-response data. The (j,1i, :) vector
of the resulting response data represents the frequency response from the ith input to
the jth output at all frequencies.

ul— Data 1 — 1 ul— Data 1 3
u2—] 2-by-2-by-nf [ y2 u2—| 1-by-2-by-nf
. . L y1
ul—] Vertical Concatenation y .
Same of Data 1 and Data 2 |__y2 Combined
inputs ;o 3-by-2-by-nf B outputs

Note Vertical concatenation of idfrd objects requires that they have the same inputs
and frequency vectors. If the input channel names are different and their dimensions are
the same, the concatenation operation resets the input names to their default values.

Concatenating Noise Spectrum Data of idfrd Objects

When the SpectrumData property of individual idf rd objects is not empty, horizontal
and vertical concatenation handle SpectrumData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the
SpectrumData of individual idfrd objects and the resulting Spect rumData property is
empty. An empty property results because each idfrd object has its own set of noise
channels, where the number of noise channels equals the number of outputs. When the
resulting idfrd object contains the same output channels as each of the individual idfrd
objects, it cannot accommodate the noise data from all the idfrd objects.
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In case of vertical concatenation, the toolbox concatenates individual noise models
diagonally. The following shows that data.SpectrumData is a block diagonal matrix of
the power spectra and cross spectra of the output noise in the system:

datal.s 0
data.s = K

0 dataN s

s in data. s is the abbreviation for the SpectrumData property name.

Managing idfrd Objects

Subreferencing idfrd Objects

See “Select [/O Channels and Data in idfrd Objects” on page 2-86.
Concatenating idfrd Objects

See “Adding Input or Output Channels in idfrd Objects” on page 2-87.

Operations that Create idfrd Objects

The following operations create idfrd objects:

* Constructing idfrd objects.

* Estimating nonparametric models using etfe, spa, and spafdr. For more
information, see “Frequency-Response Models”.

* Converting the Control System Toolbox frd object. For more information, see “Using
Identified Models for Control Design Applications” on page 19-2.

* Converting any linear dynamic system using the idfrd command.

For example:

sys idpoly = idpoly([1l 2 1],[0 2],'Ts',1);
G = idfrd(sys_idpoly,linspace(0,pi,128))

G =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for
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Response data and disturbance spectra are available at 128 frequency points, ranginc
Sample time: 1 seconds

Status:
Created by direct construction or transformation. Not estimated.
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Is Your Data Ready for Modeling?

Before you start estimating models from data, you should check your data for the
presence of any undesirable characteristics. For example, you might plot the data to
identify drifts and outliers. You plot analysis might lead you to preprocess your data
before model estimation.

The following data plots are available in the toolbox:

* Time plot — Shows data values as a function of time.

Tip You can infer time delays from time plots, which are required inputs to most
parametric models. A time delay is the time interval between the change in input and
the corresponding change in output.

* Spectral plot — Shows a periodogram that is computed by taking the absolute squares
of the Fourier transforms of the data, dividing by the number of data points, and
multiplying by the sample time.

* Frequency-response plot — For frequency-response data, shows the amplitude and
phase of the frequency-response function on a Bode plot. For time- and frequency-
domain data, shows the empirical transfer function estimate (see etfe) .

See Also

Related Examples

. “How to Analyze Data Using the advice Command” on page 2-101
. “How to Plot Data in the App” on page 2-92
. “How to Plot Data at the Command Line” on page 2-99

More About
. “Ways to Prepare Data for System Identification” on page 2-6
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How to Plot Data in the App

How to Plot Data in the App

After importing data into the System Identification app, as described in “Represent Data”,
you can plot the data.

To create one or more plots, select the corresponding check box in the Data Views area
of the System Identification app.

An active data icon has a thick line in the icon, while an inactive data set has a thin line.
Only active data sets appear on the selected plots. To toggle including and excluding data
on a plot, click the corresponding icon in the System Identification app. Clicking the data
icon updates any plots that are currently open.

When you have several data sets, you can view different input-output channel pair by
selecting that pair from the Channel menu. For more information about selecting
different input and output pairs, see “Selecting Measured and Noise Channels in Plots” on
page 21-13.
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Import data

i

A

Thick lines indicate data

active data sets ﬂ

included in plots.

dataff
‘ datafd
Data Views
All three available Time plot
data plots are ——»
selected. Data spectra

Frequency function

Operations

<-- Preprocess v

f
A

= data
Working Data
Estimate —= ~
To To

Workspace | | LTI Viewer

|

Trash

In this example, data and dataff are active and appear on the three selected plots.

To close a plot, clear the corresponding check box in the System Identification app.

Tip To get information about working with a specific plot, select a help topic from the

Help menu in the plot window.

The plots you create using the System Identification app provide options that are specific
to the System Identification Toolbox product, such as selecting specific channel pairs in a
multivariate signals or converting frequency units between Hertz and radians per second.

Manipulating a Time Plot
The Time plot only shows time-domain data. In this example, datal is displayed on the

time plot because, of the three data sets, it is the only one that contains time-domain
input and output.
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Time Plot: ul-=y1

File Options Style  Channel Help

Input and output signals

[o]lE =]

Experiment

L1

] 20 40 60
Time

dataff is Frequency Function Data (IDFRD)

80

Time Plot of datal

The following table summarizes options that are specific to time plots, which you can
select from the plot window menus. For general information about working with System
Identification Toolbox plots, see “Working with Plots” on page 21-11.

Time Plot Options

Action

Command

Toggle input display between piece-wise
continuous (zero-order hold) and linear
interpolation (first-order hold) between
samples.

Note This option only affects the display
and not the intersample behavior specified
when importing the data.

Select Style > Staircase input for zero-
order hold or Style > Regular input for
first-order hold.




How to Plot Data in the App

Manipulating Data Spectra Plot

The Data spectra plot shows a periodogram or a spectral estimate of datal and
data3fd.

The periodogram is computed by taking the absolute squares of the Fourier transforms of
the data, dividing by the number of data points, and multiplying by the sample time. The
spectral estimate for time-domain data is a smoothed spectrum calculated using spa. For
frequency-domain data, the Data spectra plot shows the square of the absolute value of
the actual data, normalized by the sample time.

The top axes show the input and the bottom axes show the output. The vertical axis of
each plot is labeled with the corresponding channel name.

Data Spectra: ul-»>yl EI@
File Options Style Channel Help  Experiment
- Periodogram
10 .
a
= 10 /\ﬁmw%
107 :
10°
= 10°} AL
10° -2 3 2
10 10 10
Frequency (radis)

Periodograms of datal and data3fd
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Data Spectra Plot Options

Action

Command

Toggle display between periodogram and
spectral estimate.

Select Options > Periodogram or
Options > Spectral analysis.

Change frequency units.

Select Style > Frequency (rad/s) or Style
> Frequency (Hz).

Toggle frequency scale between linear and
logarithmic.

Select Style > Linear frequency scale or
Style > Log frequency scale.

Toggle amplitude scale between linear and

logarithmic.

Select Style > Linear amplitude scale or
Style > Log amplitude scale.

Manipulating a Frequency Function Plot

For time-domain data, the Frequency function plot shows the empirical transfer
function estimate (et fe). For frequency-domain data, the plot shows the ratio of output to

input data.

The frequency-response plot shows the amplitude and phase plots of the corresponding
frequency response. For more information about frequency-response data, see
“Frequency-Response Data Representation” on page 2-13.




How to Plot Data in the App

Frequency Function Data: ul-»yl
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Frequency Functions of datal and data3fd

Frequency Function Plot Options

Action

Command

Change frequency units.

Select Style > Frequency (rad/s) or Style
> Frequency (Hz).

Toggle frequency scale between linear and
logarithmic.

Select Style > Linear frequency scale or
Style > Log frequency scale.

Toggle amplitude scale between linear and
logarithmic.

Select Style > Linear amplitude scale or
Style > Log amplitude scale.
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See Also

Related Examples
. “How to Plot Data at the Command Line” on page 2-99
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How to Plot Data at the Command Line

The following table summarizes the commands available for plotting time-domain,
frequency-domain, and frequency-response data.

Commands for Plotting Data

Command Description Example

bode, bodeplot |For frequency-response data only. | To plot idfrd data:
Shows the magnitude and phase
of the frequency response on a
logarithmic frequency scale of a
Bode plot.

bode(idfrd data)
or:

bodeplot(idfrd data)

plot The type of plot corresponds to | To plot iddata or idfrd data:
the type of data. For example,
plotting time-domain data
generates a time plot, and
plotting frequency-response data
generates a frequency-response
plot.

plot(data)

When plotting time- or frequency-
domain inputs and outputs, the
top axes show the output and the
bottom axes show the input.

All plot commands display the data in the standard MATLAB Figure window, which
provides options for formatting, saving, printing, and exporting plots to a variety of file
formats.

To plot portions of the data, you can subreference specific samples (see “Select Data
Channels, I/O Data and Experiments in iddata Objects” on page 2-54 and “Select 1/O
Channels and Data in idfrd Objects” on page 2-86. For example:

plot(data(1:300))

For time-domain data, to plot only the input data as a function of time, use the following
syntax:

plot(data(:,[1,:)
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When data.intersample = 'zoh', the input is piece-wise constant between sampling
points on the plot. For more information about properties, see the iddata reference
page.

You can generate plots of the input data in the time domain using:
plot(data.SamplingInstants,data.u)
To plot frequency-domain data, you can use the following syntax:

semilogx(data.Frequency,abs(data.u))

When you specify to plot a multivariable iddata object, each input-output combination is
displayed one at a time in the same MATLAB Figure window. You must press Enter to
update the Figure window and view the next channel combination. To cancel the plotting
operation, press Ctrl+C.

Tip To plot specific input and output channels, use plot(data(:,ky, ku)), where ky
and ku are specific output and input channel indexes or names. For more information
about subreferencing channels, see “Subreferencing Data Channels” on page 2-56.

To plot several iddata sets d1,...,dN, use plot(dl,...,dN). Input-output channels
with the same experiment name, input name, and output name are always plotted in the
same plot.

See Also

Related Examples
. “How to Plot Data in the App” on page 2-92
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How to Analyze Data Using the advice Command

You can use the advice command to analyze time- or frequency- domain data before
estimating a model. The resulting report informs you about the possible need to
preprocess the data and identifies potential restrictions on the model accuracy. You
should use these recommendations in combination with plotting the data and validating
the models estimated from this data.

Note advice does not support frequency-response data.

Before applying the advice command to your data, you must have represented your data
as an iddata object. For more information, see “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50.

If you are using the System Identification app, you must export your data to the MATLAB
workspace before you can use the advice command on this data. For more information
about exporting data, see “Exporting Models from the App to the MATLAB Workspace” on
page 21-10.

Use the following syntax to get advice about an iddata object data:
advice(data)

For more information about the advice syntax, see the advice reference page.
Advice provide guidance for these kinds of questions:

* Does it make sense to remove constant offsets and linear trends from the data?

* What are the excitation levels of the signals and how does this affects the model
orders?

* Is there an indication of output feedback in the data? When feedback is present in the
system, only prediction-error methods work well for estimating closed-loop data.

* Isthere an indication of nonlinearity in the process that generated the data?

See Also

advice | delayest | detrend | feedback | pexcit
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Related Examples
. “How to Plot Data in the App” on page 2-92
. “How to Plot Data at the Command Line” on page 2-99
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Select Subsets of Data

Why Select Subsets of Data?

You can use data selection to create independent data sets for estimation and validation.

You can also use data selection as a way to clean the data and exclude parts with noisy or
missing information. For example, when your data contains missing values, outliers, level
changes, and disturbances, you can select one or more portions of the data that are
suitable for identification and exclude the rest.

If you only have one data set and you want to estimate linear models, you should split the
data into two portions to create two independent data sets for estimation and validation,
respectively. Splitting the data is selecting parts of the data set and saving each part
independently.

You can merge several data segments into a single multiexperiment data set and identify
an average model. For more information, see “Create Data Sets from a Subset of Signal
Channels” on page 2-33 or “Representing Time- and Frequency-Domain Data Using
iddata Objects” on page 2-50.

Note Subsets of the data set must contain enough samples to adequately represent the
system, and the inputs must provide suitable excitation to the system.

Selecting portions of frequency-domain data is equivalent to filtering the data. For more
information about filtering, see “Filtering Data” on page 2-127.

Extract Subsets of Data Using the App
Ways to Select Data in the App

You can use System Identification app to select ranges of data on a time-domain or
frequency-domain plot. Selecting data in the frequency domain is equivalent to passband-
filtering the data.

After you select portions of the data, you can specify to use one data segment for

estimating models and use the other data segment for validating models. For more
information, see “Specify Estimation and Validation Data in the App” on page 2-30.
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Note Selecting <--Preprocess > Quick start performs the following actions
simultaneously:

* Remove the mean value from each channel.

* Split the data into two parts.

* Specify the first part as estimation data (or Working Data).

» Specify the second part as Validation Data.

Selecting a Range for Time-Domain Data

You can select a range of data values on a time plot and save it as a new data set in the
System Identification app.

Note Selecting data does not extract experiments from a data set containing multiple
experiments. For more information about multiexperiment data, see “Create
Multiexperiment Data Sets in the App” on page 2-35.

To extract a subset of time-domain data and save it as a new data set:

1 Import time-domain data into the System Identification app, as described in “Create
Data Sets from a Subset of Signal Channels” on page 2-33.

Drag the data set you want to subset to the Working Data area.

If your data contains multiple I/O channels, in the Channel menu, select the channel

pair you want to view. The upper plot corresponds to the input signal, and the lower
plot corresponds to the output signal.

Although you view only one I/O channel pair at a time, your data selection is applied
to all channels in this data set.

4  Select the data of interest in either of the following ways:

* Graphically — Draw a rectangle on either the input-signal or the output-signal plot

with the mouse to select the desired time interval. Your selection appears on both
plots regardless of the plot on which you draw the rectangle. The Time span and
Samples fields are updated to match the selected region.

* By specifying the Time span — Edit the beginning and the end times in seconds.
The Samples field is updated to match the selected region. For example:



See Also

28.5 56.8

* By specifying the Samples range — Edit the beginning and the end indices of the
sample range. The Time span field is updated to match the selected region. For
example:

342 654

Note To clear your selection, click Revert.

In the Data name field, enter the name of the data set containing the selected data.

6 Click Insert. This action saves the selection as a new data set and adds it to the Data
Board.

7 To select another range, repeat steps 4 to 6.
Selecting a Range of Frequency-Domain Data
Selecting a range of values in frequency domain is equivalent to filtering the data. For

more information about data filtering, see “Filtering Frequency-Domain or Frequency-
Response Data in the App” on page 2-130.

Extract Subsets of Data at the Command Line
Selecting ranges of data values is equivalent to subreferencing the data.

For more information about subreferencing time-domain and frequency-domain data, see
“Select Data Channels, I/O Data and Experiments in iddata Objects” on page 2-54.

For more information about subreferencing frequency-response data, see “Select I/O
Channels and Data in idfrd Objects” on page 2-86.

See Also

More About

. “Create Multiexperiment Data Sets in the App” on page 2-35
. “Create Multiexperiment Data at the Command Line” on page 2-60
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Handling Missing Data

Data acquisition failures sometimes result in missing measurements both in the input and
the output signals. When you import data that contains missing values using the MATLAB
Import Wizard, these values are automatically set to NaN. NaN serves as a flag for
nonexistent or undefined data. When you plot data on a time-plot that contains missing
values, gaps appear on the plot where missing data exists.

You can use misdata to estimate missing values. This command linearly interpolates
missing values to estimate the first model. Then, it uses this model to estimate the
missing data as parameters by minimizing the output prediction errors obtained from the
reconstructed data. You can specify the model structure you want to use in the misdata
argument or estimate a default-order model using the n4sid method. For more
information, see the misdata reference page.

Note You can only use misdata on time-domain data stored in an iddata object. For
more information about creating iddata objects, see “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-50.

For example, suppose y and u are output and input signals that contain NaNs. This data is
sampled at 0.2 s. The following syntax creates a new iddata object with these input and
output signals.

dat = iddata(y,u,0.2) % y and u contain NaNs
% representing missing data

Apply the misdata command to the new data object. For example:

datl = misdata(dat);

plot(dat,datl) Check how the missing data

was estimated on a time plot

[
“©
[

“©

Handling Outliers

Malfunctions can produce errors in measured values, called outliers. Such outliers might
be caused by signal spikes or by measurement malfunctions. If you do not remove outliers
from your data, this can adversely affect the estimated models.



Handling Missing Data and Outliers

To identify the presence of outliers, perform one of the following tasks:

* Before estimating a model, plot the data on a time plot and identify values that appear
out of range.

» After estimating a model, plot the residuals and identify unusually large values. For
more information about plotting residuals, see topics on the “Residual Analysis” page.
Evaluate the original data that is responsible for large residuals. For example, for the
model Model and validation data Data, you can use the following commands to plot
the residuals:

% Compute the residuals
E = resid(Data,Model)

% Plot the residuals
plot(E)

Next, try these techniques for removing or minimizing the effects of outliers:

» Extract the informative data portions into segments and merge them into one
multiexperiment data set (see “Extract and Model Specific Data Segments” on page 2-
109). For more information about selecting and extracting data segments, see “Select
Subsets of Data” on page 2-103.

Tip The inputs in each of the data segments must be consistently exciting the system.
Splitting data into meaningful segments for steady-state data results in minimum
information loss. Avoid making data segments too small.

* Manually replace outliers with NaNs and then use the misdata command to
reconstruct flagged data. This approach treats outliers as missing data and is
described in “Handling Missing Data” on page 2-106. Use this method when your data
contains several inputs and outputs, and when you have difficulty finding reliable data
segments in all variables.

* Remove outliers by prefiltering the data for high-frequency content because outliers
often result from abrupt changes. For more information about filtering, see “Filtering
Data” on page 2-127.

Note The estimation algorithm can handle outliers by assigning a smaller weight to
outlier data. A robust error criterion applies an error penalty that is quadratic for small
and moderate prediction errors, and is linear for large prediction errors. Because outliers
produce large prediction errors, this approach gives a smaller weight to the
corresponding data points during model estimation. Set the ErrorThreshold estimation
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option (see Advanced.ErrorThreshold in, for example, polyestOptions) to a
nonzero value to activate the correction for outliers in the estimation algorithm.

See Also
To learn more about the theory of handling missing data and outliers, see the chapter on

preprocessing data in System Identification: Theory for the User, Second Edition, by
Lennart Ljung, Prentice Hall PTR, 1999.
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Extract and Model Specific Data Segments

This example shows how to create a multi-experiment, time-domain data set by merging
only the accurate data segments and ignoring the rest.

Load and plot the data.

load iddemo8;
plot(dat);

Input-Output Data
y1

ul
500

5D T T T T

Amplitude

600 700 BOO 900 1000
Time (seconds)

100 200 300 400

The data has poor or no measurements from samples 251 to 280 and 601 to 650. You
cannot simply concatenate the good data segments because the transients at the
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connection points compromise the model. Instead, you must create a multiexperiment
iddata object, where each experiment corresponds to a good segment of data.

Create multiexperiment data set by merging data segments.

datam = merge(dat(1:250),dat(281:600),dat(651:1000));

Estimate a state-space model using the multiexperiment data set using experiments 1 and
2.

data_est = getexp(datam,[1,2]);
m = ssest(data est,2);

Validate the model by comparing its output to the output data of experiment 3.

data val = getexp(datam,3);
compare(data_val,m)



Extract and Model Specific Data Segments
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When to Detrend Data

Detrending is removing means, offsets, or linear trends from regularly sampled time-
domain input-output data signals. This data processing operation helps you estimate more
accurate linear models because linear models cannot capture arbitrary differences
between the input and output signal levels. The linear models you estimate from
detrended data describe the relationship between the change in input signals and the
change in output signals.

For steady-state data, you should remove mean values and linear trends from both input
and output signals.

For transient data, you should remove physical-equilibrium offsets measured prior to the
excitation input signal.

Remove one linear trend or several piecewise linear trends when the levels drift during
the experiment. Signal drift is considered a low-frequency disturbance and can result in
unstable models.

You should not detrend data before model estimation when you want:

» Linear models that capture offsets essential for describing important system dynamics.
For example, when a model contains integration behavior, you could estimate a low-
order transfer function (process model) from nondetrended data. For more
information, see “Process Models”.

* Nonlinear black-box models, such as nonlinear ARX or Hammerstein-Wiener models.
For more information, see “Nonlinear Model Identification”.

Tip When signals vary around a large signal level, you can improve computational
accuracy of nonlinear models by detrending the signal means.

* Nonlinear ODE parameters (nonlinear grey-box models). For more information, see
“Estimate Nonlinear Grey-Box Models” on page 13-34.

To simulate or predict the linear model response at the system operating conditions, you
can restore the removed trend to the simulated or predicted model output using the
retrend command.



Handling Offsets and Trends in Data

For more information about handling drifts in the data, see the chapter on preprocessing
data in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

Alternatives for Detrending Data in App or at the Command-
Line

You can detrend data using the System Identification app and at the command line using
the detrend command.

Both the app and the command line let you subtract the mean values and one linear trend
from steady-state time-domain signals.

However, the detrend command provides the following additional functionality (not
available in the app):

* Subtracting piecewise linear trends at specified breakpoints. A breakpoint is a time
value that defines the discontinuities between successive linear trends.
* Subtracting arbitrary offsets and linear trends from transient data signals.

* Saving trend information to a variable so that you can apply it to multiple data sets.

As an alternative to detrending data beforehand, you can specify the offsets levels as
estimation options and use them directly with the estimation command.

For example, suppose your data has an input offset, u0, and an output offset, y0. There
are two ways to perform a linear model estimation (say, a transfer function model
estimation) using this data:

* Using detrend:
T=getTrend(data)
T.InputOffset = u0;
T.OutputOffset = yo0;
datad = detrend(data, T);

model = tfest(datad, np);
» Specify offsets as estimation options:

opt = tfestOptions('InputOffset',u®@, 'OutputOffset', y0);

model = tfest(data, np, opt)
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The advantage of this approach is that there is a record of offset levels in the model in
model.Report.OptionsUsed. The limitation of this approach is that it cannot
handle linear trends, which can only be removed from the data by using detrend.

Next Steps After Detrending

After detrending your data, you might do the following:

* Perform other data preprocessing operations. See “Ways to Prepare Data for System
Identification” on page 2-6.

* Estimate a linear model. See “Linear Model Identification”.

See Also

Related Examples
. “How to Detrend Data Using the App” on page 2-115
. “How to Detrend Data at the Command Line” on page 2-116
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How to Detrend Data Using the App

Before you can perform this task, you must have regularly-sampled, steady-state time-
domain data imported into the System Identification app. See “Import Time-Domain Data
into the App” on page 2-16). For transient data, see “How to Detrend Data at the
Command Line” on page 2-116.

Tip You can use the shortcut Preprocess > Quick start to perform several operations:
remove the mean value from each signal, split data into two halves, specify the first half
as model estimation data (or Working Data), and specify the second half as model
Validation Data.

1 In the System Identification app, drag the data set you want to detrend to the
Working Data rectangle.

2 Detrend the data.

* To remove linear trends, select Preprocess > Remove trends.

* To remove mean values from each input and output data signal, select
Preprocess > Remove means.

See Also

More About
. “Handling Offsets and Trends in Data” on page 2-112
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Detrending Steady-State Data

Before you can perform this task, you must have time-domain data as an iddata object.
See “Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-
50.

Note If you plan to estimate models from this data, your data must be regularly sampled.

Use the detrend command to remove the signal means or linear trends:
[data d,T]=detrend(data,Type)

where data is the data to be detrended. The second input argument Type=0 removes
signal means or Type=1 removes linear trends. data_d is the detrended data. T is a
TrendInfo object that stores the values of the subtracted offsets and slopes of the
removed trends.

Detrending Transient Data

Before you can perform this task, you must have

* Time-domain data as an iddata object. See “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50.

Note If you plan to estimate models from this data, your data must be regularly
sampled.

* Values of the offsets you want to remove from the input and output data. If you do not
know these values, visually inspect a time plot of your data. For more information, see
“How to Plot Data at the Command Line” on page 2-99.

1 Create a default object for storing input-output offsets that you want to remove from
the data.

T = getTrend(data)

where T is a TrendInfo object.



See Also

2 Assign offset values to T.

T.InputOffset=I value;
T.0utputOffset=0 value;

where I value is the input offset value, and 0 value is the input offset value.
3 Remove the specified offsets from data.

data_d = detrend(data,T)

where the second input argument T stores the offset values as its properties.

See Also
TrendInfo | detrend

More About
. “Handling Offsets and Trends in Data” on page 2-112

2-117



2 Data Import and Processing

Resampling Data

2-118

What Is Resampling?

Resampling data signals in the System Identification Toolbox product applies an
antialiasing (lowpass) FIR filter to the data and changes the sampling rate of the signal by
decimation or interpolation.

If your data is sampled faster than needed during the experiment, you can decimate it
without information loss. If your data is sampled more slowly than needed, there is a
possibility that you miss important information about the dynamics at higher frequencies.
Although you can resample the data at a higher rate, the resampled values occurring
between measured samples do not represent new measured information about your
system. Instead of resampling, repeat the experiment using a higher sampling rate.

Tip You should decimate your data when it contains high-frequency noise outside the
frequency range of the system dynamics.

Resampling takes into account how the data behaves between samples, which you specify
when you import the data into the System Identification app (zero-order or first-order
hold). For more information about the data properties you specify before importing the
data, see “Represent Data”.

You can resample data using the System Identification app or the resample command.
You can only resample time-domain data at uniform time intervals.

For a detailed discussion about handling disturbances, see the chapter on preprocessing
data in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

Resampling Data Without Aliasing Effects

Typically, you decimate a signal to remove the high-frequency contributions that result
from noise from the total energy. Ideally, you want to remove the energy contribution due
to noise and preserve the energy density of the signal.

The command resample performs the decimation without aliasing effects. This command
includes a factor of T to normalize the spectrum and preserve the energy density after
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decimation. For more information about spectrum normalization, see “Spectrum
Normalization” on page 9-13.

If you use manual decimation instead of resample—by picking every fourth sample from
the signal, for example—the energy contributions from higher frequencies are folded back
into the lower frequencies("aliasing"). Because the total signal energy is preserved by this
operation and this energy must now be squeezed into a smaller frequency range, the
amplitude of the spectrum at each frequency increases. Thus, the energy density of the
decimated signal is not constant.

This example shows how resample avoids folding effects.
Construct a fourth-order moving-average process.

m@ = idpoly(1,[ 1,[1 1 1 1]);

mO is a time-series model with no inputs.

Generate error signal.

e = idinput (2000, 'rgs');

Simulate the output using the error signal.

sim opt = simOptions('AddNoise',true, 'NoiseData',e);
y = sim(m0,zeros(2000,0),sim opt);
y = iddata(y,[1,1);

Estimate the signal spectrum.
gl = spa(y);

Estimate the spectrum of the modified signal including every fourth sample of the original
signal. This command automatically sets Ts to 4.

g2 = spa(y(1:4:2000));

Plot the frequency response to view folding effects.
h = spectrumplot(gl,g2,9l.Frequency);

opt = getoptions(h);

opt.FreqScale = 'linear';

opt.FreqUnits = 'Hz';
setoptions(h,opt);
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Estimate the spectrum after prefiltering that does not introduce folding effects.
g3 = spa(resample(y,1,4));

figure
spectrumplot(gl,g3,gl.Frequency,opt)
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Use resample to decimate the signal before estimating the spectrum and plot the
frequency response.
g3 = spa(resample(y,1,4));

figure
spectrumplot(gl,g3,gl.Frequency,opt)
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The plot shows that the estimated spectrum of the resampled signal has the same
amplitude as the original spectrum. Thus, there is no indication of folding effects when
you use resample to eliminate aliasing.

See Also

Related Examples
. “Resampling Data Using the App” on page 2-123
. “Resampling Data at the Command Line” on page 2-125
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Resampling Data Using the App

Use the System Identification app to resample time-domain data. To specify additional
options, such as the prefilter order, see “Resampling Data at the Command Line” on page
2-125.

The System Identification app uses idresamp to interpolate or decimate the data. For
more information about this command, type help idresamp at the prompt.

To create a new data set by resampling the input and output signals:

1 Import time-domain data into the System Identification app, as described in “Create
Data Sets from a Subset of Signal Channels” on page 2-33.
2 Drag the data set you want to resample to the Working Data area.
3 In the Resampling factor field, enter the factor by which to multiply the current
sample time:
* For decimation (fewer samples), enter a factor greater than 1 to increase the
sample time by this factor.
* For interpolation (more samples), enter a factor less than 1 to decrease the
sample time by this factor.
Default = 1.
4 In the Data name field, type the name of the new data set. Choose a name that is
unique in the Data Board.
5 Click Insert to add the new data set to the Data Board in the System Identification
Toolbox window.
6 Click Close to close the Resample dialog box.
See Also

Related Examples

“Resampling Data at the Command Line” on page 2-125
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More About
. “Resampling Data” on page 2-118
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Resampling Data at the Command Line

Use resample to decimate and interpolate time-domain iddata objects. You can specify
the order of the antialiasing filter as an argument.

Note resample uses the Signal Processing Toolbox™ command, when this toolbox is
installed on your computer. If this toolbox is not installed, use idresamp instead.
idresamp only lets you specify the filter order, whereas resample also lets you specify
filter coefficients and the design parameters of the Kaiser window.

To create a new iddata object datar by resampling data, use the following syntax:

datar = resample(data,P,Q,filter order)

In this case, P and Q are integers that specify the new sample time: the new sample time
is Q/P times the original one. You can also specify the order of the resampling filter as a
fourth argument filter order, which is an integer (default is 10). For detailed
information about resample, see the corresponding reference page.

For example, resample(data, 1, Q) results in decimation with the sample time modified
by a factor Q.

The next example shows how you can increase the sampling rate by a factor of 1.5 and
compare the signals:

plot(u)
ur = resample(u,3,2);
plot(u,ur)

When the Signal Processing Toolbox product is not installed, using resample calls
idresamp instead.

idresamp uses the following syntax:
datar = idresamp(data,R,filter order)

In this case, R=Q/P, which means that data is interpolated by a factor P and then
decimated by a factor Q. To learn more about idresamp, type help idresamp.
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The data.InterSample property of the iddata object is taken into account during
resampling (for example, first-order hold or zero-order hold). For more information, see
“iddata Properties” on page 2-52.

See Also

Related Examples
. “Resampling Data Using the App” on page 2-123

More About
. “Resampling Data” on page 2-118
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Filtering Data

Supported Filters

You can filter the input and output signals through a linear filter before estimating a
model in the System Identification app or at the command line. How you want to handle
the noise in the system determines whether it is appropriate to prefilter the data.

The filter available in the System Identification app is a fifth-order (passband)
Butterworth filter. If you need to specify a custom filter, use the idfilt command.

Choosing to Prefilter Your Data

Prefiltering data can help remove high-frequency noise or low-frequency disturbances
(drift). The latter application is an alternative to subtracting linear trends from the data,
as described in “Handling Offsets and Trends in Data” on page 2-112.

In addition to minimizing noise, prefiltering lets you focus your model on specific
frequency bands. The frequency range of interest often corresponds to a passhand over
the breakpoints on a Bode plot. For example, if you are modeling a plant for control-
design applications, you might prefilter the data to specifically enhance frequencies
around the desired closed-loop bandwidth.

Prefiltering the input and output data through the same filter does not change the input-
output relationship for a linear system. However, prefiltering does change the noise
characteristics and affects the estimated noise model of the system.

To get a reliable noise model in the app, instead of prefiltering the data, set Focus to
Filter, and specify the filter. To get a reliable noise model at the command line, instead
of prefiltering the data, specify the filter in the WeightingFilter estimation option of
the estimation command. If the Focus option is available, specify it as 'simulation’.

For more information about prefiltering data, see the chapter on preprocessing data in
System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice
Hall PTR, 1999.

For practical examples of prefiltering data, see the section on posttreatment of data in

Modeling of Dynamic Systems, by Lennart Ljung and Torkel Glad, Prentice Hall PTR,
1994,
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See Also
Related Examples

. “How to Filter Data Using the App” on page 2-129
. “How to Filter Data at the Command Line” on page 2-132
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How to Filter Data Using the App

Filtering Time-Domain Data in the App

The System Identification app lets you filter time-domain data using a fifth-order
Butterworth filter by enhancing or selecting specific passbands.

To create a filtered data set:

1

Import time-domain data into the System Identification app, as described in
“Represent Data”.

Drag the data set you want to filter to the Working Data area.

Select <--Preprocess > Filter. By default, this selection shows a periodogram of the
input and output spectra (see the etfe reference page).

Note To display smoothed spectral estimates instead of the periodogram, select
Options > Spectral analysis. This spectral estimate is computed using spa and
your previous settings in the Spectral Model dialog box. To change these settings,
select <--Estimate > Spectral model in the System Identification app, and specify
new model settings.

If your data contains multiple input/output channels, in the Channel menu, select the
channel pair you want to view. Although you view only one channel pair at a time, the
filter applies to all input/output channels in this data set.

Select the data of interest using one of the following ways:

* Graphically — Draw a rectangle with the mouse on either the input-signal or the
output-signal plot to select the desired frequency interval. Your selection is
displayed on both plots regardless of the plot on which you draw the rectangle.

The Range field is updated to match the selected region. If you need to clear your
selection, right-click the plot.

* Specify the Range — Edit the beginning and the end frequency values.
For example:

8.5 20.0 (rad/s).
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Tip To change the frequency units from rad/s to Hz, select Style > Frequency
(Hz). To change the frequency units from Hz to rad/s, select Style > Frequency
(rad/s).

6 In the Range is list, select one of the following:

* Pass band — Allows data in the selected frequency range.
* Stop band — Excludes data in the selected frequency range.

7  Click Filter to preview the filtered results. If you are satisfied, go to step 8.
Otherwise, return to step 5.

8 Inthe Data name field, enter the name of the data set containing the selected data.
9 Click Insert to save the selection as a new data set and add it to the Data Board.

10 To select another range, repeat steps 5 to 9.

Filtering Frequency-Domain or Frequency-Response Data in
the App

For frequency-domain and frequency-response data, filtering is equivalent to selecting
specific data ranges.

To select a range of data in frequency-domain or frequency-response data:

1 Import data into the System Identification app, as described in “Represent Data”.
2 Drag the data set you want you want to filter to the Working Data area.
3 Select <--Preprocess > Select range. This selection displays one of the following
plots:
* Frequency-domain data — Plot shows the absolute of the squares of the input and
output spectra.

* Frequency-response data — Top axes show the frequency response magnitude
equivalent to the ratio of the output to the input, and the bottom axes show the
ratio of the input signal to itself, which has the value of 1 at all frequencies.

4 If your data contains multiple input/output channels, in the Channel menu, select the
channel pair you want to view. Although you view only one channel pair at a time, the
filter applies to all input/output channels in this data set.

5 Select the data of interest using one of the following ways:
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* Graphically — Draw a rectangle with the mouse on either the input-signal or the
output-signal plot to select the desired frequency interval. Your selection is
displayed on both plots regardless of the plot on which you draw the rectangle.
The Range field is updated to match the selected region.

If you need to clear your selection, right-click the plot.

* Specify the Range — Edit the beginning and the end frequency values.
For example:

8.5 20.0 (rad/s).

Tip If you need to change the frequency units from rad/s to Hz, select Style >
Frequency (Hz). To change the frequency units from Hz to rad/s, select Style >
Frequency (rad/s).

6 In the Range is list, select one of the following:

* Pass band — Allows data in the selected frequency range.
* Stop band — Excludes data in the selected frequency range.
In the Data name field, enter the name of the data set containing the selected data.

8 Click Insert. This action saves the selection as a new data set and adds it to the Data
Board.

9 To select another range, repeat steps 5 to 8.

See Also

Related Examples
. “How to Filter Data at the Command Line” on page 2-132

More About
. “Filtering Data” on page 2-127
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How to Filter Data at the Command Line
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Simple Passband Filter

Use idfilt to apply passband and other custom filters to a time-domain or a frequency-
domain iddata object.

In general, you can specify any custom filter. Use this syntax to filter an iddata object
data using the filter called filter:

fdata = idfilt(data, filter)

In the simplest case, you can specify a passband filter for time-domain data using the
following syntax:

fdata = idfilt(data, [wl wh])

In this case, wl and wh represent the low and high frequencies of the passband,
respectively.

You can specify several passbands, as follows:

filter=[[wll,wlh];[ w21,w2h]; ....;[wnl,wnhl]

The filter is an n-by-2 matrix, where each row defines a passband in radians per second.
To define a stopband between ws1 and ws2, use

filter = [0 wsl; ws2 Nyqgf]

where, Nyqf is the Nyquist frequency.

For time-domain data, the passband filtering is cascaded Butterworth filters of specified
order. The default filter order is 5. The Butterworth filter is the same as butter in the
Signal Processing Toolbox product. For frequency-domain data, select the indicated
portions of the data to perform passband filtering.

Defining a Custom Filter

Use idfilt to apply passband and other custom filters to a time-domain or a frequency-
domain iddata object.
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In general, you can specify any custom filter. Use this syntax to filter an iddata object
data using the filter called filter:

fdata = idfilt(data,filter)

You can define a general single-input/single-output (SISO) system for filtering time-
domain or frequency-domain data. For frequency-domain only, you can specify the
(nonparametric) frequency response of the filter.

You use this syntax to filter an iddata object data using a custom filter specified by
filter:

fdata = idfilt(data,filter)

filter can be also any of the following:

filter = idm
filter = {num,den}
filter = {A,B,C,D}

idmis a SISO identified linear model on page 1-13 or LTI object. For more information
about LTT objects, see the Control System Toolbox documentation.

{num, den} defines the filter as a transfer function as a cell array of numerator and
denominator filter coefficients.

{A,B,C,D} is a cell array of SISO state-space matrices.
Specifically for frequency-domain data, you specify the frequency response of the filter:
filter = Wf

Here, WT is a vector of real or complex values that define the filter frequency response,
where the inputs and outputs of data at frequency data.Frequency (kf) are multiplied
by Wf (kf). Wf is a column vector with the length equal to the number of frequencies in
data.

When data contains several experiments, Wf is a cell array with the length equal to the
number of experiments in data.
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Causal and Noncausal Filters

For time-domain data, the filtering is causal by default. Causal filters typically introduce a
phase shift in the results. To use a noncausal zero-phase filter (corresponding to
filtfilt in the Signal Processing Toolbox product), specify a third argument in idfilt:

fdata = idfilt(data,filter, 'noncausal')

For frequency-domain data, the signals are multiplied by the frequency response of the
filter. With the filters defined as passband filters, this calculation gives ideal, zero-phase
filtering (“brick wall filters”). Frequencies that have been assigned zero weight by the
filter (outside the passband or via frequency response) are removed.

When you apply idfilt to an idfrd data object, the data is first converted to a
frequency-domain iddata object (see “Transforming Between Frequency-Domain and
Frequency-Response Data” on page 3-13). The result is an iddata object.

See Also

More About
. “Filtering Data” on page 2-127
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Generate Data Using Simulation

Commands for Generating Data Using Simulation

You can generate input data and then use it with a model to create output data.

Simulating output data requires that you have a model with known coefficients. For more
information about commands for constructing models, see “Commands for Constructing
Linear Model Structures” on page 1-21.

To generate input data, use idinput to construct a signal with the desired
characteristics, such as a random Gaussian or binary signal or a sinusoid. idinput
returns a matrix of input values.

The following table lists the commands you can use to simulate output data. For more
information about these commands, see the corresponding reference pages.

Commands for Generating Data

Command

Description

Example

idinput

Constructs a signal with
the desired
characteristics, such as a
random Gaussian or binary
signal or a sinusoid, and
returns a matrix of input
values.

u = iddata([],...
idinput (400, 'rbs',[0 0.3]));

sim

Simulates response data
based on existing linear or
nonlinear parametric
model in the MATLAB
workspace.

To simulate the model output y for a given
input, use the following command:

y = sim(m,data)

m is the model object name, and data is input
data matrix or iddata object.

Create Periodic Input Data

This example shows how to create a periodic random Gaussian input signal using

idinput.
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Create a periodic input for one input and consisting of five periods, where each period is
300 samples.

per u = idinput([3600 1 5]);

Create an iddata object using the periodic input and leaving the output empty.
u = iddata([],per_u, 'Period',.300);

View the data characteristics in time- and frequency-domain.

% Plot data in time-domain.

plot(u)

% Plot the spectrum.
spectrum(spa(u))

Power Spectrum
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(Optional) Simulate model output using the data.

% Construct a polynomial model.

mo = idpoly([1l -1.5 0.7],[0 1 0.5]);

% Simulate model output with Gaussian noise.
sim opt = simOptions('AddNoise',true);
sim(mO,u,sim opt)

Simulated output #1: y1

157 ' '

10

200 400 600 800 1000 1200

Time (seconds)

Generate Output Data Using Simulation

1400

This example shows how to generate output data by simulating a model using an input

signal created using idinput.
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You use the generated data to estimate a model of the same order as the model used to
generate the data. Then, you check how closely both models match to understand the
effects of input data characteristics and noise on the estimation.

Create an ARMAX model with known coefficients.

A=1[1-1.20.7];

B = {[0 0.5 0.1]1,[0 1.5 -0.5],[0 -0.1 0.5 -0.11};
C=[10000];

Ts = 1;

m@ = idpoly(A,B,C,'Ts',1);

The leading zeros in the B matrix indicate the input delay (nk), which is 1 for each input
channel.

Construct a pseudorandom binary input data.

u = idinput([255,3], 'prbs');

Simulate model output with noise using the input data.
y = sim(m@,u,simOptions('AddNoise’',true));
Represent the simulation data as an iddata object.
iodata = iddata(y,u,m0.Ts);

(Optional) Estimate a model of the same order as m0 using iodata.

na = 2;

nb = [3 2 3];

nc = 4;

nk = [111];

me = armax(iodata, [na,nb,nc,nk]);

Use bode(m0,me) and compare(iodata,me) to check how closely me and m0 match.

compare(iodata,me);
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Simulated Response Comparison
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Simulating Data Using Other MathWorks Products

You can also simulate data using the Simulink and Signal Processing Toolbox software.
Data simulated outside the System Identification Toolbox product must be in the MATLAB
workspace as double matrices. For more information about simulating models using the
Simulink software, see “Simulating Identified Model Output in Simulink” on page 20-5.
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Manipulating Complex-Valued Data

Supported Operations for Complex Data

System Identification Toolbox estimation algorithms support complex data. For example,
the following estimation commands estimate complex models from complex data: ar,
armax, arx, bj, ivar, iv4, oe, pem, spa, tfest, ssest, and n4sid.

Model transformation routines, such as freqresp and zpkdata, work for complex-
valued models. However, they do not provide pole-zero confidence regions. For complex
models, the parameter variance-covariance information refers to the complex-valued
parameters and the accuracy of the real and imaginary is not computed separately.

The display commands compare and plot also work with complex-valued data and

models. To plot the real and imaginary parts of the data separately, use
plot(real(data)) and plot(imag(data)), respectively.

Processing Complex iddata Signals at the Command Line

If the iddata object data contains complex values, you can use the following commands
to process the complex data and create a new iddata object.

Command Description

abs(data) Absolute value of complex signals in iddata object.

angle(data) Phase angle (in radians) of each complex signals in iddata
object.

complex(data) For time-domain data, this command makes the iddata object

complex—even when the imaginary parts are zero. For frequency-
domain data that only stores the values for nonnegative
frequencies, such that realdata(data)=1, it adds signal values
for negative frequencies using complex conjugation.

imag(data) Selects the imaginary parts of each signal in iddata object.

isreal(data) 1 when data (time-domain or frequency-domain) contains only
real input and output signals, and returns @ when data (time-
domain or frequency-domain) contains complex signals.

real(data) Real part of complex signals in iddata object.
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Data

Command Description

realdata(data) Returns a value of 1 when data is a real-valued, time-domain
signal, and returns 0 otherwise.

For example, suppose that you create a frequency-domain iddata object Datf by
applying fft to a real-valued time-domain signal to take the Fourier transform of the

signal. The following is true for Datf:

isreal(Datf) = 0
realdata(Datf) = 1
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* “Supported Data Transformations” on page 3-2

» “Transform Time-Domain Data in the App” on page 3-4

* “Transform Frequency-Domain Data in the App” on page 3-6

* “Transform Frequency-Response Data in the App” on page 3-8

* “Transforming Between Time and Frequency-Domain Data” on page 3-11

* “Transforming Between Frequency-Domain and Frequency-Response Data”
on page 3-13
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Supported Data Transformations

3-2

The following table shows the different ways you can transform data from one data
domain to another. If the transformation is supported for a given row and column
combination in the table, the command used by the software is listed in the cell at their

intersection.
Original Data |To Time-Domain |To Frequency- To Frequency-Response Data
Format Data Domain Data (idfrd object)

(iddata object)

(iddata object)

Time-Domain
Data
(iddata object)

N/A

Use fft

Use etfe, spa, or spafdr.

Estimate a linear parametric
model from the iddata
object, and use idfrd to
compute frequency-response
data.

Frequency-
Domain Data
(iddata object)

Use ifft (works
only for evenly

spaced frequency-

domain data).

N/A

Use etfe, spa, or spafdr.

Estimate a linear parametric
model from the iddata
object, and use idfrd to
compute frequency-response
data.

Frequency-
Response
Data

(idfrd object)

Not supported

Use iddata. The
software creates a
frequency-domain
iddata object
that has the same
ratio between
output and input
as the original
idfrd object
frequency-
response data.

Use spafdr. The software
calculates frequency-
response data with a
different resolution (number
and spacing of frequencies)
than the original data.

Transforming from time-domain or frequency-domain data to frequency-response data is
equivalent to creating a frequency-response model from the data. For more information,
see “Frequency-Response Models”.
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See Also

Related Examples

. “Transforming Between Time and Frequency-Domain Data” on page 3-11
. “Transform Time-Domain Data in the App” on page 3-4

. “Transform Frequency-Domain Data in the App” on page 3-6

. “Transform Frequency-Response Data in the App” on page 3-8

More About

. “Representing Data in MATLAB Workspace” on page 2-9
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Transform Time-Domain Data in the App

In the System Identification app, time-domain data has an icon with a white background.
You can transform time-domain data to frequency-domain or frequency-response data.
The frequency values of the resulting frequency vector range from 0 to the Nyquist

frequency fg = %s , where T, is the sample time.

Transforming from time-domain to frequency-response data is equivalent to estimating a
model from the data using the spafdr method.

1 In the System Identification app, drag the icon of the data you want to transform to
the Working Data rectangle.

2 In the Operations area, select <--Preprocess > Transform data in the drop-down
menu to open the Transform Data dialog box.

3 In the Transform to list, select one of the following:

* Frequency Function — Create a new idfrd object using the spafdr method.

Go to step 4.
Transform Data EI@
Transform to: Freguency Function -
Frequency Spacing linear s
Mumber of Freguencies 100
Name of new data dataff
| Transform | | Close | | Help |

* Frequency Domain Data — Create a new iddata object using the fft method.
Go to step 6.

4 In the Frequency Spacing list, select the spacing of the frequencies at which the
frequency function is estimated:

* linear — Uniform spacing of frequency values between the endpoints.
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* logarithmic — Base-10 logarithmic spacing of frequency values between the
endpoints.

5 In the Number of Frequencies field, enter the number of frequency values.

In the Name of new data field, type the name of the new data set. This name must
be unique in the Data Board.

7  Click Transform to add the new data set to the Data Board in the System
Identification app.

8 Click Close to close the Transform Data dialog box.

See Also

Related Examples

. “Transforming Between Time and Frequency-Domain Data” on page 3-11
. “Transform Frequency-Domain Data in the App” on page 3-6

. “Transform Frequency-Response Data in the App” on page 3-8

More About

. “Representing Data in MATLAB Workspace” on page 2-9
. “Supported Data Transformations” on page 3-2
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Transform Frequency-Domain Data in the App

3-6

In the System Identification app, frequency-domain data has an icon with a green
background. You can transform frequency-domain data to time-domain or frequency-
response (frequency-function) data.

Transforming from time-domain or frequency-domain data to frequency-response data is
equivalent to estimating a nonparametric model of the data using the spafdr method.

1 In the System Identification app, drag the icon of the data you want to transform to
the Working Data rectangle.
Select <--Preprocess > Transform data.
In the Transform to list, select one of the following:
* Frequency Function — Create a new idfrd object using the spafdr method.
Go to step 4.
* Time Domain Data — Create a new iddata object using the i fft (inverse fast
Fourier transform) method. Go to step 6.
4 In the Frequency Spacing list, select the spacing of the frequencies at which the
frequency function is estimated:
* linear — Uniform spacing of frequency values between the endpoints.
* logarithmic — Base-10 logarithmic spacing of frequency values between the
endpoints.
5 In the Number of Frequencies field, enter the number of frequency values.
In the Name of new data field, type the name of the new data set. This name must
be unique in the Data Board.
7  Click Transform to add the new data set to the Data Board in the System
Identification app.
8 Click Close to close the Transform Data dialog box.
See Also

Related Examples

“Transforming Between Time and Frequency-Domain Data” on page 3-11
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. “Transform Time-Domain Data in the App” on page 3-4
. “Transform Frequency-Response Data in the App” on page 3-8
More About

. “Representing Data in MATLAB Workspace” on page 2-9
. “Supported Data Transformations” on page 3-2
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In the System Identification app, frequency-response data has an icon with a yellow
background. You can transform frequency-response data to frequency-domain data
(iddata object) or to frequency-response data with a different frequency resolution.

When you select to transform single-input/single-output (SISO) frequency-response data
to frequency-domain data, the toolbox creates outputs that equal the frequency
responses, and inputs equal to 1. Therefore, the ratio between the Fourier transform of
the output and the Fourier transform of the input is equal to the system frequency
response.

For the multiple-input case, the toolbox transforms the frequency-response data to
frequency-domain data as if each input contributes independently to the entire output of
the system and then combines information. For example, if a system has three inputs, ul,
u2, and u3 and two frequency samples, the input matrix is set to:

S O O O = =
o o = = O O
= = O O O O

In general, for nu inputs and ns samples (the number of frequencies), the input matrix
has nu columns and (ns- nu) rows.

Note To create a separate experiment for the response from each input, see
“Transforming Between Frequency-Domain and Frequency-Response Data” on page 3-
13.

When you transform frequency-response data by changing its frequency resolution, you
can modify the number of frequency values by changing between linear or logarithmic
spacing. You might specify variable frequency spacing to increase the number of data
points near the system resonance frequencies, and also make the frequency vector
coarser in the region outside the system dynamics. Typically, high-frequency noise
dominates away from frequencies where interesting system dynamics occur. The System



See Also

Identification app lets you specify logarithmic frequency spacing, which results in a
variable frequency resolution.

Note The spafdr command lets you lets you specify any variable frequency resolution.

In the System Identification app, drag the icon of the data you want to transform to
the Working Data rectangle.

Select <--Preprocess > Transform data.
In the Transform to list, select one of the following:

* Frequency Domain Data — Create a new iddata object. Go to step 6.

* Frequency Function — Create a new idfrd object with different resolution
(number and spacing of frequencies) using the spafdr method. Go to step 4.

In the Frequency Spacing list, select the spacing of the frequencies at which the
frequency function is estimated:
* Tlinear — Uniform spacing of frequency values between the endpoints.

* logarithmic — Base-10 logarithmic spacing of frequency values between the
endpoints.

In the Number of Frequencies field, enter the number of frequency values.

In the Name of new data field, type the name of the new data set. This name must
be unique in the Data Board.

Click Transform to add the new data set to the Data Board in the System
Identification app.

Click Close to close the Transform Data dialog box.

See Also

Related Examples

“Transforming Between Time and Frequency-Domain Data” on page 3-11
“Transform Time-Domain Data in the App” on page 3-4
“Transform Frequency-Domain Data in the App” on page 3-6
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More About

. “Representing Data in MATLAB Workspace” on page 2-9
. “Supported Data Transformations” on page 3-2
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Transforming Between Time and Frequency-Domain

Data

The iddata object stores time-domain or frequency-domain data. The following table
summarizes the commands for transforming data between time and frequency domains.

Command Description Syntax Example
fft Transforms time-domain data to | To transform time-domain
the frequency domain. iddata object t datato
. frequency-domain iddata
You can specify N, the number |object f data with N frequency
of frequency values. points, use:
f data =
fft(t data,N)
ifft Transforms frequency-domain |To transform frequency-
data to the time domain. domainiddata ohject f data
Frequencies are linear and to time-domain iddata object
equally spaced. t data, use:
t data =
ifft(f data)
See Also

Related Examples

. “Transforming Between Frequency-Domain and Frequency-Response Data” on page
3-13

. “Transform Time-Domain Data in the App” on page 3-4

. “Transform Frequency-Domain Data in the App” on page 3-6

. “Transform Frequency-Response Data in the App” on page 3-8

More About

. “Representing Data in MATLAB Workspace” on page 2-9
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. “Supported Data Transformations” on page 3-2
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Transforming Between Frequency-Domain and
Frequency-Response Data

You can transform frequency-response data to frequency-domain data (iddata object).
The idfrd object represents complex frequency-response of the system at different
frequencies. For a description of this type of data, see “Frequency-Response Data
Representation” on page 2-13.

When you select to transform single-input/single-output (SISO) frequency-response data
to frequency-domain data, the toolbox creates outputs that equal the frequency
responses, and inputs equal to 1. Therefore, the ratio between the Fourier transform of
the output and the Fourier transform of the input is equal to the system frequency
response.

For information about changing the frequency resolution of frequency-response data to a
new constant or variable (frequency-dependent) resolution, see the spafdr reference
page. You might use this feature to increase the number of data points near the system
resonance frequencies and make the frequency vector coarser in the region outside the
system dynamics. Typically, high-frequency noise dominates away from frequencies where
interesting system dynamics occur.

Note You cannot transform an idfrd object to a time-domain iddata object.

To transform an idfrd object with the name idfrdobj to a frequency-domain iddata
object, use the following syntax:

dataf = iddata(idfrdobj)

The resulting frequency-domain iddata object contains values at the same frequencies
as the original idfrd object.

For the multiple-input case, the toolbox represents frequency-response data as if each
input contributes independently to the entire output of the system and then combines
information. For example, if a system has three inputs, ul, u2, and u3 and two frequency
samples, the input matrix is set to:

3-13
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S O O O = =
S o = H O O
= = O O O O

In general, for nu inputs and ns samples, the input matrix has nu columns and (ns- nu)
TOWS.

If you have ny outputs, the transformation operation produces an output matrix has ny
columns and (ns- nu) rows using the values in the complex frequency response G(iw)
matrix (ny-by-nu-by-ns). In this example, y1 is determined by unfolding G(1,1, :),
G(1,2,:),and G(1,3,:) into three column vectors and vertically concatenating these
vectors into a single column. Similarly, y2 is determined by unfolding G(2,1, :),
G(2,2,:),and G(2, 3, :) into three column vectors and vertically concatenating these
vectors.

If you are working with multiple inputs, you also have the option of storing the
contribution by each input as an independent experiment in a multiexperiment data set.
To transform an idfrd object with the name idfrdobj to a multiexperiment data set
datf, where each experiment corresponds to each of the inputs in idfrdobj

datf = iddata(idfrdobj, 'me")

In this example, the additional argument 'me ' specifies that multiple experiments are
created.

By default, transformation from frequency-response to frequency-domain data strips away

frequencies where the response is inf or NaN. To preserve the entire frequency vector,
use datf = iddata(idfrdobj,'inf'). For more information, type help idfrd/
iddata.
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See Also

Related Examples

. “Transforming Between Time and Frequency-Domain Data” on page 3-11
. “Transform Time-Domain Data in the App” on page 3-4

. “Transform Frequency-Domain Data in the App” on page 3-6

. “Transform Frequency-Response Data in the App” on page 3-8

More About

. “Representing Data in MATLAB Workspace” on page 2-9
. “Supported Data Transformations” on page 3-2
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Selecting Black-Box Model Structure and Order

Black-box modeling is useful when your primary interest is in fitting the data regardless
of a particular mathematical structure of the model. The toolbox provides several linear
and nonlinear black-box model structures, which have traditionally been useful for
representing dynamic systems. These model structures vary in complexity depending on
the flexibility you need to account for the dynamics and noise in your system. You can
choose one of these structures and compute its parameters to fit the measured response
data.

Black-box modeling is usually a trial-and-error process, where you estimate the
parameters of various structures and compare the results. Typically, you start with the
simple linear model structure and progress to more complex structures. You might also
choose a model structure because you are more familiar with this structure or because
you have specific application needs.

The simplest linear black-box structures require the fewest options to configure:

» Transfer function on page 8-2, with a given number of poles and zeros.
* Linear ARX model on page 6-3, which is the simplest input-output polynomial model.

» State-space model on page 7-2, which you can estimate by specifying the number of
model states

Estimation of some of these structures also uses noniterative estimation algorithms,
which further reduces complexity.

You can configure a model structure using the model order. The definition of model order
varies depending on the type of model you select. For example, if you choose a transfer
function representation, the model order is related to the number of poles and zeros. For
state-space representation, the model order corresponds to the number of states. In some
cases, such as for linear ARX and state-space model structures, you can estimate the
model order from the data.

If the simple model structures do not produce good models, you can select more complex
model structures by:
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* Specifying a higher model order for the same linear model structure. Higher model
order increases the model flexibility for capturing complex phenomena. However,
unnecessarily high orders can make the model less reliable.

» Explicitly modeling the noise:
y(t)=Gu(t)+He(t)

where H models the additive disturbance by treating the disturbance as the output of
a linear system driven by a white noise source e(t).

Using a model structure that explicitly models the additive disturbance can help to
improve the accuracy of the measured component G. Furthermore, such a model
structure is useful when your main interest is using the model for predicting future
response values.

* Using a different linear model structure.

See “Linear Model Structures” on page 1-20.
* Using a nonlinear model structure.

Nonlinear models have more flexibility in capturing complex phenomena than linear
models of similar orders. See “Nonlinear Model Structures” on page 11-7.

Ultimately, you choose the simplest model structure that provides the best fit to your
measured data. For more information, see “Estimating Linear Models Using Quick Start”.

Regardless of the structure you choose for estimation, you can simplify the model for your
application needs. For example, you can separate out the measured dynamics (G) from
the noise dynamics (H) to obtain a simpler model that represents just the relationship
between y and u. You can also linearize a nonlinear model about an operating point.

When to Use Nonlinear Model Structures?

A linear model is often sufficient to accurately describe the system dynamics and, in most
cases, you should first try to fit linear models. If the linear model output does not
adequately reproduce the measured output, you might need to use a nonlinear model.

You can assess the need to use a nonlinear model structure by plotting the response of
the system to an input. If you notice that the responses differ depending on the input level
or input sign, try using a nonlinear model. For example, if the output response to an input
step up is faster than the response to a step down, you might need a nonlinear model.

4-3
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Before building a nonlinear model of a system that you know is nonlinear, try
transforming the input and output variables such that the relationship between the
transformed variables is linear. For example, consider a system that has current and
voltage as inputs to an immersion heater, and the temperature of the heated liquid as an
output. The output depends on the inputs via the power of the heater, which is equal to
the product of current and voltage. Instead of building a nonlinear model for this two-
input and one-output system, you can create a new input variable by taking the product of
current and voltage and then build a linear model that describes the relationship between
power and temperature.

If you cannot determine variable transformations that yield a linear relationship between
input and output variables, you can use nonlinear structures such as Nonlinear ARX or
Hammerstein-Wiener models. For a list of supported nonlinear model structures and when
to use them, see “Nonlinear Model Structures” on page 11-7.

Black-Box Estimation Example

You can use the System Identification app or commands to estimate linear and nonlinear
models of various structures. In most cases, you choose a model structure and estimate
the model parameters using a single command.

Consider the mass-spring-damper system, described in “About Dynamic Systems and
Models”. If you do not know the equation of motion of this system, you can use a black-
box modeling approach to build a model. For example, you can estimate transfer functions
or state-space models by specifying the orders of these model structures.

A transfer function is a ratio of polynomials:

(bo +bys+ bys” +)

G(s) =
’ (1+ fls+f232 +)

For the mass-spring damper system, this transfer function is:

1

G(s) =
+cs+ k)

(ms?

which is a system with no zeros and 2 poles.

In discrete-time, the transfer function of the mass-spring-damper system can be:
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bz 1

G(z1)=
‘ (1 +flz_1 + fzz_z)

where the model orders correspond to the number of coefficients of the numerator and
the denominator (nb = 1 and nf = 2) and the input-output delay equals the lowest order
exponent of 2! in the numerator (nk = 1).

In continuous-time, you can build a linear transfer function model using the tfest
command:

m = tfest(data,2,0)

where data is your measured input-output data, represented as an iddata object and
the model order is the set of number of poles (2) and the number of zeros (0).

Similarly, you can build a discrete-time model Output Error structure using the following
command:

m = oe(data,[1 2 11)

The model orderis [nb nf nk]=[1 2 1]. Usually, you do not know the model orders in
advance. You should try several model order values until you find the orders that produce
an acceptable model.

Alternatively, you can choose a state-space structure to represent the mass-spring-damper
system and estimate the model parameters using the ssest or the n4sid command:

m = ssest(data,?2)
where order = 2 represents the number of states in the model.

In black-box modeling, you do not need the system’s equation of motion—only a guess of
the model orders.

For more information about building models, see “Steps for Using the System
Identification App” on page 21-2 and “Model Estimation Commands” on page 1-44.
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When to Refine Models

There are two situations where you can refine estimates of linear parametric models.

In the first situation, you have already estimated a parametric model and wish to update
the values of its free parameters to improve the fit to the estimation data. This is useful if
your previous estimation terminated because of search algorithm constraints such as
maximum number of iterations or function evaluations allowed reached. However, if your
model captures the essential dynamics, it is usually not necessary to continue improving
the fit—especially when the improvement is a fraction of a percent.

In the second situation, you might have constructed a model using one of the model
constructors described in “Commands for Constructing Linear Model Structures” on page
1-21. In this case, you built initial parameter guesses into the model structure and wish to
refine these parameter values.

What You Specify to Refine a Model

When you refine a model, you must provide two inputs:

¢ Parametric model

» Data — You can either use the same data set for refining the model as the one you
originally used to estimate the model, or you can use a different data set.

Refine Linear Parametric Models Using System Identification
App

The following procedure assumes that the model you want to refine is already in the
System Identification app. You might have estimated this model in the current session or

imported the model from the MATLAB workspace. For information about importing
models into the app, see “Importing Models into the App” on page 21-7.

To refine your model:

1 In the System Identification app, verify that you have the correct data set in the
Working Data area for refining your model.
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If you are using a different data set than the one you used to estimate the model,
drag the correct data set into the Working Data area. For more information about
specifying estimation data, see “Specify Estimation and Validation Data in the App”
on page 2-30.

Select Estimate > Refine Existing Models to open the Linear Model Refinement
dialog box.

A\ Linear Model Refinement o || = || E2

Model name: refinedl &

Initial model: -

* Estimation Options
Focus: Prediction -

| Display progress

| Estimate covariance

| Allow unstable models | Regularization... |
Initial states: | &uto - | Iterations Options... |
| Estirnate | | Clase | | Help |

For more information on the options in the dialog box, click Help.

Select the model you want to refine in the Initial Model drop-down list or type
the model name.

The model name must be in the Model Board of the System Identification app or a
variable in the MATLAB workspace. The model can be a state-space, polynomial,
process, transfer function or linear grey-box model. The input-output dimensions of
the model must match that of the working data.

(Optional) Modify the Estimation Options.

When you enter the model name, the estimation options in the Linear Model
Refinement dialog box override the initial model settings.
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5 Click Regularization to obtain regularized estimates of model parameters. Specify
the regularization constants in the Regularization Options dialog box. To learn more,
see “Regularized Estimates of Model Parameters” on page 1-48.

Click Estimate to refine the model.
7 Validate the new model. See “Ways to Validate Models” on page 17-3.

Refine Linear Parametric Models at the Command Line

If you are working at the command line, you can use pem to refine parametric model
estimates. You can also use the various model-structure specific estimators — ssest for
idss models, polyest for idpoly models, tfest for idtf models, and greyest for
idgrey models.

The general syntax for refining initial models is as follows:
m = pem(data,init model)
pem uses the properties of the initial model.

You can also specify the estimation options configuring the objective function and search
algorithm settings. For more information, see the reference page of the estimating
function.
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Refine ARMAX Model with Initial Parameter Guesses at
Command Line

This example shows how to refine models for which you have initial parameter guesses.

Estimate an ARMAX model for the data by initializing the A , B, and C polynomials. You
must first create a model object and set the initial parameter values in the model
properties. Next, you provide this initial model as input to armax , polyest, or pem,
which refine the initial parameter guesses using the data.

Load estimation data.

load iddata8
Define model parameters.

Leading zeros in B indicate input delay (nk), which is 1 for each input channel.

A=1[1-1.20.7];

B{1} = [0 1 0.5 0.1]; % first input
B{2} = [0 1.5 -0.5]; % second input
B{3} = [0 -0.1 0.5 -0.1]; % third input
C=[10000];

Ts = 1;

Create model object.

init _model = idpoly(A,B,C,'Ts',1);

Use polyest to update the parameters of the initial model.
model = polyest(z8,init model);

Compare the two models.

compare(z8,init model,model)
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Simulated Response Comparison
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See Also

“Input-Output Polynomial Models”
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Refine Initial ARMAX Model at Command Line

This example shows how to estimate an initial model and refine it using pem.
Load measured data.
load iddata8

Split the data into an initial estimation data set and a refinement data set.

init data = z8(1:100);
refine data = z8(101l:end);

init datais an iddata object containing the first 100 samples from z8 and
refine data is an iddata object representing the remaining data in z8.

Estimate an ARMAX model.

na = 4;
nb = [3 2 3];
nc = 2;
nk = [0 0 0];

sys = armax(init data,[na nb nc nk]);
armax uses the default algorithm properties to estimate sys.

Refine the estimated model by specifying the estimation algorithm options. Specify
stricter tolerance and increase the maximum iterations.

opt = armaxOptions;
opt.SearchOptions.Tolerance = le-5;
opt.SearchOptions.MaxIterations = 50;
refine sys = pem(refine data,sys,opt);

Compare the fit of the initial and refined models.

compare(refine data,sys,refine sys)
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Simulated Response Comparison
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refine sys provides a closer fit to the data than sys.

You can similarly use polyest or armax to refine the estimated model.

See Also

Functions
armax | pem | polyest
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Extracting Numerical Model Data

You can extract the following numerical data from linear model objects:
» Coefficients and uncertainty

For example, extract state-space matrices (A, B, C, D and K) for state-space models, or
polynomials (A, B, C, D and F) for polynomial models.

If you estimated model uncertainty data, this information is stored in the model in the
form of the parameter covariance matrix. You can fetch the covariance matrix (in its
raw or factored form) using the getcov command. The covariance matrix represents
uncertainties in parameter estimates and is used to compute:

* Confidence bounds on model output plots, Bode plots, residual plots, and pole-zero
plots

* Standard deviation in individual parameter values. For example, one standard
deviation in the estimated value of the A polynomial in an ARX model, returned by
the polydata command and displayed by the present command.

The following table summarizes the commands for extracting model coefficients and
uncertainty.

4-13



‘l Linear Model Identification

Commands for Extracting Model Coefficients and Uncertainty Data

Command

Description

Syntax

freqresp

Extracts frequency-
response data (H) and
corresponding
covariance (CovH) from
any linear identified
model.

[H,w,CovH] = freqresp(m)

polydata

Extracts polynomials
(such as A) from any
linear identified model.
The polynomial
uncertainties (such as
dA) are returned only for
idpoly models.

[A,B,C,D,F,dA,dB,dC,dD,dF] = ...
polydata(m)

idssdata

Extracts state-space
matrices (such as A)
from any linear
identified model. The
maftrix uncertainties
(such as dA) are
returned only for idss
models.

[A,B,C,D,K,X0,...
dA,dB,dC,dD,dK,dX0] = ...
idssdata(m)

tfdata

Extracts numerator and
denominator polynomials
(Num, Den) and their
uncertainties (dnum,
dden) from any linear
identified model.

[Num,Den,Ts,dNum,dDen] = ...
tfdata(m)

zpkdata

Extracts zeros, poles,
and gains (Z, P, K) and
their covariances (covZ,
covP, covK) from any
linear identified model.

[Z,P,K,Ts,covZ,covP,covK] = ...
zpkdata(m)
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Command Description Syntax

getpvec Obtain a list of model pvec = getpvec(m)
parameters and their
uncertainties.

To access parameter
attributes such as
values, free status,
bounds or labels, use
getpar.

getcov

Obtain parameter cov_data = getcov(m)
covariance information

You can also extract numerical model data by using dot notation to access model
properties. For example, m. A displays the A polynomial coefficients from model m.
Alternatively, you can use the get command, as follows: get(m, 'A").

Tip To view a list of model properties, type get (model).

Dynamic and noise models
For linear models, the general symbolic model description is given by:

y=Gu+ He

G is an operator that takes the measured inputs u to the outputs and captures the
system dynamics, also called the measured model. H is an operator that describes the
properties of the additive output disturbance and takes the hypothetical (unmeasured)
noise source inputs e to the outputs, also called the noise model. When you estimate a
noise model, the toolbox includes one noise channel e for each output in your system.

You can operate on extracted model data as you would on any other MATLAB vectors,
matrices and cell arrays. You can also pass these numerical values to Control System
Toolbox commands, for example, or Simulink blocks.
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Transforming Between Discrete-Time and Continuous-
Time Representations

Why Transform Between Continuous and Discrete Time?

Transforming between continuous-time and discrete-time representations is useful, for
example, if you have estimated a discrete-time linear model and require a continuous-time
model instead for your application.

You can use c2d and d2c to transform any linear identified model between continuous-
time and discrete-time representations. d2d is useful is you want to change the sample
time of a discrete-time model. All of these operations change the sample time, which is
called resampling the model.

These commands do not transform the estimated model uncertainty. If you want to
translate the estimated parameter covariance during the conversion, use translatecov.

Note c2d and d2d correctly approximate the transformation of the noise model only
when the sample time T is small compared to the bandwidth of the noise.

Using the c2d, d2c¢, and d2d Commands

The following table summarizes the commands for transforming between continuous-time
and discrete-time model representations.

Command Description Usage Example

c2d Converts continuous-time To transform a continuous-time model
models to discrete-time mod_c to a discrete-time form, use the
models. following command:
You cannot use c2d for mod_d = c2d(mod_c,T)

idproc models and for
idgrey models whose
FunctionTypeisnot 'cd'.
Convert these models into
idpoly, idtf, or idss
models before calling c2d.

where T is the sample time of the
discrete-time model.
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Command Description Usage Example

d2c Converts parametric To transform a discrete-time model
discrete-time models to mod_d to a continuous-time form, use
continuous-time models. the following command:
You cannot use d2c for mod_c = d2c(mod_d)

idgrey models whose
FunctionTypeisnot 'cd'.
Convert these models into
idpoly, idtf, or idss
models before calling d2c.

d2d Resample a linear discrete- |To resample a discrete-time model
time model and produce an |mod d1 to a discrete-time form with a
equivalent discrete-time new sample time Ts, use the following
model with a new sample command:
time.

mod d2 = d2d(mod d1,Ts)
You can use the resampled
model to simulate or predict
output with a specified time
interval.

The following commands compare estimated model m and its continuous-time counterpart
mc on a Bode plot:

Estimate discrete-time ARMAX model
from the data

= armax(data,[2 3 1 2]);

Convert to continuous-time form

mc = d2c(m);

% Plot bode plot for both models
bode(m,mc)

o o°

o 3

Specifying Intersample Behavior

A sampled signal is characterized only by its values at the sampling instants. However,
when you apply a continuous-time input to a continuous-time system, the output values at
the sampling instants depend on the inputs at the sampling instants and on the inputs
between these points. Thus, the InterSample data property describes how the
algorithms should handle the input between samples. For example, you can specify the
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behavior between the samples to be piece-wise constant (zero-order hold, zoh) or linearly
interpolated between the samples (first order hold, foh). The transformation formulas for
c2d and d2c are affected by the intersample behavior of the input.

By default, c2d and d2c use the intersample behavior you assigned to the estimation
data. To override this setting during transformation, add an extra argument in the syntax.
For example:

first-order hold intersample behavior

% Set
~d = c2d(mod _c,T, 'foh")

mod

Effects on the Noise Model

c2d, d2c, and d2d change the sample time of both the dynamic model and the noise
model. Resampling a model affects the variance of its noise model.

A parametric noise model is a time-series model with the following mathematical
description:

y(t) = H(q)e(t)
Ee? =)

The noise spectrum is computed by the following discrete-time equation:

@, (o) = kT‘H(ei‘”T)‘Q

where A is the variance of the white noise e(t), and AT represents the spectral density of
e(t). Resampling the noise model preserves the spectral density A T . The spectral density

AT is invariant up to the Nyquist frequency. For more information about spectrum
normalization, see “Spectrum Normalization” on page 9-13.

d2d resampling of the noise model affects simulations with noise using sim. If you
resample a model to a faster sampling rate, simulating this model results in higher noise
level. This higher noise level results from the underlying continuous-time model being
subject to continuous-time white noise disturbances, which have infinite, instantaneous
variance. In this case, the underlying continuous-time model is the unique representation
for discrete-time models. To maintain the same level of noise after interpolating the noise



See Also

signal, scale the noise spectrum by TM% , where T,,,, is the new sample time and T,
is the original sample time. before applying’sim.

See Also

More About

. “Continuous-Discrete Conversion Methods” on page 4-20
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Choosing a Conversion Method

The c2d command discretizes continuous-time models. Conversely, d2¢ converts discrete-
time models to continuous time. Both commands support several discretization and
interpolation methods, as shown in the following table.

Discretization Method

Use When

“Zero-Order Hold” on page 4-21

You want an exact discretization in the time
domain for staircase inputs.

“First-Order Hold” on page 4-22

You want an exact discretization in the time
domain for piecewise linear inputs.

“Impulse-Invariant Mapping” on page 4-23
(c2d only)

You want an exact discretization in the time
domain for impulse train inputs.

“Tustin Approximation” on page 4-24

*  You want good matching in the
frequency domain between the
continuous- and discrete-time models.

* Your model has important dynamics at
some particular frequency.

“Zero-Pole Matching Equivalents” on page
4-28

¢ You have a SISO model.

* You want good matching in the
frequency domain between the
continuous- and discrete-time models.

“Least Squares” (Control System Toolbox)
(c2d only)

¢ You have a SISO model.

* You want good matching in the
frequency domain between the
continuous- and discrete-time models.

* You want to capture fast system
dynamics but must use a larger sample
time.
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Zero-Order Hold

The Zero-Order Hold (ZOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for staircase inputs.

The following block diagram illustrates the zero-order-hold discretization Hy(z) of a
continuous-time linear model H(s).

ulk] y[k]

Hd'fﬁ]

The ZOH block generates the continuous-time input signal u(t) by holding each sample
value u(k) constant over one sample period:

u(t)=ulk], kT, <t <(k+1)T,

The signal u(t) is the input to the continuous system H(s). The output y[k] results from
sampling y(t) every T, seconds.

Conversely, given a discrete system H(z), d2c produces a continuous system H(s). The
ZOH discretization of H(s) coincides with Hy(2).

The ZOH discrete-to-continuous conversion has the following limitations:

* d2c cannot convert LTI models with poles at z = 0.

» For discrete-time LTI models having negative real poles, ZOH d2c conversion
produces a continuous system with higher order. The model order increases because a
negative real pole in the 2z domain maps to a pure imaginary value in the s domain.
Such mapping results in a continuous-time model with complex data. To avoid this
issue, the software instead introduces a conjugate pair of complex poles in the s
domain.
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ZOH Method for Systems with Time Delays

You can use the ZOH method to discretize SISO or MIMO continuous-time models with
time delays. The ZOH method yields an exact discretization for systems with input delays,
output delays, or transfer delays.

For systems with internal delays (delays in feedback loops), the ZOH method results in
approximate discretizations. The following figure illustrates a system with an internal
delay.

—- L f—

H(s)

e'TS

For such systems, c2d performs the following actions to compute an approximate ZOH
discretization:

1
Decomposes the delay tas t=kT,+p with 0<p<T,.

2 Absorbs the fractional delay p into H(s).

3  Discretizes H(s) to H(2).

Represents the integer portion of the delay kT; as an internal discrete-time delay z*.
The final discretized model appears in the following figure:

————— —— —

—— ———— — —

First-Order Hold

The First-Order Hold (FOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for piecewise linear inputs.
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FOH differs from ZOH by the underlying hold mechanism. To turn the input samples u[k]
into a continuous input u(t), FOH uses linear interpolation between samples:

t kT,
T

S

u(t)=ulk]+ (ulk+1]-ulk]), kT, <t<(k+1)T,

In general, this method is more accurate than ZOH for systems driven by smooth inputs.

This FOH method differs from standard causal FOH and is more appropriately called
triangle approximation (see [2], p. 228). The method is also known as ramp-invariant
approximation.

FOH Method for Systems with Time Delays

You can use the FOH method to discretize SISO or MIMO continuous-time models with
time delays. The FOH method handles time delays in the same way as the ZOH method.
See “ZOH Method for Systems with Time Delays” on page 4-22.

Impulse-Invariant Mapping

The impulse-invariant mapping produces a discrete-time model with the same impulse
response as the continuous time system. For example, compare the impulse response of a
first-order continuous system with the impulse-invariant discretization:

G = tf(1,[1,1]);

Gdl = c2d(G,0.01, 'impulse');
impulse(G,Gdl)
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Impulze Responze
1 T T T T T T

Amplitude

0 1 2 3 4 5 G v
Time [ zecandsz)

The impulse response plot shows that the impulse responses of the continuous and
discretized systems match.

Impulse-Invariant Mapping for Systems with Time Delays

You can use impulse-invariant mapping to discretize SISO or MIMO continuous-time
models with time delays, except that the method does not support ss models with
internal delays. For supported models, impulse-invariant mapping yields an exact
discretization of the time delay.

Tustin Approximation

The Tustin or bilinear approximation yields the best frequency-domain match between the
continuous-time and discretized systems. This method relates the s-domain and z-domain
transfer functions using the approximation:
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s 1+sTy /2

T TiLT e

In c2d conversions, the discretization H,(z) of a continuous transfer function H(s) is:

32—1
T, z+1

Hy(z)=H(s), s’ =

Similarly, the d2c conversion relies on the inverse correspondence

, , 1+8T,/2
H(s)=Hgy (%), Z_l—sTs/Z

When you convert a state-space model using the Tustin method, the states are not
preserved. The state transformation depends upon the state-space matrices and whether
the system has time delays. For example, for an explicit (E = I) continuous-time model
with no time delays, the state vector w[k] of the discretized model is related to the
continuous-time state vector x(t) by:

w[kT,]= (1— A%]x(kTs)—%Bu(kTs) = x(kTs)—%(Ax(kTs)+Bu(kTs)).
T, is the sample time of the discrete-time model. A and B are state-space matrices of the
continuous-time model.

Tustin Approximation with Frequency Prewarping

If your system has important dynamics at a particular frequency that you want the
transformation to preserve, you can use the Tustin method with frequency prewarping.
This method ensures a match between the continuous- and discrete-time responses at the
prewarp frequency.

The Tustin approximation with frequency prewarping uses the following transformation of
variables:

_ ) z-1
tan (0T, /2) z+1

H;(z)=H(s'), s’
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This change of variable ensures the matching of the continuous- and discrete-time
frequency responses at the prewarp frequency w, because of the following
correspondence:

H (jo)=Hq(e™")

Tustin Approximation for Systems with Time Delays

You can use the Tustin approximation to discretize SISO or MIMO continuous-time models
with time delays.

By default, the Tustin method rounds any time delay to the nearest multiple of the sample
time. Therefore, for any time delay tau, the integer portion of the delay, k*Ts, maps to a
delay of k sampling periods in the discretized model. This approach ignores the residual
fractional delay, tau - k*Ts.

You can to approximate the fractional portion of the delay by a discrete all-pass filter
(Thiran filter) of specified order. To do so, use the FractDelayApproxOrder option of
c2dOptions.

To understand how the Tustin method handles systems with time delays, consider the

following SISO state-space model G(s). The model has input delay T;, output delay 7,, and
internal delay T.

(DI
Ky
W
A
CDI
a
@)
5]

Y

The following figure shows the general result of discretizing G(s) using the Tustin
method.
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By default, c2d converts the time delays to pure integer time delays. The c2d command
computes the integer delays by rounding each time delay to the nearest multiple of the

sample time T. Thus, in the default case, m; = round(t;/T,), m, = round(t,/T), and m =
round(t/Ty).. Also in this case, F(z) = F,(2) = F(z) = 1.

If you set FractDelayApprox0Order to a non-zero value, c2d approximates the
fractional portion of the time delays by Thiran filters F;(z), F,(z), and F(z).

The Thiran filters add additional states to the model. The maximum number of additional
states for each delay is FractDelayApproxOrder.

For example, for the input delay T;, the order of the Thiran filter F;(2) is:
order(Fiz)) = max(ceil(t/T,), FractDelayApprox0rder).

If ceil(ty/T,) < FractDelayApproxOrder, the Thiran filter F;(z) approximates the entire
input delay 7;. If ceil(t,/T;) > FractDelayApprox0Order, the Thiran filter only
approximates a portion of the input delay. In that case, c2d represents the remainder of
the input delay as a chain of unit delays 2™, where

m; = ceil(ty/T,) - FractDelayApproxOrder

c2d uses Thiran filters and FractDelayApprox0rder in a similar way to approximate
the output delay 7, and the internal delay T.

When you discretizet f and zpk models using the Tustin method, c2d first aggregates all
input, output, and transfer delays into a single transfer delay tor for each channel. c2d
then approximates Trgr as a Thiran filter and a chain of unit delays in the same way as
described for each of the time delays in ss models.

4-27



4 Linear Model Identification

4-28

For more information about Thiran filters, see the thiran reference page and [4].

Zero-Pole Matching Equivalents

This method of conversion, which computes zero-pole matching equivalents, applies only
to SISO systems. The continuous and discretized systems have matching DC gains. Their
poles and zeros are related by the transformation:

where:

* 2 is the ith pole or zero of the discrete-time system.
* s;is the ith pole or zero of the continuous-time system.
* T,is the sample time.

See [2] for more information.
Zero-Pole Matching for Systems with Time Delays

You can use zero-pole matching to discretize SISO continuous-time models with time
delay, except that the method does not support ss models with internal delays. The zero-
pole matching method handles time delays in the same way as the Tustin approximation.
See “Tustin Approximation for Systems with Time Delays” on page 4-26.

Least Squares

The least squares method minimizes the error between the frequency responses of the
continuous-time and discrete-time systems up to the Nyquist frequency using a vector-
fitting optimization approach. This method is useful when you want to capture fast system
dynamics but must use a larger sample time, for example, when computational resources
are limited.

This method is supported only by the c2d function and only for SISO systems.

As with Tustin approximation and zero-pole matching, the least squares method provides
a good match between the frequency responses of the original continuous-time system
and the converted discrete-time system. However, when using the least squares method
with:



See Also

* The same sample time as Tustin approximation or zero-pole matching, you get a
smaller difference between the continuous-time and discrete-time frequency
responses.

* Alower sample time than what you would use with Tustin approximation or zero-pole
matching, you can still get a result that meets your requirements. Doing so is useful if
computational resources are limited, since the slower sample time means that the
processor must do less work.
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The intersample behavior of the input signals influences the estimation, simulation and
prediction of continuous-time models. A sampled signal is characterized only by its values
at the sampling instants. However, when you apply a continuous-time input to a
continuous-time system, the output values at the sampling instants depend on the inputs
at the sampling instants and on the inputs between these points.

The iddata and idfrd objects have an InterSample property which stores how the
input behaves between the sampling instants. You can specify the behavior between the
samples to be piecewise constant (zero-order hold), linearly interpolated between the
samples (first-order hold) or band-limited. A band-limited intersample behavior of the
input signal means:

* Afiltered input signal (an input of finite bandwidth) was used to excite the system
dynamics.

* The input was measured using a sampling device (A/D converter with antialiasing) that
reported it to be band-limited even though the true input entering the system was
piecewise constant or linear. In this case, the sampling devices can be assumed to be a
part of the system being modeled.

When the input signal is a band-limited discrete-time frequency-domain data (iddata
with domain = 'frequency' or idfrd with sample time Ts#0), the model estimation is
performed by treating the data as continuous-time data (Ts = 0). For more information,
see Pintelon, R. and J. Schoukens, System Identification. A Frequency Domain Approach,
section 10.2, pp-352-356,Wiley-IEEE Press, New York, 2001.

The intersample behavior of the input data also affects the results of simulation and
prediction of continuous-time models. sim and predict commands use the
InterSample property to choose the right algorithm for computing model response.

The following example simulates a system using first-order hold ( foh ) intersample
behavior for input signal.

sys = idtf([-1 -2],[1 2 1 0.5]);
rng('default"')

u = idinput([1060 1 5], 'sine',[]1,[],[5 10 11);
Ts = 2;

y = lsim(sys,u,(0:Ts:999)', 'foh");
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Create an iddata object for the simulated input-output data.
data = iddata(y,u,Ts);

The default intersample behavior is zero-order hold ( zoh ).
data.InterSample

ans =
'zoh'

Estimate a transfer function using this data.

p 3; % number of poles

z 1; % number of zeros

opt = tfestOptions('InitializeMethod', 'all','Display','on');
opt.SearchOptions.MaxIterations = 100;

modelZ0OH = tfest(data,np,nz,opt)

n
n

modelZOH =

From input "ul" to output "yl":
-217.2 s - 391.6

s”3 + 354.4 s™2 + 140.2 s + 112.4
Continuous-time identified transfer function.

Parameterization:
Number of poles: 3 Number of zeros: 1
Number of free coefficients: 5
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using TFEST on time domain data "data".

Fit to estimation data: 81.38%
FPE: 0.1146, MSE: 0.111

The model gives about 80% fit to data. The sample time of the data is large enough that
intersample inaccuracy (using zoh rather than foh ) leads to significant modeling errors.

Re-estimate the model using foh intersample behavior.

data.InterSample = 'foh';
modelFOH = tfest(data,np,nz,opt)
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modelFOH =

From input "ul" to output "yl":
-1.197 s - 0.06843

s™3 + 0.4824 s™2 + 0.3258 s + 0.01723
Continuous-time identified transfer function.

Parameterization:
Number of poles: 3 Number of zeros: 1
Number of free coefficients: 5
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using TFEST on time domain data "data".
Fit to estimation data: 97.7%

FPE: 0.001748, MSE: 0.001693

modelFOH is able to retrieve the original system correctly.
Compare the model outputs with data.

compare(data,modelZ0H, modelFOH)
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Simulated Response Comparison

data (y1)
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modelZO0H is compared to data whose intersample behavior is foh. Therefore, its fit

decreases to around 70%.

See Also
iddata | idfrd

More About

“Frequency Domain Identification: Estimating Models Using Frequency Domain

Data” on page 4-64
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Transforming Between Linear Model Representations
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You can transform linear models between state-space and polynomial forms. You can also
transform between frequency-response, state-space, and polynomial forms.

If you used the System Identification app to estimate models, you must export the models
to the MATLAB workspace before converting models.

For detailed information about each command in the following table, see the
corresponding reference page.



Transforming Between Linear Model Representations

Commands for Transforming Model Representations

Command Model Type to Convert Usage Example
idfrd Converts any linear model to an | To get frequency response of m at default
idfrd model. frequencies, use the following command:
If you have the Control System [m_f = idfrd(m)
Toolbox product, this command )
converts any numeric LTI model To get frequency response at specific
— frequencies, use the following command:
m f = idfrd(m,f)
To get frequency response for a submodel
from input 2 to output 3, use the following
command:
m f = idfrd(m(2,3))
idpoly Converts any linear identified |To get an ARMAX model from state-space
model, except idfrd, to model m_ss, use the following command:
ARMAX representation if the .
original model has a nontrivial |[M_P = idpoly(m_ss)
noise component, or OE if the
noise model is trivial (H = 1).
If you have the Control System
Toolbox product, this command
converts any numeric LTI
model, except frd.
idss Converts any linear identified |To get a state-space model from an ARX

model, except idfrd, to state-
space representation.

If you have the Control System
Toolbox product, this command
converts any numeric LTI
model, except frd.

model m_arx, use the following command:

m_ss = idss(m_arx)
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Command

Model Type to Convert

Usage Example

idtf

Converts any linear identified
model, except idfrd, to
transfer function
representation. The noise
component of the original
model is lost since an idtf
object has no elements to model
noise dynamics.

If you have the Control System
Toolbox product, this command
converts any numeric LTI
model, except frd.

To get a transfer function from a state-
space model m_ss, use the following
command:

m tf = idtf(m_ss)

Note Most transformations among identified models (among idss, idtf, idpoly)
causes the parameter covariance information to be lost, with few exceptions:

Conversion of an idtf model to an idpoly model.
Conversion of an idgrey model to an idss model.

If you want to translate the estimated parameter covariance during conversion, use
translatecov.

4-36




Subreferencing Models

Subreferencing Models

What Is Subreferencing?

You can use subreferencing to create models with subsets of inputs and outputs from
existing multivariable models. Subreferencing is also useful when you want to generate
model plots for only certain channels, such as when you are exploring multiple-output
models for input channels that have minimal effect on the output.

The toolbox supports subreferencing operations for idtf, idpoly, idproc, idss, and
idfrd model objects.

Subreferencing is not supported for idgrey models. If you want to analyze the sub-
model, convert it into an idss model first, and then subreference the I/Os of the idss
model. If you want a grey-box representation of a subset of I/Os, create a new idgrey
model that uses an ODE function returning the desired I/O dynamics.

In addition to subreferencing the model for specific combinations of measured inputs and
output, you can subreference dynamic and noise models individually.

Limitation on Supported Models

Subreferencing nonlinear models is not supported.

Subreferencing Specific Measured Channels

Use the following general syntax to subreference specific input and output channels in
models:

model (outputs,inputs)
In this syntax, outputs and inputs specify channel indexes or channel names.

To select all output or all input channels, use a colon (:). To select no channels, specify an
empty matrix ([ ]). If you need to reference several channel names, use a cell array of
character vectors.

For example, to create a new model m2 from m from inputs 1 (' power') and 4 (' speed')
to output number 3 (' position'), use either of the following equivalent commands:
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m2 m('position',{'power', 'speed'})
or
m2 = m(3,[1 4])

For a single-output model, you can use the following syntax to subreference specific input
channels without ambiguity:

m3 = m(inputs)

Similarly, for a single-input model, you can use the following syntax to subreference
specific output channels:

m4 = m(outputs)

Separation of Measured and Noise Components of Models
For linear models, the general symbolic model description is given by:

y=Gu+ He

G is an operator that takes the measured inputs u to the outputs and captures the system
dynamics.

H is an operator that describes the properties of the additive output disturbance and
takes the hypothetical (unmeasured) noise source inputs to the outputs. H represents the
noise model. When you specify to estimate a noise model, the resulting model include one
noise channel e at the input for each output in your system.

Thus, linear, parametric models represent input-output relationships for two kinds of

input channels: measured inputs and (unmeasured) noise inputs. For example, consider
the ARX model given by one of the following equations:

A(@)y(t) = B(Q)u(t —nk)+e(t)

or

¥ =B39D )+ L e

Alg) Alg)
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In this case, the dynamic model is the relationship between the measured input u and
output y, G = B(%( o - The noise model is the contribution of the input noise e to the

output y, given by H = %( 0"

Suppose that the model m contains both a dynamic model G and a noise model H. To
create a new model that only has G and no noise contribution, simply set its
NoiseVariance property value to zero value.

To create a new model by subreferencing H due to unmeasured inputs, use the following
syntax:

mH=m(:,[])

This operation creates a time-series model from m by ignoring the measured input.

The covariance matrix of e is given by the model property NoiseVariance, which is the
matrix A :

A=LLT
The covariance matrix of e is related to v, as follows:
e=Lv

where v is white noise with an identity covariance matrix representing independent noise
sources with unit variances.

See Also

More About

. “Treating Noise Channels as Measured Inputs” on page 4-40
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Treating Noise Channels as Measured Inputs
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A linear models is given by:

y=Gu+ He

Where G is an operator that takes the measured inputs u to the outputs and captures the
system dynamics. H is an operator that describes the properties of the additive output
disturbance and takes the hypothetical (unmeasured) noise source inputs to the outputs.
H represents the noise model. When you specify to estimate a noise model, the resulting
model include one noise channel e at the input for each output in your system.

To study noise contributions in more detail, it might be useful to convert the noise
channels to measured channels using noisecnv:

m GH = noisecnv(m)

This operation creates a model m_GH that represents both measured inputs u and noise
inputs e, treating both sources as measured signals. m_GH is a model from u and e to y,
describing the transfer functions G and H.

Converting noise channels to measured inputs loses information about the variance of the
innovations e. For example, step response due to the noise channels does not take into
consideration the magnitude of the noise contributions. To include this variance
information, normalize e such that v becomes white noise with an identity covariance
matrix, where

e=Lv

To normalize e, use the following command:
m_GH = noisecnv(m, 'Norm')

This command creates a model where u and v are treated as measured signals, as follows:

y(®) = Gu(t) + HLo =[G HL]m

For example, the scaling by L causes the step responses from v to y to reflect the size of
the disturbance influence.
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The converted noise sources are named in a way that relates the noise channel to the
corresponding output. Unnormalized noise sources e are assigned names such as
'e@yl', 'e@y?2', ..., 'e@yn', where 'e@yn' refers to the noise input associated with the
output yn. Similarly, normalized noise sources v, are named 'v@yl', 'v@y2', ...,
‘v@yn'.

If you want to create a model that has only the noise channels of an identified model as its
measured inputs, use the noise2meas command. It results in a model with y(t) = He or
y(t) = HLv, where e or v is treated as a measured input.

Note When you plot models in the app that include noise sources, you can select to view
the response of the noise model corresponding to specific outputs. For more information,
see “Selecting Measured and Noise Channels in Plots” on page 21-13.

See Also

noise2meas | noisecnv

More About
. “Subreferencing Models” on page 4-37
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About Concatenating Models

You can perform horizontal and vertical concatenation of linear model objects to grow the
number of inputs or outputs in the model.

When you concatenate identified models, such as idtf, idpoly, idproc, and idss
model objects, the resulting model combines the parameters of the individual models.
However, the estimated parameter covariance is lost. If you want to translate the
covariance information during concatenation, use translatecov.

Concatenation is not supported for idgrey models; convert them to idss models first if
you want to perform concatenation.

You can also concatenate nonparametric models, which contain the estimated impulse-
response (idtf object) and frequency-response (idfrd object) of a system.

In case of idfrd models, concatenation combines information in the ResponseData
properties of the individual model objects. ResponseData is an ny-by-nu-by-nf array
that stores the response of the system, where ny is the number of output channels, nu is
the number of input channels, and nf is the number of frequency values. The (j,1i,:)
vector of the resulting response data represents the frequency response from the ith
input to the jth output at all frequencies.

Limitation on Supported Models

Concatenation is supported for linear models only.

Horizontal Concatenation of Model Objects

Horizontal concatenation of model objects requires that they have the same outputs. If
the output channel names are different and their dimensions are the same, the
concatenation operation resets the output names to their default values.

The following syntax creates a new model object m that contains the horizontal
concatenation of ml,m2,...,mN:

m= [ml,m2,...,mN]
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m takes all of the inputs of m1,m2, ... ,mN to the same outputs as in the original models.
The following diagram is a graphical representation of horizontal concatenation of the
models.

ul— — y1 — y1
Model 1 u3 — Model 2
u2— L y2 L y2
Combined u2: Horizonal Concatenation [ Y!  Same
Inputs u of Model 1 and Model2 | _\»  Outputs
u3—

Vertical Concatenation of Model Objects

Vertical concatenation combines output channels of specified models. Vertical
concatenation of model objects requires that they have the same inputs. If the input
channel names are different and their dimensions are the same, the concatenation
operation resets the input channel names to their default (' ') values.

The following syntax creates a new model object m that contains the vertical
concatenation of ml,m2,...,mN:

m= [ml;m2;... ;mN]

m takes the same inputs in the original models to all of the output of m1,m2,...,mN. The
following diagram is a graphical representation of vertical concatenation of frequency-
response data.
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ul— — y1 ul—
Model 1 Model 2 — y3
u2— — y2 u2 —
1 . . — y1
Same Y'™ Vertical Concatenation o> Combined
Inputs ~ ,__| of Model 1and Model2 [ y3 Outputs
— Y

Concatenating Noise Spectrum Data of idfrd Objects

When idfrd models are obtained as a result of estimation (such as using spa), the
SpectrumData property is not empty and contains the power spectra and cross spectra
of the output noise in the system. For each output channel, this toolbox estimates one
noise channel to explain the difference between the output of the model and the
measured output.

When the SpectrumData property of individual idf rd objects is not empty, horizontal
and vertical concatenation handle SpectrumData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the
SpectrumData of individual idfrd objects, and the resulting SpectrumData property is
empty. An empty property results because each idfrd object has its own set of noise
channels, where the number of noise channels equals the number of outputs. When the
resulting 1dfrd object contains the same output channels as each of the individual idfrd
objects, it cannot accommodate the noise data from all the idfrd objects.

In case of vertical concatenation, this toolbox concatenates individual noise models
diagonally. The following shows that m.SpectrumData is a block diagonal matrix of the
power spectra and cross spectra of the output noise in the system:

ml.s 0
m.s )

O mN s

s in m. s is the abbreviation for the SpectrumData property name.
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See Also

If you have the Control System Toolbox product, see “Combining Model Objects” on page
19-5 about additional functionality for combining models.
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Merging Models
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You can merge models of the same structure to obtain a single model with parameters
that are statistically weighed means of the parameters of the individual models. When
computing the merged model, the covariance matrices of the individual models determine
the weights of the parameters.

You can perform the merge operation for the idtf, idgrey, idpoly, idproc, and idss
model objects.

Note Each merge operation merges the same type of model object.

Merging models is an alternative to merging data sets into a single multiexperiment data
set, and then estimating a model for the merged data. Whereas merging data sets
assumes that the signal-to-noise ratios are about the same in the two experiments,
merging models allows greater variations in model uncertainty, which might result from
greater disturbances in an experiment.

When the experimental conditions are about the same, merge the data instead of models.
This approach is more efficient and typically involves better-conditioned calculations. For
more information about merging data sets into a multiexperiment data set, see “Create
Multiexperiment Data at the Command Line” on page 2-60.

For more information about merging models, see the merge reference page.
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Determining Model Order and Delay

Estimation requires you to specify the model order and delay. Many times, these values
are not known. You can determine the model order and delay in one of the following ways:

Guess their values by visually inspecting the data or based on the prior knowledge of
the system.

Estimate delay as a part of idproc or idtf model estimation. These models treat
delay as an estimable parameter and you can determine their values by the estimation
commands procest and tfest, respectively. However automatic estimation of delays
can cause errors. Therefore, it is recommended that you analyze the data for delays in
advance.

To estimate delays, you can also use one of the following tools:

Estimate delay using delayest. The choice of the order of the underlying ARX
model and the lower/upper bound on the value of the delay to be estimated
influence the value returned by delayest.

Compute impulse response using impulseest. Plot the impulse response with a
confidence interval of sufficient standard deviations (usually 3). The delay is
indicated by the number of response samples that are inside the statistically zero
region (marked by the confidence bound) before the response goes outside that
region.

Select the model order in n4sid by specifying the model order as a vector.

Choose the model order of an ARX model using arxstruc or ivstruc and
selstruc. These command select the number of poles, zeros and delay.

See “Model Structure Selection: Determining Model Order and Input Delay” on page
4-48 for an example of using these tools.

4-47



4 Linear Model Identification

Model Structure Selection: Determining Model Order
and Input Delay
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This example shows some methods for choosing and configuring the model structure.
Estimation of a model using measurement data requires selection of a model structure
(such as state-space or transfer function) and its order (e.g., number of poles and zeros)
in advance. This choice is influenced by prior knowledge about the system being modeled,
but can also be motivated by an analysis of data itself. This example describes some
options for determining model orders and input delay.

Introduction

Choosing a model structure is usually the first step towards its estimation. There are
various possibilities for structure - state-space, transfer functions and polynomial forms
such as ARX, ARMAX, OE, BJ etc. If you do not have detailed prior knowledge of your
system, such as its noise characteristics and indication of feedback, the choice of a
reasonable structure may not be obvious. Also for a given choice of structure, the order of
the model needs to be specified before the corresponding parameters are estimated.
System Identification Toolbox™ offers some tools to assist in the task of model order
selection.

The choice of a model order is also influenced by the amount of delay. A good idea of the
input delay simplifies the task of figuring out the orders of other model coefficients.
Discussed below are some options for input delay determination and model structure and
order selection.

Choosing and Preparing Example Data for Analysis

This example uses the hair dryer data, also used by iddemo1 ("Estimating Simple Models
from Real Laboratory Process Data"). The process consists of air being fanned through a
tube. The air is heated at the inlet of the tube, and the input is the voltage applied to the
heater. The output is the temperature at the outlet of the tube.

Let us begin by loading the measurement data and doing some basic preprocessing:
load dry2

Form a data set for estimation of the first half, and a reference set for validation purposes
of the second half:

ze
zr

dry2(1:500);
dry2(501:1000);
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Detrend each of the sets:

ze

detrend(ze);
zr

detrend(zr);

Let us look at a portion of the estimation data:

plot(ze(200:350))

Input-Output Data

Temperature
10 )

Amplitude

Voltage
2 T T g

1H

16 18 20 22 24 26

28 30
Time (seconds)

Estimating Input Delay

There are various options available for determining the time delay from input to output.
These are:
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» Using the DELAYEST utility.
* Using a non-parametric estimate of the impulse response, using IMPULSEEST.

» Using the state-space model estimator N4SID with a number of different orders and
finding the delay of the 'best' one.

Using delayest:

Let us discuss the above options in detail. Function delayest returns an estimate of the
delay for a given choice of orders of numerator and denominator polynomials. This
function evaluates an ARX structure:

y(t) + al*y(t-1) + ... + ana*y(t-na) = bl*u(t-nk) + ...+bnb*u(t-nb-
nk+1)

with various delays and chooses the delay value that seems to return the best fit. In this
process, chosen values of na and nb are used.

delay = delayest(ze) % na = nb = 2 is used, by default

delay

3

A value of 3 is returned by default. But this value may change a bit if the assumed orders
of numerator and denominator polynomials (2 here) is changed. For example:

delay = delayest(ze,5,4)

delay

2

returns a value of 2. To gain insight into how delayest works, let us evaluate the loss
function for various choices of delays explicitly. We select a second order model
(na=nb=2), which is the default for delayest, and try out every time delay between 1
and 10. The loss function for the different models are computed using the validation data
set:

V = arxstruc(ze,zr,struc(2,2,1:10));
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We now select that delay that gives the best fit for the validation data:
[nn,Vm] = selstruc(V,0); % nn is given as [na nb nk]
The chosen structure was:

nn

nn

which show the best model has a delay of nn(3) = 3.

We can also check how the fit depends on the delay. This information is returned in the
second output Vm. The logarithms of a quadratic loss function are given as the first row,
while the indexes na, nb and nk are given as a column below the corresponding loss
function.

Vm

Vm =
Columns 1 through 7
-0.1480 -1.3275 -1.8747 -0.2403 -0.0056 0.0736 0.1763
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

Columns 8 through 10

0.1906 0.1573 0.1474
2.0000 2.0000 2.0000
2.0000 2.0000 2.0000
8.0000 9.0000 10.0000

The choice of 3 delays is thus rather clear, since the corresponding
loss is minimum.

Using impulse
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To gain a better insight into the dynamics, let us compute the impulse response of the
system. We will use the function impulseest to compute a non-parametric impulse
response model. We plot this response with a confidence interval represented by 3
standard deviations.

FIRModel = impulseest(ze);
clf

h = impulseplot(FIRModel);
showConfidence(h,3)

Impulse Response
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18 T T

0]

6r ol y
14 [ @ 1
12 [ 1

i o
Q@ 10 T

E o
g ! '
<T 5 | o _
4 - -
2 - -
¥ Tﬁo
0 ] TR 00 0 OB B0 00 0 O )
0 0.5 1 1.5 2 25 3 35 4
Time (seconds)

The filled light-blue region shows the confidence interval for the insignificant response in
this estimation. There is a clear indication that the impulse response "takes off" (leaves
the uncertainty region) after 3 samples. This points to a delay of three intervals.
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Using n4sid based state-space evaluation

We may also estimate a family of parametric models to find the delay corresponding to the
"best" model. In case of state-space models, a range of orders may be evaluated
simultaneously and the best order picked from a Hankel Singular Value plot. Execute the
following command to invoke n4sid in an interactive mode:

m = n4sid(ze,1:15); % All orders between 1 and 15.

Model Order Selection E'@
E T T T T T T T
Red: Default Choice (3)
5 4
w 4F s
ak]
=
p
e .
Ly
=
by ] ——
=
m 2k .
=
= —
]
= 1k 4
| H H H H HHHH |
) L[]
a 2 4 B g 1a 12 14 16
Model Order
Model Order: |3 - Apphy

The plot indicates an order of 3 as the best value. For this choice, let us compute the
impulse response of the model m:
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m = n4sid(ze, 3);
showConfidence(impulseplot(m),3)

Impulse Response
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As with non-parametric impulse response, there is a clear indication that the delay from
input to output is of three samples.

Choosing a Reasonable Model Structure

In lack of any prior knowledge, it is advisable to try out various available choices and use
the one that seems to work the best. State-space models may be a good starting point
since only the number of states needs to be specified in order to estimate a model. Also, a
range of orders may be evaluated quickly, using n4sid, for determining the best order, as
described in the next section. For polynomial models, a similar advantage is realized

4-54



Model Structure Selection: Determining Model Order and Input Delay

using the arx estimator. Output-error (OE) models may also be good choice for a starting
polynomial model because of their simplicity.

Determining Model Order

Once you have decided upon a model structure to use, the next task is to determine the
order(s). In general, the aim should be to not use a model order higher than necessary.
This can be determined by analyzing the improvement in %fit as a function of model
order. When doing this, it is advisable to use a separate, independent dataset for
validation. Choosing an independent validation data set (zr in our example) would
improve the detection of over-fitting.

In addition to a progressive analysis of multiple model orders, explicit determination of
optimum orders can be performed for some model structures. Functions arxstruc and
selstruc may be used for choosing the best order for ARX models. For our example, let
us check the fit for all 100 combinations of up to 10 b-parameters and up to 10 a-
parameters, all with a delay value of 3:

V = arxstruc(ze,zr,struc(1:10,1:10,3));
The best fit for the validation data set is obtained for:

nn = selstruc(V,0)

nn

10 4 3

Let us check how much the fit is improved for the higher order models. For this, we use
the function selstruc with only one input. In this case, a plot showing the fit as a
function of the number of parameters used is generated. The user is also prompted to
enter the number of parameters. The routine then selects a structure with these many
parameters that gives the best fit. Note that several different model structures use the
same number of parameters. Execute the following command to choose a model order
interactively:

nns = selstruc(V) %invoke selstruc in an interactive mode
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-

ARX Model Structure Selection E@
File Opticns  Style  Help
Maodel Misfitvs number of par's
25 T T r .
Green: MDL Choice Mumber of pars
Blue: AIC Choice
F 2t i 14
= Red: Best Fit Misfit= 0.19407
ak]
E 15 na= 10
= 15} _
=
- nb= 4
E
= 1 . nk= 3
=
E
2 | Select |
=
3 05} i
| Close |
00 L rep |
0
0 5 10 15 20 25
Mumber of par's
Inspect models by clicking bars or press SELECT.

The best fit is thus obtained for nn = [4 4 3], while we see that the improved fit compared
to nn = [2 2 3] is rather marginal.

We may also approach this problem from the direction of reducing a higher order model.

If the order is higher than necessary, then the extra parameters are basically used to
"model" the measurement noise. These "extra" poles are estimated with a lower level of
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accuracy (large confidence interval). If their are cancelled by a zero located nearby, then
it is an indication that this pole-zero pair may not be required to capture the essential
dynamics of the system.

For our example, let us compute a 4th order model:
th4 = arx(ze,[4 4 3]);

Let us check the pole-zero configuration for this model. We can also include confidence
regions for the poles and zeros corresponding to 3 standard deviations, in order to
determine how accurately they are estimated and also how close the poles and zeros are
to each other.

h = iopzplot(th4);
showConfidence(h,3)
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Pole-Zero Map
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The confidence intervals for the two complex-conjugate poles and zeros overlap,
indicating they are likely to cancel each other. Hence, a second order model might be
adequate. Based on this evidence, let us compute a 2nd order ARX model:

th2 = arx(ze,[2 2 3]);

We can test how well this model (th2) is capable of reproducing the validation data set.
To compare the simulated output from the two models with the actual output (plotting the
mid 200 data points) we use the compare utility:

compare(zr(150:350),th2,th4)
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Simulated Response Comparison
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The plot indicates that there was no significant loss of accuracy in reducing the order
from 4 to 2. We can also check the residuals ("leftovers") of this model, i.e., what is left
unexplained by the model.

e = resid(ze,th2);
plot(e(:,1,[])), title('The residuals"')
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The residuals
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We see that the residuals are quite small compared to the signal level of the output, that
they are reasonably well (although not perfectly) uncorrelated with the input and among
themselves. We can thus be (provisionally) satisfied with the model th2.

Let us now check if we can determine the model order for a state-space structure. As
before, we know the delay is 3 samples. We can try all orders from 1 to 15 with a total lag
of 3 samples in n4sid. Execute the following command to try various orders and choose

one interactively.

ms = n4sid(ze,[1:15], 'InputDelay',?2); %n4sid estimation with variable orders
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The "InputDelay" was set to 2 because by default n4sid estimates a model with no
feedthrough (which accounts for one sample lag between input and output). The default
order, indicated in the figure above, is 3, that is in good agreement with our earlier
findings. Finally, we compare how the state-space model ms and the ARX model th2
compare in reproducing the measured output of the validation data:

ms = ndsid(ze,3, 'InputDelay',2);
compare(zr,ms,th2)
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Simulated Response Comparison
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The comparison plot indicates that the two models are practically identical.

Conclusions

This example described some options for choosing a reasonable model order. Determining
delay in advance can simplify the task of choosing orders. With ARX and state-space
structures, we have some special tools (arx and n4sid estimators) for automatically
evaluating a whole set of model orders, and choosing the best one among them. The
information revealed by this exercise (using utilities such as arxstruc, selstruc,
n4sid and delayest) could be used as a starting point when estimating models of other

structures, such as B] and ARMAX.
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Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.
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Frequency Domain ldentification: Estimating Models
Using Frequency Domain Data

4-64

This example shows how to estimate models using frequency domain data. The estimation
and validation of models using frequency domain data work the same way as they do with
time domain data. This provides a great amount of flexibility in estimation and analysis of
models using time and frequency domain as well as spectral (FRF) data. You may
simultaneously estimate models using data in both domains, compare and combine these
models. A model estimated using time domain data may be validated using spectral data
or vice-versa.

Frequency domain data cannot be used for estimation or validation of nonlinear models.

Introduction

Frequency domain experimental data are common in many applications. It could be that
the data was collected as frequency response data (frequency functions: FRF) from the
process using a frequency analyzer. It could also be that it is more practical to work with
the input's and output's Fourier transforms (FFT of time-domain data), for example to
handle periodic or band-limited data. (A band-limited continuous time signal has no
frequency components above the Nyquist frequency). In System Identification Toolbox,
frequency domain I/O data are represented the same way as time-domain data, i.e., using
iddata objects. The 'Domain' property of the object must be set to 'Frequency'.
Frequency response data are represented as complex vectors or as magnitude/phase
vectors as a function of frequency. IDFRD objects in the toolbox are used to encapsulate
FRFs, where a user specifies the complex response data and a frequency vector. Such
IDDATA or IDFRD objects (and also FRD objects of Control System Toolbox) may be used
seamlessly with any estimation routine (such as procest, tfest etc).

Inspecting Frequency Domain Data

Let us begin by loading some frequency domain data:

load demofr

This MAT-file contains frequency response data at frequencies W, with the amplitude
response AMP and the phase response PHA. Let us first have a look at the data:

subplot(211), loglog(W,AMP),title('Amplitude Response')
subplot(212), semilogx(W,PHA),title('Phase Response')
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This experimental data will now be stored as an IDFRD object. First transform amplitude
and phase to a complex valued response:

zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
gfr = idfrd(zfr,W,Ts);

Ts is the sample time of the underlying data. If the data corresponds to continuous time,
for example since the input has been band-limited, use Ts = 0.

Note: If you have the Control System Toolbox™, you could use an FRD object instead of

the IDFRD object. IDFRD has options for more information, like disturbance spectra and
uncertainty measures which are not available in FRD objects.
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The IDFRD object gfr now contains the data, and it can be plotted and analyzed in
different ways. To view the data, we may use plot or bode:

clf
bode(gfr), legend('gfr")
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Estimating Models Using Frequency Response (FRF) Data

To estimate models, you can now use gfr as a data set with all the commands of the
toolbox in a transparent fashion. The only restriction is that noise models cannot be built.
This means that for polynomial models only OE (output-error models) apply, and for state-
space models, you have to fix K = 0.
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ml = oe(gfr,[2 2 1]) % Discrete-time OQutput error (transfer function) model
ms ssest(gfr) % Contlnuous time state-space model with default choice of order
mproc = procest(gfr 'P2UDZ') % 2nd-order, continuous-time model with underdamped poles
compare(gfr,ml,ms,mproc)
= findobj(gcf, 'type', 'legend');
L.Location = 'southwest'; % move legend to non-overlapping location

ml =
Discrete-time OE model: vy(t) = [B(z)/F(z)]lu(t) + e(t)
B(z) = 0.9986 z~-1 + 0. 4968 z™-2

F(z) =1 - 1.499 z~-1 + 0.6998 z"~-2
Sample time: 0.1 seconds

Parameterization:
Polynomial orders: nb=2 nf=2 nk=1
Number of free coefficients: 4
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using OE on frequency response data "gfr".
Fit to estimation data: 88.04%

FPE: 0.2512, MSE: 0.2492

ms =
Continuous-time identified state-space model:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)
A =
x1 X2

x1 -1.785 6.193
x2 -3.417 -1.785

B:
ul
x1 -8.3
x2 27.17
C:
x1 X2

yl 0.9848 0.3948
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D =
ul
yl 0
K =
yl
x1 0
X2 0
Parameterization:

FREE form (all coefficients in A, B, C free).

Feedthrough: none

Disturbance component: none

Number of free coefficients: 8

Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using SSEST on frequency response data "gfr".
Fit to estimation data: 88.04%

FPE: 0.2512, MSE: 0.2492

mproc =
Process model with transfer function:
1+Tz*s
G(s) = Kp * -----mmimi i * exp(-Td*s)
1+2*Zeta*Tw*s+(Tw*s) "2
Kp = 7.4619
Tw = 0.20245
Zeta = 0.36242
Td = 0
Tz = 0.013617
Parameterization:
'P2DUZ'
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.
Status:

Estimated using PROCEST on frequency response data "gfr".
Fit to estimation data: 88.03%
FPE: 0.2517, MSE: 0.2492
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As shown above a variety of linear model types may be estimated in both continuous and
discrete time domains, using spectral data. These models may be validated using, time-
domain data. The time-domain I/O data set ztime, for example, is collected from the
same system, and can be used for validation of m1, ms and mproc:

compare(ztime,ml,ms,mproc) %validation in a different domain
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Simulated Response Comparison
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We may also look at the residuals to affirm the quality of the model using the validation
data ztime. As observed, the residuals are almost white:

resid(ztime,mproc) % Residuals plot
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Condensing Data Using SPAFDR

An important reason to work with frequency response data is that it is easy to condense
the information with little loss. The command SPAFDR allows you to compute smoothed
response data over limited frequencies, for example with logarithmic spacing. Here is an
example where the gfr data is condensed to 100 logarithmically spaced frequency
values. With a similar technique, also the original time domain data can be condensed:

sgfr = spafdr(gfr) % spectral estimation with frequency-dependent resolution
sz = spafdr(ztime); % spectral estimation using time-domain data

clf

bode(gfr,sgfr,sz)

axis([pi/100 10*pi, -272 105])

legend('gfr (raw data)', 'sgfr','sz','location', 'southwest")
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sgfr =

IDFRD model.

Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for d:
Response data and disturbance spectra are available at 100 frequency points, ranging f

Sample time: 0.1 seconds

OQutput channels: 'yl'

Input channels: 'ul'

Status:

Estimated using SPAFDR on frequency response data "gfr".

Bode Diagram
From:ul To:y1
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Amplitude

vl

The Bode plots show that the information in the smoothed data has been taken well care
of. Now, these data records with 100 points can very well be used for model estimation.
For example:

msm = oe(sgfr,[2 2 1]);
compare(ztime,msm,ml) % msm has the same accuracy as M1 (based on 1000 points)

Simulated Response Comparison
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-15

Estimation Using Frequency-Domain 1/0O Data

It may be that the measurements are available as Fourier transforms of inputs and output.
Such frequency domain data from the system are given as the signals Y and U. In loglog
plots they look like
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Wfd = (0:500) '*10*pi/500;
subplot(211),loglog(Wfd,abs(Y)),title('The amplitude of the output')
subplot(212),loglog(Wfd,abs(U)),title('The amplitude of the input')
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The frequency response data is essentially the ratio between Y and U. To collect the
frequency domain data as an IDDATA object, do as follows:

ZFD = iddata(Y, U, 'Ts', 0.1, 'Frequency', Wfd)
ZFD =

Frequency domain data set with responses at 501 frequencies,
ranging from 0 to 31.416 rad/seconds
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Sample time: 0.1 seconds

Outputs Unit (if specified)
yl

Inputs Unit (if specified)
ul

Now, again the frequency domain data set ZFD can be used as data in all estimation
routines, just as time domain data and frequency response data:

mf = ssest(ZFD) % SSEST picks best order in 1:10 range when called this way

mfr = ssregest(ZFD) % an alternative regularized reduction based state-space estimator
clf

compare(ztime,mf,mfr,ml)

mf =
Continuous-time identified state-space model:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)
A =
x1 X2

x1 -1.78  6.189
X2 -3.406 -1.78

B =
ul
x1 1.32
x2 14.31
C =
x1 X2
yl 2 1.522e-05
D =
ul
yl 0
K =
yl
x1 0
X2 0
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Parameterization:
FREE form (all coefficients in A, B, C free).
Feedthrough: none
Disturbance component: none
Number of free coefficients: 8
Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using SSEST on frequency domain data "ZFD".
Fit to estimation data: 97.21%

FPE: 0.04288, MSE: 0.04186

mfr =
Discrete-time identified state-space model:
X(t+Ts) = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)

A:
x1 X2 X3 x4 x5 X6
x1 0.7607 0.3671 0.3322 -0.08998 0.01548 0.09474
X2 -0.227 -0.4068 0.3153 0.233 -0.1859 0.2795
x3 -0.262 0.3038 0.6404 -0.1926 0.02235 0.2056
x4 -0.0205 -0.1497 -0.03978 -0.1501 -0.353 -0.3459
x5 0.03394 0.01352 -0.2328 -0.4938 -0.2778 -0.09414
X6 0.01766 0.3918 -0.1908 0.2817 -0.0382 0.141
x7 -0.03115 -0.3107 0.02915 -0.2754 0.3491 0.5479
x8 0.01892 0.06892 -0.09164 -0.1246 -0.4316 0.01104
x9 -0.003668 -0.1277 0.1057 0.03904 0.1206 -0.423
x10 0.0174 0.04442 0.02417 0.1074 0.02164 -0.2264
x7 X8 X9 x10
x1 -0.1456 0.007799 0.05833 -0.1396
X2 -0.336 0.009541 0.2668 -0.1218
x3 -0.233 0.1177 -0.03473 0.06575
x4 -0.1299 0.166 0.1195 -0.2518
x5 -0.6382 -0.2387 0.04806 0.04836
X6 -0.2343 -0.4258 0.6103 -0.1953
x7 -0.2887 -0.6828 0.136 -0.4042
x8 0.5226 -0.2932 -0.007668 0.09615
x9 -0.1939 -0.3768 -0.09409 0.507
x10 -0.02294 -0.6167 -0.4447 -0.5943
B:
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ul
x1 -1.588
X2 0.1338
x3 -0.09661
x4 0.02391
x5 0.02324
X6 -0.03246
x7 -0.0002968
x8 0.03677
x9 -0.06961
x10 0.006027
c:

x1 X2 X3 x4 x5 X6 x7
yl -0.7727 0.5047 2.644 -1.195 0.5607 -1.542 1.08
x8 X9 x10
yl -0.06959 0.9512 -0.2948
D=
ul

yl 0
K:

yl
x1 0.0306
X2 0.01498
x3 0.08894
x4 0.04447
x5 -0.04233
X6 0.01548
x7 -0.01024

x8  0.0004959
x9 0.003125
x10  0.001307

Sample time: 0.1 seconds

Parameterization:
FREE form (all coefficients in A, B, C free).
Feedthrough: none
Disturbance component: estimate
Number of free coefficients: 130
Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:

Estimated using SSREGEST on frequency domain data "ZFD".
Fit to estimation data: 76.61% (prediction focus)

FPE: 3.448, MSE: 2.938

Simulated Response Comparison
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Transformations Between Data Representations (Time - Frequency)

Time and frequency domain input-output data sets can be transformed to either domain
by using FFT and IFFT. These commands are adapted to IDDATA objects:

dataf
datat

fft(ztime)
ifft(dataf)
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dataf =

Frequency domain data set with responses at 501 frequencies,
ranging from 0 to 31.416 rad/seconds
Sample time: 0.1 seconds

Outputs Unit (if specified)
yl

Inputs Unit (if specified)
ul

datat =

Time domain data set with 1000 samples.
Sample time: 0.1 seconds

Outputs Unit (if specified)
yl

Inputs Unit (if specified)
ul

Time and frequency domain input-output data can be transformed to frequency response
data by SPAFDR, SPA and ETFE:

spafdr(ztime)
spafdr(ZFD);

gl
g2
clf;

bode(gl,g2)

gl =

IDFRD model.

Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for d:
Response data and disturbance spectra are available at 100 frequency points, ranging f

Sample time: 0.1 seconds

OQutput channels: 'yl'

Input channels: 'ul'

Status:

Estimated using SPAFDR on time domain data "ztime".
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Bode Diagram
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Frequency response data can also be transformed to more smoothed data (less resolution
and less data) by SPAFDR and SPA;

g3 = spafdr(gfr);

Frequency response data can be transformed to frequency domain input-output signals by
the command IDDATA:

gfd = iddata(g3)
plot(gfd)

gfd =
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Magnitude (abs) ; Phase (deqg)
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Using Continuous-time Frequency-domain Data to Estimate Continuous-time
Models

Time domain data can naturally only be stored and dealt with as discrete-time, sampled
data. Frequency domain data have the advantage that continuous time data can be
represented correctly. Suppose that the underlying continuous time signals have no
frequency information above the Nyquist frequency, e.g. because they are sampled fast,
or the input has no frequency component above the Nyquist frequency and that the data
has been collected from a steady-state experiment. Then the Discrete Fourier transforms
(DFT) of the data also are the Fourier transforms of the continuous time signals, at the
chosen frequencies. They can therefore be used to directly fit continuous time models.

This will be illustrated by the following example.

Consider the continuous time system:

G(s) = ———
\s) P

m@ = idpoly(1,1,1,1,[1 1 1],'ts',0)
mo =
Continuous-time OE model: y(t) = [B(s)/F(s)]u(t) + e(t)
B(s) =1
F(s) =s™2 +s + 1
Parameterization:
Polynomial orders: nb=1 nf=2 nk=0
Number of free coefficients: 3

Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

Load data that comes from steady-state simulation of this system using periodic inputs.
The collected data was converted into frequency domain and saved in CTFDData.mat file.

load CTFDData.mat dataf % load continuous-time frequency-domain data.

Look at the data:
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Magnitude (abs) ; Phase {deqg)

plot(dataf)
set(gca, 'XLim',[0.1 10])
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Using dataf for estimation will by default give continuous time models: State-space:

m4 = ssest(dataf,2); %Second order continuous-time model

For a polynomial model with nb = 2 numerator coefficient and nf = 2 estimated
denominator coefficients use:

nb = 2;
nf = 2;
m5 = oe(dataf,[nb nf])
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m5 =
Continuous-time OE model: y(t) = [B(s)/F(s)]lu(t) + e(t)
B(s) = -0.01814 s + 1.008

F(s) = s™2 + 1.001 s + 0.9967

Parameterization:
Polynomial orders: nb=2 nf=2 nk=0
Number of free coefficients: 4
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using OE on frequency domain data "dataf".
Fit to estimation data: 70.15%

FPE: 0.00491, MSE: 0.00468

Compare step responses with uncertainty of the true system m0@ and the models m4 and
m5. The confidence intervals are shown with patches in the plot.

clf

h = stepplot(mO,m4,m5);
showConfidence(h,1)

legend('show', 'location', 'southeast')
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Step Response
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Although it was not necessary in this case, it is generally advised to focus the fit to a
limited frequency band (low pass filter the data) when estimating using continuous time
data. The system has a bandwidth of about 3 rad/s, and was excited by sinusoids up to 6.2
rad/s. A reasonable frequency range to focus the fit to is then [0 7] rad/s:

m6 = ssest(dataf,2,ssestOptions('WeightingFilter',[0@ 7])) % state space model

mo =
Continuous-time identified state-space model:
dx/dt = A x(t) + B u(t) + K e(t)
y(t) C x(t) + D u(t) + e(t)
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x1 X2
x1 -0.5011 1.001
x2 -0.7446 -0.5011

B =
ul
x1 -0.01706
X2 1.016
C =
x1 X2
yl 1.001 -0.0005347
D =
ul
yl 0
K =
yl
x1 0
X2 0
Parameterization:

FREE form (all coefficients in A, B, C free).

Feedthrough: none

Disturbance component: none

Number of free coefficients: 8

Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using SSEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)
FPE: 0.004832, MSE: 0.003631
m7 = oe(dataf,[1 2],0e0Options('WeightingFilter',[0 7])) % polynomial model of Output E
m7 =
Continuous-time OE model: vy(t) = [B(s)/F(s)]u(t) + e(t)
B(s) = 0.9861
F(s) = s™2 + 0.9498 s + 0.9704

Parameterization:
Polynomial orders: nb=1 nf=2 nk=0
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Number of free coefficients: 3
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using OE on frequency domain data "dataf".
Fit to estimation data: 86.81% (data prefiltered)
FPE: 0.004902, MSE: 0.003752

opt = procestOptions('SearchMethod', 'lsgnonlin',...
'WeightingFilter',[0 7]1); % Requires Optimization Toolbox(TM)
m8 = procest(dataf, 'P2UZ',opt) % process model with underdamped poles

m8 =
Process model with transfer function:
1+Tz*s
G(s) =Kp * -----mmimi -
1+2*Zeta*Tw*s+(Tw*s) "2
Kp = 1.0124
Tw = 1.0019
Zeta = 0.5021
Tz = -0.017474
Parameterization:
'P2UZ'
Number of free coefficients: 4
Use "getpvec", "getcov" for parameters and their uncertainties.
Status:

Estimated using PROCEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)
FPE: 0.004832, MSE: 0.003631

opt = tfestOptions('SearchMethod', 'lsgnonlin',...
'WeightingFilter',[0 7]); % Requires Optimization Toolbox

m9 tfest(dataf,2,opt) % transfer function with 2 poles

m9 =

From input "ul" to output "yl":
-0.01662 s + 1.007

s™2 + s + 0.995
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Continuous-time identified transfer function.

Parameterization:
Number of poles: 2 Number of zeros: 1
Number of free coefficients: 4
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using TFEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)

FPE: 0.00491, MSE: 0.003629

h = stepplot(m@,m6,m7,m8,m9);

showConfidence(h,1)
legend('show")
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Amplitude
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Conclusions

We saw how time, frequency and spectral data can seamlessly be used to estimate a
variety of linear models in both continuous and discrete time domains. The models may be
validated and compared in domains different from the ones they were estimated in. The
data formats (time, frequency and spectrum) are interconvertible, using methods such as
fft, ifft, spafdr and spa. Furthermore, direct, continuous-time estimation is
achievable by using tfest, ssest and procest estimation routines. The seamless use of
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data in any domain for estimation and analysis is an important feature of System
Identification Toolbox.

See Also

oe | procest | ssest | tfest

More About

. “Estimating Models Using Frequency-Domain Data”
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Building Structured and User-Defined Models Using
System Identification Toolbox™

This example shows how to estimate parameters in user-defined model structures. Such
structures are specified by IDGREY (linear state-space) or IDNLGREY (nonlinear state-
space) models. We shall investigate how to assign structure, fix parameters and create
dependencies among them.

Experiment Data

We shall investigate data produced by a (simulated) dc-motor. We first load the data:

load dcmdata
who

Your variables are:

text wu y

The matrix y contains the two outputs: y1 is the angular position of the motor shaft and
y2 is the angular velocity. There are 400 data samples and the sample time is 0.1 seconds.
The input is contained in the vector u. It is the input voltage to the motor.

z = iddata(y,u,0.1); % The IDDATA object
z.InputName = 'Voltage';

z.0utputName = {'Angle'; 'AngVel'};
plot(z(:,1,:))
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Input-Output Data
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Figure: Measurement Data: Voltage to Angle

plot(z(:,2,:))
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Input-Output Data
AngVel
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Figure: Measurement Data: Voltage to Angle
Model Structure Selection

d/dt x

K e
y e

X + B +
X +Du+

We shall build a model of the dc-motor. The dynamics of the motor is well known. If we

choose x1 as the angular position and x2 as the angular velocity it is easy to set up a

state-space model of the following character neglecting disturbances: (see Example 4.1 in

Ljung(1999):
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4-94

| © 1] | |
d/dt x = | | x + | | u
| © -thl | | th2 |
| 1 0 |
y = | | x
|0 1|

The parameter th1l is here the inverse time-constant of the motor and th2 is such that
th2/thl is the static gain from input to the angular velocity. (See Ljung(1987) for how
thl and th2 relate to the physical parameters of the motor). We shall estimate these two
parameters from the observed data. The model structure (parameterized state space)
described above can be represented in MATLAB® using IDSS and IDGREY models. These
models let you perform estimation of parameters using experimental data.

Specification of a Nominal (Initial) Model

If we guess that th1=1 and th2 = 0.28 we obtain the nominal or initial model

A=1[01; 0 -1]; % initial gquess for A(2,2) is -1
B =1[0; 0.28]; % initial guess for B(2) is 0.28

C = eye(2);

D = zeros(2,1);

and we package this into an IDSS model object:
ms = idss(A,B,C,D);

The model is characterized by its matrices, their values, which elements are free (to be
estimated) and upper and lower limits of those:

ms.Structure.a

ans =

Name: 'A'

Value: [2x2 double]
Minimum: [2x2 double]
Maximum: [2x2 double]

Free: [2x2 logicall]

Scale: [2x2 double]

Info: [2x2 struct]
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1x1 param.Continuous

ms.Structure.a.Value
ms.Structure.a.Free

ans =

[oNo)

ans =
2x2 logical array

1 1
1 1

Specification of Free (Independent) Parameters Using IDSS Models

So we should now mark that it is only A(2,2) and B(2,1) that are free parameters to be

estimated.

ms.Structure.a.Free
ms.Structure.b.Free
ms.Structure.c.Free
ms.Structure.d.Free

[0 0; 0 1];

[0; 11;

0; % scalar expansion used
0.

ms.Ts = 0; % This defines the model to be continuous

The Initial Model

ms % Initial model

ms =

Continuous-time identified state-space model:

dx/dt
y(t)

A x(t) + B u(t) + K e(t)
C xX(t) + D u(t) + e(t)
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4-96

X2 0 -1
B:
ul

x1 0
x2 0.28
C:

x1 x2
yl 1 0
y2 0 1
D:

ul
yl 0
y2 0
K:

yl y2
x1 0 0
X2 0 0

Parameterization:

STRUCTURED form (some fixed coefficients in A, B, ().

Feedthrough: none

Disturbance component: none

Number of free coefficients: 2

Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

Estimation of Free Parameters of the IDSS Model

The prediction error (maximum likelihood) estimate of the parameters is now computed
by:

dcmodel = ssest(z,ms,ssestOptions('Display','on'));
dcmodel

dcmodel =
Continuous-time identified state-space model:
dx/dt A x(t) + B u(t) + K e(t)
y(t) C x(t) + D u(t) + e(t)
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A:
x1 X2
x1 0 1
x2 0 -4.013
B:
Voltage
x1 0
x2 1.002
C:
x1l x2
Angle 1 0
AngVel 0 1
D:
Voltage
Angle 0
AngVel 0
K:
Angle AngVel
x1 0 0
x2 0 0
Parameterization:

STRUCTURED form (some fixed coefficients in A, B, ().

Feedthrough: none

Disturbance component: none

Number of free coefficients: 2

Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using SSEST on time domain data
Fit to estimation data: [98.35;84.42]%
FPE: 0.001071, MSE: 0.1192

z" .

The estimated values of the parameters are quite close to those used when the data were
simulated (-4 and 1). To evaluate the model's quality we can simulate the model with the
actual input by and compare it with the actual output.

compare(z,dcmodel);
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Amplitude
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We can now, for example plot zeros and poles and their uncertainty regions. We will draw
the regions corresponding to 3 standard deviations, since the model is quite accurate.
Note that the pole at the origin is absolutely certain, since it is part of the model
structure; the integrator from angular velocity to position.

clf
showConfidence(iopzplot(dcmodel),3)
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Now, we may make various modifications. The 1,2-element of the A-matrix (fixed to 1)
tells us that x2 is the derivative of x1. Suppose that the sensors are not calibrated, so
that there may be an unknown proportionality constant. To include the estimation of such
a constant we just "let loose" A(1,2) and re-estimate:

dcmodel2 = dcmodel;
dcmodel2.Structure.a.Free(1,2) = 1;
dcmodel2 = pem(z,dcmodel2,ssestOptions('Display','on'));

The resulting model is

dcmodel?2

dcmodel?2 =
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Continuous-time identified state-space model:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)
A =
x1 X2
x1 0 0.9975
X2 0 -4.011
B =
Voltage
x1 0
X2 1.004
C =
x1 x2

Angle 1 0
AngVel 0 1

D =
Voltage
Angle 0
AngVel 0
K =
Angle AngVel
x1 0 0
X2 0 0
Parameterization:

STRUCTURED form (some fixed coefficients in A, B, C).

Feedthrough: none

Disturbance component: none

Number of free coefficients: 3

Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PEM on time domain data "z".
Fit to estimation data: [98.35;84.42]%

FPE: 0.001077, MSE: 0.1192

We find that the estimated A(1,2) is close to 1. To compare the two model we use the
compare command:

compare(z,dcmodel,dcmodel?2)
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Suppose that we accurately know the static gain of the dc-motor (from input voltage to
angular velocity, e.g. from a previous step-response experiment. If the static gain is G, and
the time constant of the motor is t, then the state-space model becomes

d/dt x

|© 1

| [x + |
0 -1/t

[1 0]

I | x

[0 1]

0 |
| u

| G/t |
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With G known, there is a dependence between the entries in the different matrices. In
order to describe that, the earlier used way with "Free" parameters will not be sufficient.
We thus have to write a MATLAB file which produces the A, B, C, and D, and optionally
also the K and X0 matrices as outputs, for each given parameter vector as input. It also
takes auxiliary arguments as inputs, so that the user can change certain things in the
model structure, without having to edit the file. In this case we let the known static gain G
be entered as such an argument. The file that has been written has the name
‘motorDynamics.m'.

type motorDynamics

function [A,B,C,D,K,X0] = motorDynamics(par,ts,aux)
%MOTORDYNAMICS ODE file representing the dynamics of a motor.

[A,B,C,D,K,X0] = motorDynamics(Tau,Ts,G)

returns the State Space matrices of the DC-motor with
time-constant Tau (Tau = par) and known static gain G. The sample
time is Ts.

This file returns continuous-time representation if input argument Ts
is zero. If Ts>0, a discrete-time representation is returned. To make
the IDGREY model that uses this file aware of this flexibility, set the
value of Structure.FcnType property to 'cd'. This flexibility is useful
for conversion between continuous and discrete domains required for
estimation and simulation.

0° 0% 0% 3% 0° 6° O° O° J° O° O° P O° o°

See also IDGREY, IDDEMO7.

L. Ljung
Copyright 1986-2015 The MathWorks, Inc.

o o°

par(1);
aux(1);

o

[0 1;0 -1/t];
[0;G/t];
eye(2);
[0;0];
zeros(2);
[0;0];
s>0 % Sample the model with sample time Ts
expm([[A B]*ts; zeros(1,3)]);
s(1:2,1:2);

X XOoOw>

0
if

>wn ~+
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B =5s(1:2,3);
end

We now create an IDGREY model object corresponding to this model structure: The
assumed time constant will be

par_guess = 1;
We also give the value 0.25 to the auxiliary variable G (gain) and sample time.

aux = 0.25;
dcmm = idgrey('motorDynamics',par_guess, 'cd',aux,0);

The time constant is now estimated by
dcmm = greyest(z,dcmm,greyestOptions('Display','on'));

We have thus now estimated the time constant of the motor directly. Its value is in good
agreement with the previous estimate.

dcmm

dcmm =
Continuous-time linear grey box model defined by "motorDynamics" function:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)
A —
x1 X2
x1 0 1
X2 0 -4.006
B =
Voltage
x1 0
X2 1.001
C —
x1l x2
Angle 1 0
AngVel 0 1
D =
Voltage
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4-104

Angle 0
AngVel 0
K =

Angle AngVel
x1 0 0
X2 0 0

Model parameters:
Parl = 0.2496

Parameterization:
ODE Function: motorDynamics
(parameterizes both continuous- and discrete-time equations)
Disturbance component: parameterized by the ODE function
Initial state: parameterized by the ODE function
Number of free coefficients: 1
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using GREYEST on time domain data
Fit to estimation data: [98.35;84.42]%

FPE: 0.00107, MSE: 0.1193

le

With this model we can now proceed to test various aspects as before. The syntax of all
the commands is identical to the previous case. For example, we can compare the idgrey
model with the other state-space model:

compare(z,dcmm,dcmodel)
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They are clearly very close.

Estimating Multivariate ARX Models

30

35 40

The state-space part of the toolbox also handles multivariate (several outputs) ARX
models. By a multivariate ARX-model we mean the following:

A(q) y(t) = B(q) u(t) + e(t)

Here A(q) is a ny | ny matrix whose entries are polynomials in the delay operator 1/q. The
k-1 element is denoted by:

ap(g)
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where:

ﬂ,f.-f{'rf} =14+ ayq 1y . + @paktq rm.f.'.'q

It is thus a polynomial in 1/q of degree nakl.

Similarly B(q) is a ny | nu matrix, whose kj-element is:

frl'.l'j I_{ rrl‘l‘j quJ.'Ij

.f”'_;{r]r} = hnq nkk + h|r}' . Irlml,.l,-;l’)'
There is thus a delay of nkkj from input number j to output number k. The most common
way to create those would be to use the ARX-command. The orders are specified as: nn =
[na nb nk] with na being a ny-by-ny matrix whose kj-entry is nakj; nb and nk are
defined similarly.

Let's test some ARX-models on the dc-data. First we could simply build a general second
order model:

dcarxl = arx(z,'na',[2,2;2,21,'nb",[2;2],'nk"',[1;1])

dcarxl =
Discrete-time ARX model:
Model for output "Angle": A(z)y 1(t) = - A i(z)y i(t) + B(z)u(t) + e 1(t)

A(z) =1 - 0.5545 z"~-1 - 0.4454 z"~-2

>
N
g
N
—
1

-0.03548 z*~-1 - 0.06405 z"-2
B(z) = 0.004243 z~-1 + 0.006589 z"-2

Model for output "AngVel": A(z)y 2(t) = - A i(z)y i(t) + B(z)u(t) + e 2(t)
A(z) =1 - 0.2005 z™-1 - 0.2924 z"-2

=
=
—
N
~—
1}

0.01849 z~-1 - 0.01937 z~-2
B(z) = 0.08642 z*~-1 + 0.03877 z"-2
Sample time: 0.1 seconds
Parameterization:
Polynomial orders: na=[2 2;2 2] nb=[2;2] nk=[1;1]

Number of free coefficients: 12
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:

Estimated using ARX on time domain data "z".

Fit to estimation data: [97.87;83.44]1% (prediction focus)
FPE: 0.002157, MSE: 0.1398

The result, dcarxl, is stored as an IDPOLY model, and all previous commands apply. We
could for example explicitly list the ARX-polynomials by:

dcarxl.a

ans =
2x2 cell array

{1x3 double} {1x3 double}
{1x3 double} {1x3 double}

as cell arrays where e.g. the {1,2} element of dcarx1.a is the polynomial A(1,2) described
earlier, relating y2 to y1.

We could also test a structure, where we know that y1 is obtained by filtering y2 through
a first order filter. (The angle is the integral of the angular velocity). We could then also
postulate a first order dynamics from input to output number 2:

na =1[11; 01];
nb = [0 ; 11;
nk = [1; 11;

dcarx2 = arx(z,[na nb nk])

dcarx2 =
Discrete-time ARX model:
Model for output "Angle": A(z)y 1(t) = - A i(z)y i(t) + B(z)u(t) + e 1(t)
A(z) =1 - 0.9992 z~-1

=
N
o
N
-
Il

-0.09595 z*-1
B(z) =0

Model for output "AngVel": A(z)y 2(t) = B(z)u(t) + e 2(t)
A(z) =1 - 0.6254 z~-1
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B(z) = 0.08973 z"-1
Sample time: 0.1 seconds
Parameterization:

Polynomial orders: na=[1 1;0 1] nb=[0;1] nk=[1;1]

Number of free coefficients: 4

Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
Status:
Estimated using ARX on time domain data "z".

Fit to estimation data: [97.52;81.46]% (prediction focus)
FPE: 0.003452, MSE: 0.177

To compare the different models obtained we use

compare(z,dcmodel,dcmm,dcarx2)
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Finally, we could compare the bodeplots obtained from the input to output one for the

different models by using bode: First output:

dcmm2 = idss(dcmm); %

convert to IDSS for subreferencing

bode(dcmodel(1,1),'r',dcmm2(1,1),'b',dcarx2(1,1),'qg")
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Magnitude (dB)

Phase (deq)
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Second output:

bode(dcmodel(2,1), 'r',dcmm2(2,1),'b',dcarx2(2,1),'g")

10°
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The two first models are more or less in exact agreement. The ARX-models are not so
good, due to the bias caused by the non-white equation error noise. (We had white
measurement noise in the simulations).

Conclusions

Estimation of models with pre-selected structures can be performed using System
Identification toolbox. In state-space form, parameters may be fixed to their known values
or constrained to lie within a prescribed range. If relationship between parameters or
other constraints need to be specified, IDGREY objects may be used. IDGREY models
evaluate a user-specified MATLAB file for estimating state-space system parameters.
Multi-variate ARX models offer another option for quickly estimating multi-output models
with user-specified structure.
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Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.
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Identifying Process Models

* “What Is a Process Model?” on page 5-2

» “Data Supported by Process Models” on page 5-4

+ “Estimate Process Models Using the App” on page 5-5

* “Estimate Process Models at the Command Line” on page 5-11

* “Building and Estimating Process Models Using System Identification Toolbox™ "
on page 5-17

* “Process Model Structure Specification” on page 5-43

* “Estimating Multiple-Input, Multi-Output Process Models” on page 5-45

» “Disturbance Model Structure for Process Models” on page 5-46

* “Specifying Initial Conditions for Iterative Estimation Algorithms” on page 5-48
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What Is a Process Model?

5-2

The structure of a process model is a simple continuous-time transfer function that
describes linear system dynamics in terms of one or more of the following elements:

* Static gain K,
One or more time constants T,. For complex poles, the time constant is called 7, —

equal to the inverse of the natural frequency—and the damping coefficient is
(zeta).

* Process zero T,.
* Possible time delay T, before the system output responds to the input (dead time).

* Possible enforced integration.

Process models are popular for describing system dynamics in many industries and apply
to various production environments. The advantages of these models are that they are
simple, support transport delay estimation, and the model coefficients have an easy
interpretation as poles and zeros.

You can create different model structures by varying the number of poles, adding an
integrator, or adding or removing a time delay or a zero. You can specify a first-, second-,
or third-order model, and the poles can be real or complex (underdamped modes). For
more information, see “Process Model Structure Specification” on page 5-43.

For example, the following model structure is a first-order continuous-time process model,
where K is the static gain, T, is a time constant, and Tj is the input-to-output delay:

K
G(s)=—2L 5T
1+ STpl

Such that, Y (s) = G(s)U(s)+ E(s), where Y(s), U(s), and E(s) represent the Laplace
transforms of the output, input, and output error, respectively. The output error, e(t), is
white Gaussian noise with variance A. You can account for colored noise at the output by

adding a disturbance model, H(s), such that Y (s) = G(s)U(s)+ H(s)E(s) . For more
information, see the NoiseTF property of idproc.



See Also

A multi-input multi-output (MIMO) process model contains a SISO process model

corresponding to each input-output pair in the system. For example, for a two-input, two-
output process model:

Y1(s) = Gy1 (5)U1(s) + Gyo(s)Us(s) + Ey(s)
Y2 (S) = G21(S)U1 (S) + G22(S)U2 (S) + Ez(s)

Where, Gji(s) is the SISO process model between the it output and the j* input. E;(s) and
E,(s) are the Laplace transforms of the two output errors.

See Also

Related Examples
. “Estimate Process Models Using the App” on page 5-5

. “Estimate Process Models at the Command Line” on page 5-11
. “Data Supported by Process Models” on page 5-4
. “Process Model Structure Specification” on page 5-43
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Data Supported by Process Models

You can estimate low-order (up to third order), continuous-time transfer functions using
regularly sampled time- or frequency-domain iddata or idfrd data objects. The
frequency-domain data may have a zero sample time.

You must import your data into the MATLAB workspace, as described in “Data
Preparation”.

See Also

Related Examples

. “Estimate Process Models Using the App” on page 5-5
. “Estimate Process Models at the Command Line” on page 5-11

More About
. “What Is a Process Model?” on page 5-2
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Estimate Process Models Using the App

Before you can perform this task, you must have

1

Imported data into the System Identification app. See “Import Time-Domain Data into
the App” on page 2-16. For supported data formats, see “Data Supported by Process
Models” on page 5-4.

Performed any required data preprocessing operations. If you need to model nonzero
offsets, such as when model contains integration behavior, do not detrend your data.
In other cases, to improve the accuracy of your model, you should detrend your data.
See “Ways to Prepare Data for System Identification” on page 2-6.

In the System Identification app, select Estimate > Process models to open the
Process Models dialog box.

Process Models E@
Parameter Known Value Initial Guess Bounds
Model Transfer Function
V| Allzame
K Auto [Hnfinf]
Input # |1 Output # 1 -
T Auto [0 Inf]
Kexp(-Td s
= ] 0 0 [0 Inf])
[1+Tpd s)
0 0 [0 Inf]
Poles i 0 [Hnf Inf]
1 || Alreal - 1 Auto [03]
Initial Guess
Zero
@ Auto-selected
V| Delay
From existing moded:
Integrator
User-defined Value—=initial Guess

Disturbance Model: None -

Initial condition: Auto - Regularization...

Focus: Simulation - Covariance: Estimate = Options...
Display progress Stop lterations
Name: PID Estmate | [ Close | | Help |

To learn more about the options in the dialog box, click Help.
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If your model contains multiple inputs or multiple outputs, you can specify whether to
estimate the same transfer function for all input-output pairs, or a different transfer
function for each. Select the input and output channels in the Input and Output
fields. The fields only appears when you have multiple inputs or outputs. For more
information, see “Estimating Multiple-Input, Multi-Output Process Models” on page
5-45.

In the Model Transfer Function area, specify the model structure using the
following options:

* Under Poles, select the number of poles, and then select ALl real or
Underdamped.

Note You need at least two poles to allow underdamped modes (complex-
conjugate pair).

* Select the Zero check box to include a zero, which is a numerator term other than
a constant, or clear the check box to exclude the zero.

* Select the Delay check box to include a delay, or clear the check box to exclude
the delay.

* Select the Integrator check box to include an integrator (self-regulating process),
or clear the check box to exclude the integrator.

The Parameter area shows as many active parameters as you included in the model
structure.

Note By default, the model Name is set to the acronym that reflects the model
structure, as described in “Process Model Structure Specification” on page 5-43.

In the Initial Guess area, select Auto-selected to calculate the initial parameter
values for the estimation. The Initial Guess column in the Parameter table displays
Auto. If you do not have a good guess for the parameter values, Auto works better
than entering an ad hoc value.
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Farameter Known Walue Initial Guess Bounds
K | | Auto | [nt Inf]
e | | | Auto | [0.001 Inf]
isa | | Auto | [0.001 Inf]
A o | o | o | (3.001 Inf]
T = | o | o | Finting]
D | | Auto CED)
Initial Guess

{+ Auto-selected

™ From existing model: I

" User-defined Yalue--slnitial Gusss |

(Optional) If you approximately know a parameter value, enter this value in the
Initial Guess column of the Parameter table, and press the Enter key. The
estimation algorithm uses this value as a starting point. If you know a parameter
value exactly, enter this value in the Initial Guess column, and press the Enter key.
Select the corresponding Known check box in the table to fix its value.

If you know the range of possible values for a parameter, enter these values into the
corresponding Bounds field to help the estimation algorithm. Press the Enter key
after you specify the values.

For example, the following figure shows that the delay value Td is fixed at 2 s and is
not estimated.
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10

Parameter Knowwen alue Initial Guess Boundz
| | | st | [InfInf]
Tw [~ | | st | [0.001 Inf]

Zeta | | st | [0.001 Inf]
TRa = | o | o | [0.001 Inf]
Tz = | o | o | [ntint]
Td ¥ | 2 [ | @30
Initial Guess

" Auto-zelected

" From existing mocel: I

% |=zer-defined “alue--=Initial Guezs I

In the Disturbance Model drop-down list, select one of the available options. For
more information about each option, see “Disturbance Model Structure for Process
Models” on page 5-46.

In the Focus drop-down list, select how to weigh the relative importance of the fit at
different frequencies. For more information about each option, see “Assigning
Estimation Weightings” on page 5-9.

In the Initial condition drop-down list, specify how you want the algorithm to treat
initial states. For more information about the available options, see “Specifying Initial
Conditions for Iterative Estimation Algorithms” on page 5-48.

Tip If you get a bad fit, you might try setting a specific method for handling initial
states, rather than choosing it automatically.

In the Covariance drop-down list, select Estimate if you want the algorithm to
compute parameter uncertainties. Effects of such uncertainties are displayed on plots
as model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty computation might
reduce computation time for complex models and large data sets.

In the Model Name field, edit the name of the model or keep the default. The name
of the model should be unique in the Model Board.
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11

12

13

14

To view the estimation progress, select the Display Progress check box. This opens
a progress viewer window in which the estimation progress is reported.

Click Regularization to obtain regularized estimates of model parameters. Specify
the regularization constants in the Regularization Options dialog box. To learn more,
see “Regularized Estimates of Model Parameters” on page 1-48.

Click Estimate to add this model to the Model Board in the System Identification
app.

To stop the search and save the results after the current iteration has been
completed, click Stop Iterations. To continue iterations from the current model,

click the Continue button to assign current parameter values as initial guesses for
the next search.

Assigning Estimation Weightings

You can specify how the estimation algorithm weighs the fit at various frequencies. In the
app, set Focus to one of the following options:

Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges. Corresponds to
minimizing one-step-ahead prediction, which typically favors the fit over a short time
interval. Optimized for output prediction applications.

Simulation — Uses the input spectrum to weigh the relative importance of the fit in
a specific frequency range. Does not use the noise model to weigh the relative
importance of how closely to fit the data in various frequency ranges. Optimized for
output simulation applications.

Stability — Behaves the same way as the Prediction option, but also forces the
model to be stable. For more information about model stability, see “Unstable Models”
on page 17-118.

Filter — Specify a custom filter to open the Estimation Focus dialog box, where you
can enter a filter, as described in “Simple Passband Filter” on page 2-132 or “Defining
a Custom Filter” on page 2-132. This prefiltering applies only for estimating the
dynamics from input to output. The disturbance model is determined from the
estimation data.
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Next Steps

* Validate the model by selecting the appropriate check box in the Model Views area of
the System Identification app. For more information about validating models, see
“Validating Models After Estimation” on page 17-3.

* Refine the model by clicking the Value —> Initial Guess button to assign current
parameter values as initial guesses for the next search, edit the Name field, and click
Estimate.

* Export the model to the MATLAB workspace for further analysis by dragging it to the
To Workspace rectangle in the System Identification app.

See Also

Related Examples

. “Identify Low-Order Transfer Functions (Process Models) Using System
Identification App”
. “Estimate Process Models at the Command Line” on page 5-11
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Estimate Process Models at the Command Line

Prerequisites

Before you can perform this task, you must have

* Input-output data as an iddata object or frequency response data as frd or idfrd
objects. See “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-50. For supported data formats, see “Data Supported by Process Models” on
page 5-4.

» Performed any required data preprocessing operations. When working with time
domain data, if you need to model nonzero offsets, such as when model contains
integration behavior, do not detrend your data. In other cases, to improve the accuracy
of your model, you should detrend your data. See “Ways to Prepare Data for System
Identification” on page 2-6.

Using procest to Estimate Process Models

You can estimate process models using the iterative estimation method procest that
minimizes the prediction errors to obtain maximum likelihood estimates. The resulting
models are stored as idproc model objects.

You can use the following general syntax to both configure and estimate process models:
m = procest(data,mod struc,opt)
data is the estimation data and mod_struc is one of the following:

* A character vector that represents the process model structure, as described in
“Process Model Structure Specification” on page 5-43.

* Atemplate idproc model. opt is an option set for configuring the estimation of the
process model, such as handling of initial conditions, input offset and numerical search
method.

Tip You do not need to construct the model object using idproc before estimation unless
you want to specify initial parameter guesses, minimum/maximum bounds, or fixed
parameter values, as described in “Estimate Process Models with Fixed Parameters” on
page 5-14.
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For more information about validating a process model, see “Validating Models After
Estimation” on page 17-3.

You can use procest to refine parameter estimates of an existing process model, as
described in “Refine Linear Parametric Models” on page 4-6.

For detailed information, see procest and idproc.

Estimate Process Models with Free Parameters

This example shows how to estimate the parameters of a first-order process model:

K —il
Gis)=—2 ¢ 4

[+T,,

This process has two inputs and the response from each input is estimated by a first-order
process model. All parameters are free to vary.

Load estimation data.

load co2data

Specify known sample time of 0.5 min.
Ts = 0.5;

Split data set into estimation data ze and validation data zv.

ze = iddata(Output _expl,Input expl,Ts, ...
'"TimeUnit', 'min');
zv = iddata(Output _exp2,Input exp2,Ts, ...

'"TimeUnit', 'min');

Estimate model with one pole, a delay, and a first-order disturbance component. The data
contains known offsets. Specify them using the InputOffset and OutputOffset
options.

opt = procestOptions;
opt.InputOffset = [170;50];
opt.OutputOffset = -45;
opt.Display = 'on';
opt.DisturbanceModel = 'armal';
m = procest(ze, 'pld',opt)



Estimate Process Models at the Command Line

m =
Process model with 2 inputs: y = G1l1(s)ul + G1l2(s)u2
From input "ul" to output "yl":

Kp
Gll(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = 2.6553
Tpl = 0.15515
Td = 2.3175
From input "u2" to output "yl":
Kp
Gl2(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = 9.9756
Tpl = 2.0653
Td = 4.9195

An additive ARMA disturbance model exists for output "yl":
y =Gu+ (C/D)e

C(s)
D(s)

+ 2.676
+ 0.6228

S
S

Parameterization:
'"P1D' '"P1D'
Number of free coefficients: 8
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PROCEST on time domain data "ze".
Fit to estimation data: 91.07% (prediction focus)
FPE: 2.431, MSE: 2.412

Use dot notation to get the value of any model parameter. For example, get the value of
dc gain parameter Kp .

m.Kp

ans = 1Ix2

2.6553 9.9756
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Estimate Process Models with Fixed Parameters

This example shows how to estimate a process model with fixed parameters.

When you know the values of certain parameters in the model and want to estimate only
the values you do not know, you must specify the fixed parameters after creating the
idproc model object. Use the following commands to prepare the data and construct a
process model with one pole and a delay:

Load estimation data.

load co2data

Specify known sample time is 0.5 minutes.

Ts = 0.5;
Split data set into estimation data ze and validation data zv.

ze = iddata(Output _expl,Input expl,Ts, ...
'TimeUnit', 'min');

iddata(Output _exp2,Input exp2,Ts, ...
'TimeUnit', 'min');

mod = idproc({'pld', 'pld'}, 'TimeUnit', 'min")

Vv

mod =
Process model with 2 inputs: y = G1l1(s)ul + G1l2(s)u2
From input 1 to output 1:

Kp
Gll(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = NaN
Tpl = NaN
Td = NaN
From input 2 to output 1:
Kp
G12(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = NaN
Tpl = NaN
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Td = NaN
Parameterization:
'"P1D' '"P1D’
Number of free coefficients: 6
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The model parameters Kp, Tpl, and Td are assigned NaN values, which means that the
parameters have not yet been estimated from the data.

Use the Structure model property to specify the initial guesses for unknown
parameters, minimum/maximum parameter bounds and fix known parameters.

Set the value of Kp for the second transfer function to 10 and specify it as a fixed
parameter. Initialize the delay values for the two transfer functions to 2 and 5 minutes,
respectively. Specify them as free estimation parameters.

mod.Structure(2).Kp.Value = 10;
mod.Structure(2) .Kp.Free = false;

mod.Structure(l).Tpl.Value = 2;
mod.Structure(2).Td.Value = 5;

Estimate Tpl and Td only.
mod proc = procest(ze,mod)

mod _proc =
Process model with 2 inputs: y = G1l1(s)ul + G1l2(s)u2
From input "ul" to output "yl":

Kp
Gll(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = -3.2213
Tpl = 2.1707
Td = 4.44
From input "u2" to output "yl":
Kp
G12(s) = ---------- * exp(-Td*s)
1+Tpl*s
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10
2.0764
4.5205

Kp
Tpl
Td

Parameterization:
'"P1D' '"P1D'
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PROCEST on time domain data "ze".
Fit to estimation data: 77.44%

FPE: 15.5, MSE: 15.39

In this case, the value of Kp is fixed, but Tpl and Td are estimated.

See Also

idproc | procest

Related Examples

. “Building and Estimating Process Models Using System Identification Toolbox™ " on
page 5-17

. “Estimate Process Models Using the App” on page 5-5
. “Loss Function and Model Quality Metrics” on page 1-64
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Building and Estimating Process Models Using System
Identification Toolbox™

This example shows how to build simple process models using System Identification
Toolbox™. Techniques for creating these models and estimating their parameters using
experimental data is described. This example requires Simulink®.

Introduction

This example illustrates how to build simple process models often used in process
industry. Simple, low-order continuous-time transfer functions are usually employed to
describe process behavior. Such models are described by IDPROC objects which
represent the transfer function in a pole-zero-gain form.

Process models are of the basic type 'Static Gain + Time Constant + Time Delay'. They
may be represented as:

1+ T. =5

P(s) = K.e T,
(&) = K I T e s) (14 T2 v 9)

or as an integrating process:

1+ T. x5

P(s) = K.e Ta*s,
A R T ey

where the user can determine the number of real poles (0, 1, 2 or 3), as well as the
presence of a zero in the numerator, the presence of an integrator term (1/s) and the
presence of a time delay (Td). In addition, an underdamped (complex) pair of poles may
replace the real poles.

Representation of Process Models using IDPROC Objects

IDPROC objects define process models by using the letters P (for process model), D (for
time delay), Z (for a zero) and I (for integrator). An integer will denote the number of
poles. The models are generated by calling idproc with a character vector created using
these letters.

For example:
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idproc('P1') % transfer function with only one pole (no zeros or delay)
idproc('P2DIZ') % model with 2 poles, delay integrator and delay
idproc('POID') % model with no poles, but an integrator and a delay

ans =
Process model with transfer function:
Kp

1+Tpl*s

Kp
Tpl

NaN
NaN

Parameterization:
IP1I
Number of free coefficients: 2
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

ans =
Process model with transfer function:
1+Tz*s
G(s) =Kp * -----mmmieo - - * exp(-Td*s)
S(1+Tpl*s) (1+Tp2*s)
Kp = NaN
Tpl = NaN
Tp2 = NaN
Td = NaN
Tz = NaN
Parameterization:
'P2DIZ'
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.
Status:

Created by direct construction or transformation. Not estimated.
ans =

Process model with transfer function:
Kp
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G(s) = --- * exp(-Td*s)
s
Kp = NaN
Td = NaN
Parameterization:
'"PODI'
Number of free coefficients: 2
Use "getpvec", "getcov" for parameters and their uncertainties.
Status:

Created by direct construction or transformation. Not estimated.
Creating an IDPROC Object (using a Simulink® Model as Example)
Consider the system described by the following SIMULINK model:

open_system('iddemprl')
set _param('iddemprl/Random Number', 'seed','0")

¥
=

¥
-

THM! ’ numisy Al | numis)

b Q_’ den(s) _’J_LL T T| den(s) @
f J
1

Random
Mumber

Red part: system to be modeled using IDFROC
Blue part: Controller

The red part is the system, the blue part is the controller and the reference signal is a
swept sinusoid (a chirp signal). The data sample time is set to 0.5 seconds. As observed,
the system is a continuous-time transfer function, and can hence be described using
model objects in System Identification Toolbox, such as idss, idpoly or idproc.

Let us describe the system using idpoly and idproc objects. Using idpoly object, the
system may be described as:
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m@ = idpoly(1,0.1,1,1,[1 0.5],'Ts',0, 'InputDelay',1.57, 'NoiseVariance',0.01);

The IDPOLY form used above is useful for describing transfer functions of arbitrary
orders. Since the system we are considering here is quite simple (one pole and no zeros),

and is continuous-time, we may use the simpler IDPROC object to capture its dynamics:
mOp = idproc('pld','Kp',0.2,'Tpl"',2,'Td"',1.57) one pole+delay, with initial values
for gain, pole and delay specified.

[)
©
[)

©

mop =
Process model with transfer function:
Kp
G(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = 0.2
Tpl = 2
Td = 1.57
Parameterization:
'P1D'
Number of free coefficients: 3
Use "getpvec", "getcov" for parameters and their uncertainties.
Status:

Created by direct construction or transformation. Not estimated.

Estimating Parameters of IDPROC Models

Once a system is described by a model object, such as IDPROC, it may be used for
estimation of its parameters using measurement data. As an example, we consider the
problem of estimation of parameters of the Simulink model's system (red portion) using
simulation data. We begin by acquiring data for estimation:

sim('iddemprl')
datle = iddata(y,u,0.5); % The IDDATA object for storing measurement data

Let us look at the data:

plot(datle)
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We can identify a process model using procest command, by providing the same
structure information specified to create IDPROC models. For example, the 1-pole+delay
model may be estimated by calling procest as follows:

= procest(datle, 'pld'); % estimation of idproc model using data 'datle’.

% Check the result of estimation:

ml
ml =
Process model with transfer function:
Kp
G(s) = ---------- * exp(-Td*s)
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1+Tpl*s

Kp
Tpl
Td

0.20045
2.0431
1.499

Parameterization:
'P1D'
Number of free coefficients: 3
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PROCEST on time domain data "datle".
Fit to estimation data: 87.34%

FPE: 0.01069, MSE: 0.01062

To get information about uncertainties, use

present(ml)

ml =
Process model with transfer function:
Kp
G(s) = ---------- * exp(-Td*s)
1+Tpl*s

Kp
Tpl
Td

0.20045 +/- 0.00077275
2.0431 +/- 0.061216
1.499 +/- 0.040854

Parameterization:
'P1D"
Number of free coefficients: 3
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Termination condition: Near (local) minimum, (norm(g) < tol).
Number of iterations: 4, Number of function evaluations: 9

Estimated using PROCEST on time domain data "datle".
Fit to estimation data: 87.34%

FPE: 0.01069, MSE: 0.01062

More information in model's "Report" property.
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Amplitude

The model parameters, K, Tpl and Td are now shown with one standard deviation
uncertainty range.

Computing Time and Frequency Response of IDPROC Models

The model ml estimated above is an IDPROC model object to which all of the toolbox's
model commands can be applied:

step(ml,mO@) %step response of models ml (estimated) and m0O (actual)
legend('ml (estimated parameters)', 'm0 (known parameters)', 'location', 'northwest')

Step Response
From:ul To:yl
0.25 . . . . . .
m1 (estimated parameters)
m0 (known parameters)
02r
015 _
0o1r T
0.05 _
0 2 4 G f 10 12 14

Time (seconds)

Bode response with confidence region corresponding to 3 standard deviations may be
computed by doing:
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h = bodeplot(ml,m0);
showConfidence(h, 3)

Bode Diagram

From:ul To:y1
-10 - '

Magnitude (dB)

-360 |

Phase (deqg)

F20T

1080 = : - /
1072 107" 10° 10’
Frequency (rad/s)

Similarly, the measurement data may be compared to the models outputs using compare
as follows:

compare(datle,m@,ml)
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Amplitude
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Other operations such as sim, impulse, c2d are also available, just as they are for other
model objects.

bdclose('iddemprl"')

Accommodating the Effect of Intersample Behavior in Estimation

It may be important (at least for slow sampling) to consider the intersample behavior of
the input data. To illustrate this, let us study the same system as before, but without the
sample-and-hold circuit:

open_system('iddempr5")
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¥
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Rad part: system to be modeled using IDPROC
Blue part: Confroller

Simulate this system with the same sample time:

sim('iddempr5")
datlf = iddata(y,u,0.5); % The IDDATA object for the simulated data

We estimate an IDPROC model using datalf while also imposing an upper bound on the
allowable value delay. We will use 'Im' as search method and also choose to view the
estimation progress.

m2_init = idproc('P1D');

m2_init.Structure.Td.Maximum = 2;

opt = procestOptions('SearchMethod','lm', 'Display', 'on');
m2 = procest(datlf,m2 init,opt);

m2
m2 =
Process model with transfer function:
Kp
G(s) = ---------- * exp(-Td*s)
1+Tpl*s
Kp = 0.20038
Tpl = 2.01
Td = 1.31
Parameterization:

'P1D'

5-26



Building and Estimating Process Models Using System Identification Toolbox™

Number of free coefficients: 3
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using PROCEST on time domain data "datlf".

Fit to estimation data: 87.26%
FPE: 0.01067, MSE: 0.01061

This model has a slightly less precise estimate of the delay than the previous one, m1:

[mOp.Td, ml.Td, m2.Td]

step(mO,ml,m2)

legend( 'm0 (actual)','ml (estimated with ZOH)', 'm2 (estimated without ZOH)', 'location’

ans =

1.5700 1.4990 1.3100
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However, by telling the estimation process that the intersample behavior is first-order-
hold (an approximation to the true continuous) input, we do better:

datlf.InterSample = 'foh';
m3 = procest(datlf,m2 init,opt);

Compare the four models m0 (true) m1 (obtained from zoh input) m2 (obtained for
continuous input, with zoh assumption) and m3 (obtained for the same input, but with foh

assumption)

[mOp.Td, ml.Td, m2.Td, m3.Td]
compare(datle,m@,ml,m2,m3)

ans =
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Amplitude

1.5700 1.4990 1.3100 1.5570

Simulated Response Comparison

datle (y1)
m0: B7.35% | -
m1: B7.35%
m2: B7.05% |
m3: B7.35%

50 100 150 200 250 300 350 400 450 500
Time (seconds)

step(m@,ml,m2,m3)
legend('m@"', 'm1', 'm2', 'm3")
bdclose('iddempr5")
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Step Response
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Modeling a System Operating in Closed Loop
Let us now consider a more complex process, with integration, that is operated in closed

loop:
open_system('iddempr2')
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Blue part: Controller

The true system can be represented by:
m@ = idproc('P2zDI','Kp',1,'Tpl',1,'Tp2"',5,'Tz",3,'Td",2.2);

The process is controlled by a PD regulator with limited input amplitude and a zero order
hold device. The sample time is 1 second.

set param('iddempr2/Random Number', 'seed','0")

sim('iddempr2')
dat2 = iddata(y,u,l); % IDDATA object for estimation

Two different simulations are made, the first for estimation and the second one for
validation purposes.

set param('iddempr2/Random Number', 'seed','13")

sim('iddempr2')
dat2v = iddata(y,u,1l); % IDDATA object for validation purpose

Let us look at the data (estimation and validation).

plot(dat2,dat2v)
legend('dat2 (estimation)','dat2v (validation)')
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Input-Output Data
y1

10

dat2 (estimation)
dat2v (validation)

Amplitude
=

50 100 150 200 250 300 350 400 450 500 550 600
Time (seconds)

Let us now perform estimation using dat2.

Warn = warning('off', 'Ident:estimation:underdampedIDPROC');
m2_init = idproc('P2ZDI");

m2_init.Structure.Td.Maximum = 5;

m2_init.Structure.Tpl.Maximum = 2;

opt = procestOptions('SearchMethod', 'lsqnonlin', 'Display','on');
opt.SearchOptions.MaxIterations = 100;

m2 = procest(dat2, m2 _init, opt)

m2 =
Process model with transfer function:
1+Tz*s
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G(s) =Kp * -----mmmmee oo * exp(-Td*s)
s(14+Tpl*s) (1+Tp2*s)
Kp = 0.98412
Tpl = 2
Tp2 = 1.4838
Td = 1.713
Tz = 0.027244
Parameterization:
'P2DIZ'
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PROCEST on time domain data "dat2".
Fit to estimation data: 91.51%

FPE: 0.1128, MSE: 0.1092

compare(dat2v,m2,m0) % Gives very good agreement with data
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Simulated Response Comparison
12 - - - - -

dat2v (y1)
m2: 91.67%
mo0: 92.01%

Amplitude

_2 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Time (seconds)
bode(m2,m0)
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legend({'m2 (est)"', 'm0
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Bode Diagram
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impulse(m2,m0)
legend({'m2 (est)', 'm0 (actual)'})
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Compare also with the parameters of the true system:
present(m2)

[getpvec(mO), getpvec(m2)]

m2 =
Process model with transfer function:
1+Tz*s

s(1+Tpl*s) (1+Tp2*s)

0.98412 +/- 0.013672
2 +/- 8.2231
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Tp2 = 1.4838 +/- 10.193
Td = 1.713 +/- 63.703
Tz = 0.027244 +/- 65.516
Parameterization:
'P2DIZ'
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Termination condition: Change in cost was less than the specified tolerance.
Number of iterations: 3, Number of function evaluations: 4

Estimated using PROCEST on time domain data "dat2".
Fit to estimation data: 91.51%

FPE: 0.1128, MSE: 0.1092

More information in model's "Report" property.

ans =

1.0000 0.9841
1.0000 2.0000
5.0000 1.4838
2.2000 1.7130
3.0000 0.0272

A word of caution. Identification of several real time constants may sometimes be an ill-
conditioned problem, especially if the data are collected in closed loop.

To illustrate this, let us estimate a model based on the validation data:

m2v = procest(dat2v, m2_init, opt)
[getpvec(mO), getpvec(m2), getpvec(m2v)]

m2v =
Process model with transfer function:
1+Tz*s
G(s) = Kp * ----mmmmaaao - * exp(-Td*s)
s(14+Tpl*s) (1+Tp2*s)
Kp = 0.95747
Tpl = 1.999
Tp2 = 0.60819

5-37



5 Identifying Process Models

Td
Tz

2.314
0.0010561

Parameterization:
'P2DIZ"
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: 90.65%

FPE: 0.1397, MSE: 0.1353

ans =

1.0000 0.9841 0.9575
1.0000 2.0000 1.9990
5.0000 1.4838 0.6082
2.2000 1.7130 2.3140
3.0000 0.0272 0.0011

This model has much worse parameter values. On the other hand, it performs nearly

identically to the true system m0 when tested on the other data set dat2:

compare(dat2,m0,m2,m2v)
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Fixing Known Parameters During Estimation

Suppose we know from other sources that one time constant is 1:

m2v.Structure.Tpl.Value = 1;
m2v.Structure.Tpl.Free = false;

We can fix this value, while estimating the other parameters:

m2v = procest(dat2v,m2v)

%

m2v =
Process model with transfer function:
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1+Tz*s
G(s) = Kp * ----mmmmeieao - * exp(-Td*s)
s(14Tpl*s) (1+Tp2*s)
Kp = 1.0111
Tpl =1
Tp2 = 5.3014
Td = 2.195
Tz = 3.231
Parameterization:
'P2DIZ"
Number of free coefficients: 4
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: 92.05%

FPE: 0.09952, MSE: 0.09794

As observed, fixing Tp1 to its known value dramatically improves the estimates of the
remaining parameters in model m2v.

This also indicates that simple approximation should do well on the data:

mlx_init = idproc('P2D'); % simpler structure (no zero, no integrator)
mlx_init.Structure.Td.Maximum = 2;

mlx = procest(dat2v, mlx init)

compare(dat2,m0,m2,m2v,mlx)

mlx =
Process model with transfer function:
Kp
G(S) = ----mmmmme - * exp(-Td*s)
(1+Tpl*s) (1+Tp2*s)
Kp = -1.2554
Tpl = 1.0249e-06
Tp2 = 0.078359
Td = 1.958
Parameterization:

'P2D"
Number of free coefficients: 4
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Amplitude

Use "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: -23.87%

FPE: 24.15, MSE: 23.77

Simulated Response Comparison

12 ; ; ; ;
dat2 (y1)
i v mi: 91.8% |
10 q/vﬁl x m2: 91.51%
{1 4 m2v: 91.72%
[ | [ mix: -26 26%
8 | J . s
f

50 100 150 200 250 300 350 400 450 500
Time (seconds)

Thus, the simpler model is able to estimate system output pretty well. However, m1x does
not contain any integration, so the open loop long time range behavior will be quite
different:

step(mO,m2,m2v,mlx)
legend('m@"', 'm2"', 'm2v', 'mlx")
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bdclose('iddempr2")

warning(Warn)
Step Response
From:ul To:y1
800 T T - . . .
m0
7001 m2 3
m2v
GO0 mi=| -
500 #(_ﬁ;f;ﬁ’ -
b jﬁﬁ
E 400 1 £ 1
=
E 300t 7
<
200 r ]
100 - ]
0
_100 L L L L L L
0 100 200 300 400 500 600 700

Time (seconds)

Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.
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Process Model Structure Specification

Process Model Structure Specification

This topic describes how to specify the model structure in the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In the System Identification app, specify the model structure by selecting the number of
real or complex poles, and whether to include a zero, delay, and integrator. The resulting
transfer function is displayed in the Process Models dialog box.

At the command line, specify the model structure using an acronym that includes the
following letters and numbers:

* (Required) P for a process model

* (Required) 0, 1, 2 or 3 for the number of poles

(Optional) D to include a time-delay term e T

* (Optional) U to indicate possible complex-valued (underdamped) poles

)

* (Optional) Z to include a process zero (numerator term)
)

* (Optional) I to indicate enforced integration

Typically, you specify the model-structure acronym as an argument in the estimation
command procest:

* procest(data, 'P1D"') to estimate the following structure:

K
G(s)= p__ =Ty
1+ STpl

* procest(data, 'P2ZU") to estimate the following structure:

K (1+sT
G(s) = p( ZZ) 5
1+2sCT), +s°T,

* procest(data, 'POID') to estimate the following structure:

K
G(s)= —L T
s
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* procest(data, 'P3Z') to estimate the following structure:

K, (1+sT,)

G(s) =
O o) (1+ T2 (1+5T5)

For more information about estimating models, see “Estimate Process Models at the
Command Line” on page 5-11.

See Also

More About
. “What Is a Process Model?” on page 5-2
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Estimating Multiple-Input, Multi-Output Process Models

If your model contains multiple inputs, multiple outputs, or both, you can specify whether
to estimate the same transfer function for all input-output pairs, or a different transfer
function for each. The information in this section supports the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In the System Identification app — To fit a data set with multiple inputs, or multiple
outputs, or both, in the Process Models dialog box, configure the process model settings
for one input-output pair at a time. Use the input and output selection lists to switch to a
different input/output pair.

If you want the same transfer function to apply to all input/output pairs, select the All
same check box. To apply a different structure to each channel, leave this check box
clear, and create a different transfer function for each input.

At the command line — Specify the model structure as a cell array of character vectors in
the estimation command procest. For example, use this command to specify the first-
order transfer function for the first input, and a second-order model with a zero and an
integrator for the second input:

m
m

idproc({'P1','P2Z1'})
procest(data,m)

To apply the same structure to all inputs, define a single structure in idproc.

See Also

More About
. “Data Supported by Process Models” on page 5-4
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Disturbance Model Structure for Process Models

5-46

This section describes how to specify a noise model in the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In addition to the transfer function G, a linear system can include an additive noise term
He, as follows:

y=Gu+ He

where e is white noise.

You can estimate only the dynamic model G, or estimate both the dynamic model and the
disturbance model H. For process models, H is a rational transfer function C/D, where the
C and D polynomials for a first- or second-order ARMA model.

In the System Identification app, to specify whether to include or exclude a noise model in
the Process Models dialog box, select one of the following options from the Disturbance
Model list:

* None — The algorithm does not estimate a noise model (C=D=1). This option also sets
Focus to Simulation.

* Order 1 — Estimates a noise model as a continuous-time, first-order ARMA model.

* Order 2 — Estimates a noise model as a continuous-time, second-order ARMA model.

At the command line, specify the disturbance model using the procestOptions option
set. For example, use this command to estimate a first-order transfer function and a first-
order noise model:

opt = procestOptions;

opt.DisturbanceModel = 'armal';
model = procest(data, 'P1D', opt);

For a complete list of values for the DisturbanceModel model property, see the
procestOptions reference page.

See Also

procestOptions



See Also

More About

. “Estimate Process Models Using the App” on page 5-5
. “Estimate Process Models at the Command Line” on page 5-11
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Specifying Initial Conditions for Iterative Estimation
Algorithms

5-48

You can optionally specify how the iterative algorithm treats initial conditions for
estimation of model parameters. This information supports the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In the System Identification app, set Initial condition to one of the following options:

e Zero — Sets all initial states to zero.

* Estimate — Treats the initial states as an unknown vector of parameters and
estimates these states from the data.

* Backcast — Estimates initial states using a backward filtering method (least-squares
fit).

* U-level est — Estimates both the initial conditions and input offset levels. For
multiple inputs, the input level for each input is estimated individually. Use if you
included an integrator in the transfer function.

* Auto — Automatically chooses one of the preceding options based on the estimation
data. If the initial conditions have negligible effect on the prediction errors, they are
taken to be zero to optimize algorithm performance.

At the command line, specify the initial conditions using the InitialCondition model
estimation option, configured using the procestOptions command. For example, use
this command to estimate a first-order transfer function and set the initial states to zero:

opt = procestOptions('InitialCondition', 'zero"');
model = procest(data, 'P1D',opt)

See Also

procestOptions

More About

. “Estimate Process Models Using the App” on page 5-5
. “Estimate Process Models at the Command Line” on page 5-11
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* “What Are Polynomial Models?” on page 6-2

* “Data Supported by Polynomial Models” on page 6-8

* “Preliminary Step - Estimating Model Orders and Input Delays” on page 6-10

* “Estimate Polynomial Models in the App” on page 6-18

» “Estimate Polynomial Models at the Command Line” on page 6-23

* “Polynomial Sizes and Orders of Multi-Output Polynomial Models” on page 6-27
* “Specifying Initial States for Iterative Estimation Algorithms” on page 6-32

* “Polynomial Model Estimation Algorithms” on page 6-34

* “Estimate Models Using armax” on page 6-35



6

Identifying Input-Output Polynomial Models

What Are Polynomial Models?

6-2

Polynomial Model Structure

A polynomial model uses a generalized notion of transfer functions to express the
relationship between the input, u(t), the output y(t), and the noise e(t) using the equation:

nu .
AlQy® =Y ?f((q; u; (¢t —nk;)+ %e(t)

=1 1i\q q

The variables A, B, C, D, and F are polynomials expressed in the time-shift operator g™ - 1.
u; is the ith input, nu is the total number of inputs, and nk; is the ith input delay that

characterizes the transport delay. The variance of the white noise e(t) is assumed to be A.
For more information about the time-shift operator, see “Understanding the Time-Shift
Operator q” on page 6-3.

In practice, not all the polynomials are simultaneously active. Often, simpler forms, such
as ARX, ARMAX, Output-Error, and Box-Jenkins are employed. You also have the option of
introducing an integrator in the noise source so that the general model takes the form:

< B;(@) Clg) 1
Ay =Y B Dy (¢ )+ C@Q ©
D02 i T D T

For more information, see “Different Configurations of Polynomial Models” on page 6-3.
You can estimate polynomial models using time or frequency domain data.

For estimation, you must specify the model order as a set of integers that represent the
number of coefficients for each polynomial you include in your selected structure—na for
A, nb for B, nc for C, nd for D, and nf for F. You must also specify the number of samples
nk corresponding to the input delay—dead time—given by the number of samples before
the output responds to the input.

The number of coefficients in denominator polynomials is equal to the number of poles,
and the number of coefficients in the numerator polynomials is equal to the number of
zeros plus 1. When the dynamics from u(t) to y(t) contain a delay of nk samples, then the
first nk coefficients of B are zero.
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For more information about the family of transfer-function models, see the corresponding
section in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

Understanding the Time-Shift Operator q

The general polynomial equation is written in terms of the time-shift operator g. To
understand this time-shift operator, consider the following discrete-time difference
equation:

Y& +ayt-T) +agyt —2T) =
biut —T)+byu(t—2T)
where y(t) is the output, u(t) is the input, and T is the sample time. g is a time-shift
operator that compactly represents such difference equations using g lut)=wt-T):

y()+ alq_ly(t) + azq_2y(t) =

byq Lut) + bog 2ult)
or
Alg)y(8) = B(@)u(?)

In this case, A(q)=1 +a1q_1 +a2q_2 and B(q) = blq_1 + b2q_2 .

Note This g description is completely equivalent to the Z-transform form: g corresponds
to z.

Different Configurations of Polynomial Models

These model structures are subsets of the following general polynomial equation:

Ay =3 B Dy np)+ €@,

®
& F(q) D(g)
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The model structures differ by how many of these polynomials are included in the
structure. Thus, different model structures provide varying levels of flexibility for
modeling the dynamics and noise characteristics.

The following table summarizes common linear polynomial model structures supported by
the System Identification Toolbox product. If you have a specific structure in mind for
your application, you can decide whether the dynamics and the noise have common or
different poles. A(q) corresponds to poles that are common for the dynamic model and the
noise model. Using common poles for dynamics and noise is useful when the disturbances
enter the system at the input. F ; determines the poles unique to the system dynamics,
and D determines the poles unique to the disturbances.

Model Structure

Equation

Description

ARX

AQy®) =Y B;(Qu; (t—nk;)+e()

=1

The noise model is 1 and the
noise is coupled to tﬁe dynamics
model. ARX does not let you model
noise and dynamics independently.
Estimate an ARX model to obtain a
simple model at good signal-to-
noise ratios.

ARIX

Extends the ARX structure by
including an integrator in the noise
source, e(t). This is useful in cases
where the disturbance is not
stationary.

ARMAX

AQy(®) = B;(@u; (t—nk;)+Cl(ge®)
=1

Extends the ARX structure by
providing more flexibility for
modeling noise using the C
parameters (a moving average of
white noise). Use ARMAX when
the dominating disturbances enter
at the input. Such disturbances are
called load disturbances.
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Model Structure [Equation Description
ARIMAX 1 Extends the ARMAX structure by
Ay=Bu+C o e including an integrator in the noise

source, e(t). This is useful in cases
where the disturbance is not
stationary.

Box-Jenkins (B])

< B;(@) C(g)
)= 2Ly (¢ —nk;)+ =L e(t)
W= 2 " ) b

Provides completely independent
parameterization for the dynamics
and the noise using rational
polynomial functions.

Use B] models when the noise
does not enter at the input, but is
primary a measurement
disturbance, This structure
provides additional flexibility for
modeling noise.

Output-Error
(OE)

y(t) = 2 ?((q; u; (¢ —nk;)+e(t)

i=1"1

Use when you want to
parameterize dynamics, but do not
want to estimate a noise model.

Note In this case, the noise

models is H =1 in the general
equation and the white noise
source e(t) affects only the output.

The polynomial models can contain one or more outputs and zero or more inputs.

The System Identification app supports direct estimation of ARX, ARMAX, OE and B]J
models. You can add a noise integrator to the ARX, ARMAX and BJ forms. However, you
can use polyest to estimate all five polynomial or any subset of polynomials in the
general equation. For more information about working with pem, see “Using polyest to
Estimate Polynomial Models” on page 6-24.

Continuous-Time Representation of Polynomial Models

In continuous time, the general frequency-domain equation is written in terms of the
Laplace transform variable s, which corresponds to a differentiation operation:
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B(s) C(s)
A Y = —
(9Y(s) F(S)U(S)+D(s)

E(s)

In the continuous-time case, the underlying time-domain model is a differential equation
and the model order integers represent the number of estimated numerator and
denominator coefficients. For example, n,=3 and n,=2 correspond to the following model:

Als) =s* + a133 + a232 +ag
B(s)=bys+ by

You can only estimate continuous-time polynomial models directly using continuous-time
frequency-domain data. In this case, you must set the Ts data property to 0 to indicate
that you have continuous-time frequency-domain data, and use the oe command to
estimate an Output-Error polynomial model. Continuous-time models of other structures
such as ARMAX or BJ cannot be estimated. You can obtain those forms only by direct
construction (using idpoly), conversion from other model types, or by converting a
discrete-time model into continuous-time (d2c). Note that the OE form represents a
transfer function expressed as a ratio of numerator (B) and denominator (F) polynomials.
For such forms consider using the transfer function models, represented by idtf models.
You can estimate transfer function models using both time and frequency domain data. In
addition to the numerator and denominator polynomials, you can also estimate transport
delays. See idtf and tfest for more information.

Multi-Output Polynomial Models

For a MIMO polynomial model with ny outputs and nu inputs, the relation between inputs
and outputs for the I'* output can be written as:

A- () = ll_ (¢ — . t
JZZI i@y @ 2 Fh(q)ul( n ‘)+Dl(q>el”

The A polynomial array (Ay; i=1:ny, j=1:ny) are stored in the A property of the idpoly
object. The diagonal polynomials (A;; i=1:ny) are monic, that is, the leading coefficients
are one. The off-diagonal polynomials (A;; i #j ) contain a delay of at least one sample,
that is, they start with zero. For more details on the orders of multi-output models, see
“Polynomial Sizes and Orders of Multi-Output Polynomial Models” on page 6-27.



See Also

You can create multi-output polynomial models by using the idpoly command or
estimate them using ar, arx, bj, oe, armax, and polyest. In the app, you can estimate
such models by choosing a multi-output data set and setting the orders appropriately in
the Polynomial Models dialog box.

See Also

ar |armax | arx|bj | idpoly | oe | polyest

Related Examples

. “Estimate Polynomial Models in the App” on page 6-18
. “Estimate Polynomial Models at the Command Line” on page 6-23

More About
. “Data Supported by Polynomial Models” on page 6-8
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Data Supported by Polynomial Models
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Types of Supported Data

You can estimate linear, black-box polynomial models from data with the following
characteristics:

* Time- or frequency-domain data (iddata or idfrd data ohjects).

Note For frequency-domain data, you can only estimate ARX and OE models.

To estimate polynomial models for time-series data, see “Time Series Analysis”.
* Real data or complex data in any domain.
* Single-output and multiple-output.

You must import your data into the MATLAB workspace, as described in “Data
Preparation”.

Designating Data for Estimating Continuous-Time Models

To get a linear, continuous-time model of arbitrary structure for time-domain data, you
can estimate a discrete-time model, and then use d2c to transform it to a continuous-time
model.

For continuous-time frequency-domain data, you can estimate directly only Output-Error
(OE) continuous-time models. Other structures include noise models, which is not
supported for frequency-domain data.

Tip To denote continuous-time frequency-domain data, set the data sample time to 0. You
can set the sample time when you import data into the app or set the Ts property of the
data object at the command line.

Designating Data for Estimating Discrete-Time Models

You can estimate arbitrary-order, linear state-space models for both time- or frequency-
domain data.



See Also

Set the data property Ts to:

* 0, for frequency response data that is measured directly from an experiment.

* Equal to the Ts of the original data, for frequency response data obtained by
transforming time-domain iddata (using spa and etfe).

Tip You can set the sample time when you import data into the app or set the Ts property
of the data object at the command line.

See Also

Related Examples

. “Estimate Polynomial Models in the App” on page 6-18
. “Estimate Polynomial Models at the Command Line” on page 6-23

More About
. “What Are Polynomial Models?” on page 6-2
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Preliminary Step - Estimating Model Orders and Input
Delays

6-10

Why Estimate Model Orders and Delays?

To estimate polynomial models, you must provide input delays and model orders. If you
already have insight into the physics of your system, you can specify the number of poles
and zeros.

In most cases, you do not know the model orders in advance. To get initial model orders
and delays for your system, you can estimate several ARX models with a range of orders
and delays and compare the performance of these models. You choose the model orders
that correspond to the best model performance and use these orders as an initial guess

for further modeling.

Because this estimation procedure uses the ARX model structure, which includes the A
and B polynomials, you only get estimates for the na, nb, and nk parameters. However,
you can use these results as initial guesses for the corresponding polynomial orders and
input delays in other model structures, such as ARMAX, OE, and B]J.

If the estimated nk is too small, the leading nb coefficients are much smaller than their
standard deviations. Conversely, if the estimated nk is too large, there is a significant
correlation between the residuals and the input for lags that correspond to the missing B
terms. For information about residual analysis plots, see topics on the “Residual Analysis”

page.

J

Estimating Orders and Delays in the App

The following procedure assumes that you have already imported your data into the app
and performed any necessary preprocessing operations. For more information, see
“Represent Data”.

To estimate model orders and input delays in the System Identification app:

1 In the System Identification app, select Estimate > Polynomial Models to open the
Polynomials Models dialog box.

The ARX model is already selected by default in the Structure list.



Preliminary Step - Estimating Model Orders and Input Delays

3

Note For time-series models, select the AR model structure.

Edit the Orders field to specify a range of poles, zeros, and delays. For example,
enter the following values for na, nb, and nk:

[1:10 1:10 1:10]

Tip As a shortcut for entering 1:10 for each required model order, click Order

Selection.

u Pelynomial Maodels EI@
Structure: ARX: [na nb nk] v:
Orders: [1:10 1:10 1:10]
Equation: Ay=Bu+e
Method: @ ARX N
Domain: Continuous @ Discrete (0.1 seconds)

|:| Add noise integration ("ARL™ model)

Input delay: 0
Name:
Focus:| pradiction - Initial state: Auto -

Regularization... Covariance: | eotimate

Display progress Stop iterations
[ Estimate | [ cose | | Help |

Click Estimate to open the ARX Model Structure Selection window, which displays

the model performance for each combination of model parameters. The following

figure shows an example plot.
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=} ARX Model Structure Selection -0l x|

File Options Style  Help

Model Misfit wvs number of par's
3 Murnber of par's

Green: MDOL Choice

Elue: AIC Chaice I 3

1.5 Red: Best Fit{ | Misfit=0. 20086

na=6
nkb=19

rk=2

0.5 1 Irzert |

ad

Lnexplained output variance {in %)

0
0

Mumber of par's

Click on bars to inzpect models.

4 Select a rectangle that represents the optimum parameter combination and click
Insert to estimates a model with these parameters. For information about using this
plot, see “Selecting Model Orders from the Best ARX Structure” on page 6-15.

This action adds a new model to the Model Board in the System Identification app.
The default name of the parametric model contains the model type and the number of
poles, zeros, and delays. For example, arx692 is an ARX model with n,=6, n,=9, and
a delay of two samples.

5 Click Close to close the ARX Model Structure Selection window.

Note You cannot estimate model orders when using multi-output data.

After estimating model orders and delays, use these values as initial guesses for
estimating other model structures, as described in “Estimate Polynomial Models in the
App” on page 6-18.
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Estimating Model Orders at the Command Line

You can estimate model orders using the struc, arxstruc, and selstruc commands in
combination.

If you are working with a multiple-output system, you must use the struc, arxstruc,
and selstruc commands one output at a time. You must subreference the correct output
channel in your estimation and validation data sets.

For each estimation, you use two independent data sets—an estimation data set and a
validation data set. These independent data set can be from different experiments, or data
subsets from a single experiment. For more information about subreferencing data, see
“Select Data Channels, I/O Data and Experiments in iddata Objects” on page 2-54 and
“Select I/0O Channels and Data in idfrd Objects” on page 2-86.

For an example of estimating model orders for a multiple-input system, see “Estimating
Delays in the Multiple-Input System” in System Identification Toolbox Getting Started
Guide.

struc

The struc command creates a matrix of possible model-order combinations for a
specified range of n,, n,, and n; values.

For example, the following command defines the range of model orders and delays
na=2:5, nb=1:5, and nk=1:5:

NN = struc(2:5,1:5,1:5))
arxstruc

The arxstruc command takes the output from struc, estimates an ARX model for each
model order, and compares the model output to the measured output. arxstruc returns
the loss for each model, which is the normalized sum of squared prediction errors.

For example, the following command uses the range of specified orders NN to compute the
loss function for single-input/single-output estimation data data_e and validation data
data v:

V = arxstruc(data e,data v,NN);

Each row in NN corresponds to one set of orders:

6-13
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[na nb nk]
selstruc

The selstruc command takes the output from arxstruc and opens the ARX Model
Structure Selection window to guide your choice of the model order with the best
performance.

For example, to open the ARX Model Structure Selection window and interactively choose
the optimum parameter combination, use the following command:

selstruc(V);

For more information about working with the ARX Model Structure Selection window, see
“Selecting Model Orders from the Best ARX Structure” on page 6-15.

To find the structure that minimizes Akaike's Information Criterion, use the following
command:

nn = selstruc(V, 'AIC");
where nn contains the corresponding na, nb, and nk orders.

Similarly, to find the structure that minimizes the Rissanen's Minimum Description Length
(MDL), use the following command:

nn = selstruc(V, 'MDL");
To select the structure with the smallest loss function, use the following command:
nn = selstruc(V,0);

After estimating model orders and delays, use these values as initial guesses for
estimating other model structures, as described in “Using polyest to Estimate Polynomial
Models” on page 6-24.

Estimating Delays at the Command Line

The delayest command estimates the time delay in a dynamic system by estimating a
low-order, discrete-time ARX model and treating the delay as an unknown parameter.

By default, delayest assumes that n,=n,=2 and that there is a good signal-to-noise
ratio, and uses this information to estimate n.



Preliminary Step - Estimating Model Orders and Input Delays

To estimate the delay for a data set data, type the following at the prompt:
delayest(data);

If your data has a single input, MATLAB computes a scalar value for the input delay—
equal to the number of data samples. If your data has multiple inputs, MATLAB returns a
vector, where each value is the delay for the corresponding input signal.

To compute the actual delay time, you must multiply the input delay by the sample time of
the data.

You can also use the ARX Model Structure Selection window to estimate input delays and
model order together, as described in “Estimating Model Orders at the Command Line”
on page 6-13.

Selecting Model Orders from the Best ARX Structure

You generate the ARX Model Structure Selection window for your data to select the best-
fit model.

For a procedure on generating this plot in the System Identification app, see “Estimating
Orders and Delays in the App” on page 6-10. To open this plot at the command line, see
“Estimating Model Orders at the Command Line” on page 6-13.

The following figure shows a sample plot in the ARX Model Structure Selection window.

You use this plot to select the best-fit model.
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ARX Model Structure Selection EI@

File Options Style  Help
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Click on bars to inspect models.

The horizontal axis is the total number of parameters — n, + n;,.

The vertical axis, called Unexplained output variance (in %), is the portion of the
output not explained by the model—the ARX model prediction error for the number of
parameters shown on the horizontal axis.

The prediction error is the sum of the squares of the differences between the
validation data output and the model one-step-ahead predicted output.

ny is the delay.

Three rectangles are highlighted on the plot in green, blue, and red. Each color indicates
a type of best-fit criterion, as follows:

Red — Best fit minimizes the sum of the squares of the difference between the
validation data output and the model output. This rectangle indicates the overall best
fit.

Green — Best fit minimizes Rissanen MDL criterion.
Blue — Best fit minimizes Akaike AIC criterion.



See Also

In the ARX Model Structure Selection window, click any bar to view the orders that give
the best fit. The area on the right is dynamically updated to show the orders and delays
that give the best fit.

For more information about the AIC criterion, see “Loss Function and Model Quality
Metrics” on page 1-64.

See Also

Related Examples
. “Estimate Polynomial Models in the App” on page 6-18

. “Estimate Polynomial Models at the Command Line” on page 6-23

. “Model Structure Selection: Determining Model Order and Input Delay” on page 4-
48

More About

. “What Are Polynomial Models?” on page 6-2
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Estimate Polynomial Models in the App

6-18

Prerequisites

Before you can perform this task, you must have:

1

Imported data into the System Identification app. See “Import Time-Domain Data into
the App” on page 2-16. For supported data formats, see “Data Supported by
Polynomial Models” on page 6-8.

Performed any required data preprocessing operations. To improve the accuracy of
your model, you should detrend your data. Removing offsets and trends is especially
important for Output-Error (OE) models and has less impact on the accuracy of models
that include a flexible noise model structure, such as ARMAX and Box-Jenkins. See
“Ways to Prepare Data for System Identification” on page 2-6.

Select a model structure, model orders, and delays. For a list of available structures,
see “What Are Polynomial Models?” on page 6-2 For more information about how to
estimate model orders and delays, see “Estimating Orders and Delays in the App” on
page 6-10. For multiple-output models, you must specify order matrices in the
MATLAB workspace, as described in “Polynomial Sizes and Orders of Multi-Output
Polynomial Models” on page 6-27.

In the System Identification app, select Estimate > Polynomial Models to open the
Polynomial Models dialog box.



Estimate Polynomial Models in the App

Pelynomial Models E\@
Structure: ARX: [na nb nk] i
Orders: [441]
Equation: Ay=Bu+e
Method: @ ARX 0\
Domain: Continuous @ Discrete (0.1 seconds)

Add noise integration ("ARK" model)

Input delay: 0
Name: arx441
FOCUS:| pregiction - Initial state: Auto -

Regularization... Covariance! | pofimate =

Display progress St erations
| Order Selection | i Qrder Editor,.. ]
[ Estmate | [ close | | Hep |

For more information on the options in the dialog box, click Help.

In the Structure list, select the polynomial model structure you want to estimate
from the following options:

e ARX:[na nb nk]

e ARMAX:[na nb nc nk]

e OE:[nb nf nk]

e BJ:[nb nc nd nf nk]

This action updates the options in the Polynomial Models dialog box to correspond

with this model structure. For information about each model structure, see “What Are
Polynomial Models?” on page 6-2.

6-19



6 Identifying Input-Output Polynomial Models

6-20

Note For time-series data, only AR and ARMA models are available. For more
information about estimating time-series models, see “Time Series Analysis”.

In the Orders field, specify the model orders and delays, as follows:

* For single-output polynomial models, enter the model orders and delays according
to the sequence displayed in the Structure field. For multiple-input models,
specify nb and nk as row vectors with as many elements as there are inputs. If
you are estimating B] and OE models, you must also specify nf as a vector.

For example, for a three-input system, nb can be [1 2 4], where each element
corresponds to an input.

* For multiple-output models, enter the model orders as described in “Polynomial
Sizes and Orders of Multi-Output Polynomial Models” on page 6-27.

Tip To enter model orders and delays using the Order Editor dialog box, click Order
Editor.

(ARX models only) Select the estimation Method as ARX or IV (instrumental variable
method). For information about the algorithms, see “Polynomial Model Estimation
Algorithms” on page 6-34.

(ARX, ARMAX, and BJ models only) Check the Add noise integration check box to
add an integrator to the noise source, e.

Specify the delay using the Input delay edit box. The value must be a vector of
length equal to the number of input channels in the data. For discrete-time
estimations (any estimation using data with nonzero sample-time), the delay must be
expressed in the number of lags. These delays are separate from the “in-model”
delays specified by the nk order in the Orders edit box.

In the Name field, edit the name of the model or keep the default.

In the Focus list, select how to weigh the relative importance of the fit at different
frequencies. For more information about each option, see “Assigning Estimation
Weightings” on page 6-21.

In the Initial state list, specify how you want the algorithm to treat initial conditions.
For more information about the available options, see “Specifying Initial Conditions
for Iterative Estimation Algorithms” on page 5-48.

Tip If you get an inaccurate fit, try setting a specific method for handling initial
states rather than choosing it automatically.




Estimate Polynomial Models in the App

10

11

12

13

14

In the Covariance list, select Estimate if you want the algorithm to compute
parameter uncertainties. Effects of such uncertainties are displayed on plots as
model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty computation for
large, multiple-output models might reduce computation time.

Click Regularization to obtain regularized estimates of model parameters. Specify
the regularization constants in the Regularization Options dialog box. To learn more,
see “Regularized Estimates of Model Parameters” on page 1-48.

(ARMAX, OE, and BJ models only) To view the estimation progress in the MATLAB
Command Window, select the Display progress check box. This launches a progress
viewer window in which estimation progress is reported.

Click Estimate to add this model to the Model Board in the System Identification
app.

(Prediction-error method only) To stop the search and save the results after the
current iteration has been completed, click Stop Iterations. To continue iterations

from the current model, click the Continue iter button to assign current parameter
values as initial guesses for the next search.

Assigning Estimation Weightings

You can specify how the estimation algorithm weighs the fit at various frequencies. In the
app, set Focus to one of the following options:

Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges. Corresponds to
minimizing one-step-ahead prediction, which typically favors the fit over a short time
interval. Optimized for output prediction applications.

Simulation — Uses the input spectrum to weigh the relative importance of the fit in
a specific frequency range. Does not use the noise model to weigh the relative
importance of how closely to fit the data in various frequency ranges. Optimized for
output simulation applications.

Stability — Estimates the best stable model. For more information about model
stability, see “Unstable Models” on page 17-118.

Filter — Specify a custom filter to open the Estimation Focus dialog box, where you
can enter a filter, as described in “Simple Passband Filter” on page 2-132 or “Defining
a Custom Filter” on page 2-132. This prefiltering applies only for estimating the
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dynamics from input to output. The disturbance model is determined from the
unfiltered estimation data.

Next Steps

» Validate the model by selecting the appropriate check box in the Model Views area of
the System Identification app. For more information about validating models, see
“Validating Models After Estimation” on page 17-3.

» Export the model to the MATLAB workspace for further analysis by dragging it to the
To Workspace rectangle in the System Identification app.

Tip For ARX and OE models, you can use the exported model for initializing a
nonlinear estimation at the command line. This initialization may improve the fit of the
model. See “Initialize Nonlinear ARX Estimation Using Linear Model” on page 11-25,
and “Initialize Hammerstein-Wiener Estimation Using Linear Model” on page 12-8.

See Also

Related Examples

. “Preliminary Step - Estimating Model Orders and Input Delays” on page 6-10
. “Estimate Polynomial Models at the Command Line” on page 6-23

More About

. “What Are Polynomial Models?” on page 6-2
. “Data Supported by Polynomial Models” on page 6-8
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Estimate Polynomial Models at the Command Line

Prerequisites

Before you can perform this task, you must have

Input-output data as an iddata object or frequency response data as an frd or idfrd
object. See “Representing Time- and Frequency-Domain Data Using iddata Objects” on
page 2-50. For supported data formats, see “Data Supported by Polynomial Models” on
page 6-8.

Performed any required data preprocessing operations. To improve the accuracy of
results when using time domain data, you can detrend the data or specify the input/
output offset levels as estimation options. Removing offsets and trends is especially
important for Output-Error (OE) models and has less impact on the accuracy of models
that include a flexible noise model structure, such as ARMAX and Box-Jenkins. See
“Ways to Prepare Data for System Identification” on page 2-6.

Select a model structure, model orders, and delays. For a list of available structures,
see “What Are Polynomial Models?” on page 6-2 For more information about how to
estimate model orders and delays, see “Estimating Model Orders at the Command
Line” on page 6-13 and “Estimating Delays at the Command Line” on page 6-14. For
multiple-output models, you must specify order matrices in the MATLAB workspace, as
described in “Polynomial Sizes and Orders of Multi-Output Polynomial Models” on
page 6-27.

Using arx and iv4 to Estimate ARX Models

You can estimate single-output and multiple-output ARX models using the arx and iv4
commands. For information about the algorithms, see “Polynomial Model Estimation
Algorithms” on page 6-34.

You can use the following general syntax to both configure and estimate ARX models:

o°

o° 3

3

Using ARX method
= arx(data, [na nb nk],opt);
Using IV method
= iv4(data, [na nb nk],opt);

data is the estimation data and [na nb nk] specifies the model orders, as discussed in
“What Are Polynomial Models?” on page 6-2.
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The third input argument opt contains the options for configuring the estimation of the
ARX model, such as handling of initial conditions and input offsets. You can create and
configure the option set opt using the arxOptions and iv40ptions commands. The
three input arguments can also be followed by name and value pairs to specify optional
model structure attributes such as InputDelay, I0Delay, and IntegrateNoise.

To get discrete-time models, use the time-domain data (iddata object).

Note Continuous-time polynomials of ARX structure are not supported.

For more information about validating you model, see “Validating Models After
Estimation” on page 17-3.

You can use pem or polyest to refine parameter estimates of an existing polynomial
model, as described in “Refine Linear Parametric Models” on page 4-6.

For detailed information about these commands, see the corresponding reference page.

Tip You can use the estimated ARX model for initializing a nonlinear estimation at the
command line, which improves the fit of the model. See “Initialize Nonlinear ARX
Estimation Using Linear Model” on page 11-25.

Using polyest to Estimate Polynomial Models

You can estimate any polynomial model using the iterative prediction-error estimation
method polyest. For Gaussian disturbances of unknown variance, this method gives the
maximum likelihood estimate. The resulting models are stored as idpoly model objects.

Use the following general syntax to both configure and estimate polynomial models:
m = polyest(data,[na nb nc nd nf nk],opt,Name,Value);

where data is the estimation data. na, nb, nc, nd, nf are integers that specify the model
orders, and nk specifies the input delays for each input.For more information about model
orders, see “What Are Polynomial Models?” on page 6-2.

Tip You do not need to construct the model object using idpoly before estimation.




Estimate Polynomial Models at the Command Line

If you want to estimate the coefficients of all five polynomials, A, B, C, D, and F, you must
specify an integer order for each polynomial. However, if you want to specify an ARMAX
model for example, which includes only the A, B, and C polynomials, you must set nd and
nf to zero matrices of the appropriate size. For some simpler configurations, there are
dedicated estimation commands such as arx, armax, bj, and oe, which deliver the
required model by using just the required orders. For example, oe(data, [nb nf
nk],opt) estimates an output-error structure polynomial model.

Note To get faster estimation of ARX models, use arx or iv4 instead of polyest.

In addition to the polynomial models listed in “What Are Polynomial Models?” on page 6-
2, you can use polyest to model the ARARX structure—called the generalized least-
squares model—by setting nc=nf=0. You can also model the ARARMAX structure—called
the extended matrix model—Dby setting nf=0.

The third input argument, opt, contains the options for configuring the estimation of the
polynomial model, such as handling of initial conditions, input offsets and search
algorithm. You can create and configure the option set opt using the polyestOptions
command. The three input arguments can also be followed by name and value pairs to
specify optional model structure attributes such as InputDelay, I0Delay, and
IntegrateNoise.

For ARMAX, Box-Jenkins, and Output-Error models—which can only be estimated using
the iterative prediction-error method—use the armax, bj, and oe estimation commands,
respectively. These commands are versions of polyest with simplified syntax for these
specific model structures, as follows:

m = armax(Data, [na nb nc nk]l);
m = oe(Data, [nb nf nk]);
m = bj(Data,[nb nc nd nf nk]);

Similar to polyest, you can specify as input arguments the option set configured using
commands armaxOptions, oeOptions, and bjOptions for the estimators armax, oe,
and bj respectively. You can also use name and value pairs to configure additional model
structure attributes.

Tip If your data is sampled fast, it might help to apply a lowpass filter to the data before
estimating the model, or specify a frequency range for the WeightingFilter property
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during estimation. For example, to model only data in the frequency range 0-10 rad/s, use
the WeightingFilter property, as follows:

opt = oeOptions('WeightingFilter',[0 10]);
m = oe(Data, [nb nf nkl, opt);

For more information about validating your model, see “Validating Models After
Estimation” on page 17-3.

You can use pem or polyest to refine parameter estimates of an existing polynomial
model (of any configuration), as described in “Refine Linear Parametric Models” on page
4-6.

For more information, see polyest, pem and idpoly.

See Also

Related Examples

. “Estimate Models Using armax” on page 6-35

. “Preliminary Step - Estimating Model Orders and Input Delays” on page 6-10
. “Estimate Polynomial Models in the App” on page 6-18

More About

. “What Are Polynomial Models?” on page 6-2

. “Data Supported by Polynomial Models” on page 6-8

. “Loss Function and Model Quality Metrics” on page 1-64
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Polynomial Sizes and Orders of Multi-Output Polynomial

Model

S

For a model with Ny (Ny > 1) outputs and Nu inputs, the polynomials A, B, C, D, and F
are specified as cell arrays of row vectors. Each entry in the cell array contains the
coefficients of a particular polynomial that relates input, output, and noise values. Orders
are matrices of integers used as input arguments to the estimation commands.

Polynomi
al

Dimension Relation Described Orders

A

N,-by-N, array of row vectors A{i, j} contains coefficients of na: N,-by-
relation between output y; and N, matrix
output y; such that
each entry
contains
the degree
of the
correspon
ding A
polynomial
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Polynomi |[Dimension Relation Described Orders
al

B N,-by-N, array of row vectors B{i, j} contain coefficients of nk: Ny-by-
relations between output y; and input|N, matrix
u; such that
each entry
contains
the
number of
leading
fixed zeros
of the
correspon
ding B
polynomial
(input
delay).

nb: N,-by-
N, matrix
such
nb(i,j)

Iength(
B{1i,3})-
nk(i,j).
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Polynomi |Dimension

Relation Described

Orders

c,D

N,-by-1 array of row vectors

C{i} and D{i} contain coefficients
of relations between output y; and
noise e;

nc and nd
are Ny-
by-1
matrices
such that
each entry
contains
the degree
of the
correspon
ding C and
D
polynomial

respectivel
Y.

N,-by-N, array of row vectors

F{i,j} contains coefficients of
relations between output y; and input
&

nf: N,-by-
N, matrix
such that
each entry
contains
the degree
of the
correspon
ding F
polynomial

For more information, see idpoly.

For example, consider the ARMAX set of equations for a 2 output, 1 input model:

y1®) +0.5 y1(t-1) + 0.9 yo(t-1) + 0.1 yo(t-2) = ut) + 5u(t-1) + 2 ut-2) +e;(t) +0.01 e;(t-1)

Yo (£) + 0.05 yo(t-1) + 0.3 yo(t-2) =10u(t-2) +ey(t) + 0.1 e5(t-1) + 0.02 ey (t-2)

y; andy, represent the two outputs and u represents the input variable. e; and e,
represent the white noise disturbances on the outputs, y; and y,, respectively. To
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represent these equations as an ARMAX form polynomial using idpoly, configure the A,
B, and C polynomials as follows:

A = cell(2,2);

A{1,1} = [1 0.5];
A{1,2} = [0 0.9 0.1];
A{2,1} = [0];

A{2,2} = [1 0.05 0.3];

B = cell(2,1);
B{1,1} = [1 5 2];
B{2,1} = [0 0 10];

C = cell(2,1);
C{1} = [1 0.0171;
C{2} = [1 0.1 0.02];

model

idpoly(A,B,C)

model =
Discrete-time ARMAX model:
Model for output number 1: A(z)y 1(t)
A(z) =1+ 0.5 z~-1

- A i(z)y i(t) + B(z)u(t) + C(z)e 1(t)

A2(z) =0.9 z°-1 +0.1 z°-2
B(z) =1+5 z"-1+ 2 z™-2
C(z) =1+ 0.01 z~-1

Model for output number 2: A(

)y_2(t) = B(z)u(t) + C(z)e_2(t)
A(z) =1+ 0.05 z~-1 + 0.3 z©

Z —
z™-2

B(z) = 10 z~-2

(@}
—
N
-
Il

1+0.12z°1+0.02 2z"-2

Sample time: unspecified

Parameterization:
Polynomial orders: na=[1 2;0 2] nb=[3;1] nc=[1;2]
nk=[0;2]
Number of free coefficients: 12
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:
Created by direct construction or transformation. Not estimated.

model is a discrete-time ARMAX model with unspecified sample-time. When estimating
such models, you need to specify the orders of these polynomials as input arguments.

In the System Identification app, you can enter the matrices directly in the Orders field.

At the command line, define variables that store the model order matrices and specify
these variables in the model-estimation command.

Tip To simplify entering large matrices orders in the System Identification app, define the
variable NN=[NA NB NK] at the command line. You can specify this variable in the
Orders field.

See Also

ar |armax | arx | bj | idpoly | oe | polyest

Related Examples
. “Estimate Polynomial Models in the App” on page 6-18
. “Estimate Polynomial Models at the Command Line” on page 6-23

More About
. “What Are Polynomial Models?” on page 6-2
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Specifying Initial States for Iterative Estimation
Algorithms

6-32

When you use the pem or polyest to estimate ARMAX, Box-Jenkins (B]), Output-Error
(OE), you must specify how the algorithm treats initial conditions.

This information supports the estimation procedures “Estimate Polynomial Models in the
App” on page 6-18 and “Using polyest to Estimate Polynomial Models” on page 6-24.

In the System Identification app, for ARMAX, OE, and B] models, set Initial state to one
of the following options:

* Auto — Automatically chooses Zero, Estimate, or Backcast based on the
estimation data. If initial states have negligible effect on the prediction errors, the
initial states are set to zero to optimize algorithm performance.

e Zero — Sets all initial states to zero.

* Estimate — Treats the initial states as an unknown vector of parameters and
estimates these states from the data.

* Backcast — Estimates initial states using a smoothing filter.

At the command line, specify the initial conditions as an estimation option. Use
polyestOptions to configure options for the polyest command, armaxOptions for
the armax command etc. Set the InitialCondition option to the desired value in the
option set. For example, use this command to estimate an ARMAX model and set the
initial states to zero:

opt = armaxOptions('InitialCondition', 'zero');
m = armax(data,[2 2 2 3],o0pt);

For a complete list of values for the InitialCondition estimation option, see the
armaxOptions reference page.

See Also
armaxOptions | arxOptions | bjOptions | iv40ptions | oeOptions |
polyestOptions



See Also

Related Examples
. “Estimate Polynomial Models in the App” on page 6-18
. “Estimate Polynomial Models at the Command Line” on page 6-23
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Polynomial Model Estimation Algorithms

6-34

For linear ARX and AR models, you can choose between the ARX and IV algorithms. ARX
implements the least-squares estimation method that uses QR-factorization for
overdetermined linear equations. IV is the instrument variable method. For more
information about IV, see the section on variance-optimal instruments in System
Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR,
1999.

The ARX and IV algorithms treat noise differently. ARX assumes white noise. However, the
instrumental variable algorithm, IV, is not sensitive to noise color. Thus, use IV when the
noise in your system is not completely white and it is incorrect to assume white noise. If
the models you obtained using ARX are inaccurate, try using IV.

Note AR models apply to time-series data, which has no input. For more information, see
“Time Series Analysis”. For more information about working with AR and ARX models,
see “Input-Output Polynomial Models”.

See Also

ar|arx|ivéd

More About
. “What Are Polynomial Models?” on page 6-2
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Estimate Models Using armax

This example shows how to estimate a linear, polynomial model with an ARMAX structure
for a three-input and single-output (MISO) system using the iterative estimation method
armax. For a summary of all available estimation commands in the toolbox, see “Model
Estimation Commands” on page 1-44.

Load a sample data set z8 with three inputs and one output, measured at 1 -second
intervals and containing 500 data samples.

load iddata8

Use armax to both construct the idpoly model object, and estimate the parameters:

Algivit) = Z Bilgluit—nk;) + Clglelr)

i=1

Typically, you try different model orders and compare results, ultimately choosing the
simplest model that best describes the system dynamics. The following command
specifies the estimation data set, z8 , and the orders of the A, B, and C polynomials as
na, nb, and nc, respectively. nk of [0 0 O] specifies that there is no input delay for all
three input channels.

opt = armaxOptions;

opt.Focus = 'simulation';
opt.SearchOptions.MaxIterations = 50;
opt.SearchOptions.Tolerance = le-5;

na = 4;
nb = [3 2 3];
nc = 4;
nk = [0 0 0];

m_armax = armax(z8, [na nb nc nk], opt);

Focus, Tolerance, and MaxIter are estimation options that configure the estimation
objective function and the attributes of the search algorithm. The Focus option specifies
whether the model is optimized for simulation or prediction applications. The Tolerance
and MaxIter search options specify when to stop estimation. For more information about
these properties, see the armaxOptions reference page.

armax is a version of polyest with simplified syntax for the ARMAX model structure.
The armax method both constructs the idpoly model object and estimates its
parameters.
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View information about the resulting model object.
m_armax
m armax =

Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
A(z) =1 - 1.284 z~-1 + 0.3048 z"~-2 + 0.2648 z~-3 - 0.05708 z~-4

Bl(z) = -0.07547 + 1.087 z*~-1 + 0.7166 z"-2
B2(z) = 1.019 + 0.1142 z~-1
B3(z) = -0.06739 + 0.06828 z~-1 + 0.5509 z"-2

C(z) =1 - 0.06096 z~-1 - 0.1296 z"-2 + 0.02489 z~-3 - 0.04699 z~-4
Sample time: 1 seconds
Parameterization:

Polynomial orders: na=4  nb=[3 2 3] nc=4 nk=[0 0 0]
Number of free coefficients: 16

Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using ARMAX on time domain data "z8".
Fit to estimation data: 80.86% (simulation focus)
FPE: 2.888, MSE: 0.9868

m_armax is an idpoly model object. The coefficients represent estimated parameters of
this polynomial model. You can use present(m_armax) to show additional information

about the model, including parameter uncertainties.

View all property values for this model.

get(m_armax)

A: [1 -1.2836 0.3048 0.2648 -0.0571]
B: {[-0.0755 1.0870 0.7166] [1.0188 0.1142] [1x3 double]}
C: [1 -0.0610 -0.1296 0.0249 -0.0470]
D: 1
F: {[11 [1] [11}
IntegrateNoise: 0
Variable: 'z"~-1'
IODelay: [0 0 0]
Structure: [1x1 pmodel.polynomial]
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NoiseVariance:
Report:
InputDelay:
OutputDelay:
Ts:

TimeUnit:
InputName:
InputUnit:
InputGroup:
OutputName:
OutputUnit:
OutputGroup:
Notes:
UserData:
Name:
SamplingGrid:

2.7984

[1x1 idresults.polyest]
[3x1 double]
0

1

'seconds'
{3x1 cell}
{3x1 cell}
[1x1 struct]
{'yl'}

{""}

[1x1 struct]
[0x1 string]
[]

[1x1 struct]

The Report model property contains detailed information on the estimation results. To
view the properties and values inside Report, use dot notation. For example:

m_armax.Report

ans

Status:

Method:
InitialCondition:
Fit:

Parameters:
OptionsUsed:
RandState:
DataUsed:
Termination:

'Estimated using ARMAX with simulation focus'
'ARMAX'

‘zero'

[1x1 struct]

[1x1 struct]

[1x1 idoptions.polyest]

[1x1 struct]

[1x1 struct]

[1x1 struct]

This action displays the contents of estimation report such as model quality measures
(Fit), search termination criterion (Termination), and a record of estimation data
(DataUsed) and options (OptionsUsed).
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See Also

Related Examples

. “Estimate Polynomial Models at the Command Line” on page 6-23

More About
. “What Are Polynomial Models?” on page 6-2
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What Are State-Space Models?

7-2

Definition of State-Space Models

State-space models are models that use state variables to describe a system by a set of
first-order differential or difference equations, rather than by one or more nth-order
differential or difference equations. State variables x(t) can be reconstructed from the
measured input-output data, but are not themselves measured during an experiment.

The state-space model structure is a good choice for quick estimation because it requires
you to specify only one input, the model order, n. The model order is an integer equal to
the dimension of x(t) and relates to, but is not necessarily equal to, the number of delayed
inputs and outputs used in the corresponding linear difference equation.

Continuous-Time Representation

It is often easier to define a parameterized state-space model in continuous time because
physical laws are most often described in terms of differential equations. In continuous-
time, the state-space description has the following form:

x@) = Fx@t)+ Gu@®) + Kw(t)
y(&) = Hx(t) + Du(t) + w(t)
x(0) = x0

The matrices F, G, H, and D contain elements with physical significance—for example,
material constants. x0 specifies the initial states.

Note K = 0 gives the state-space representation of an Output-Error model. For more
information, see “What Are Polynomial Models?” on page 6-2.

You can estimate continuous-time state-space model using both time- and frequency-
domain data.
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Discrete-Time Representation

The discrete-time state-space model structure is often written in the innovations form that
describes noise:

x(RT +T)=Ax(kT)+ Bu(kT)+ Ke(kT)
y(kT)=Cx(RT)+ DukT)+e(kT)
x(0) = x0

where T is the sample time, u(kT) is the input at time instant kT, and y(kT) is the output at
time instant kT.

Note K=0 gives the state-space representation of an Output-Error model. For more
information about Output-Error models, see “What Are Polynomial Models?” on page 6-2.

Discrete-time state-space models provide the same type of linear difference relationship
between the inputs and outputs as the linear ARMAX model, but are rearranged such that
there is only one delay in the expressions.

You cannot estimate a discrete-time state-space model using continuous-time frequency-
domain data.

The innovations form uses a single source of noise, e(kT), rather than independent
process and measurement noise. If you have prior knowledge about the process and
measurement noise, you can use linear grey-box estimation to identify a state-space
model with structured independent noise sources. For more information, see “Identifying
State-Space Models with Separate Process and Measurement Noise Descriptions” on
page 13-70.

Relationship Between Continuous-Time and Discrete-Time
State Matrices

The relationships between the discrete state-space matrices A, B, C, D, and K and the

continuous-time state-space matrices F, G, H, D, and K are given for piece-wise-constant
input, as follows:
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These relationships assume that the input is piece-wise-constant over time intervals
RT <t<(k+DT.

The exact relationship between K and K is complicated. However, for short sample time
T, the following approximation works well:

T
K= jeFTIN{dT
0
State-Space Representation of Transfer Functions
For linear models, the general model description is given by:

y=Gu+ He

G is a transfer function that takes the input u to the output y. H is a transfer function that
describes the properties of the additive output noise model.

The relationships between the transfer functions and the discrete-time state-space
matrices on page 7-3 are given by the following equations:

G(q)=Cql,, -AB+D
H(q)=Cql,, -A"'K+1,,

Here, I, is the nx-by-nx identity matrix, and nx is the number of states. I,,, is the ny-by-ny
identity matrix, and ny is the dimension of y and e.

The state-space representation in the continuous-time case is similar.



See Also

See Also

Related Examples

. “Estimate State-Space Models in System Identification App” on page 7-13
. “Estimate State-Space Models at the Command Line” on page 7-23

More About

. “Data Supported by State-Space Models” on page 7-6
. “Supported State-Space Parameterizations” on page 7-7

7-3



7 Identifying State-Space Models

Data Supported by State-Space Models

You can estimate linear state-space models from data with the following characteristics:

* Time- or frequency-domain data

To estimate state-space models for time-series data, see “Time Series Analysis”.
* Real data or complex data
» Single-output and multiple-output

To estimate state-space models, you must first import your data into the MATLAB
workspace, as described in “Data Preparation”.



Supported State-Space Parameterizations

Supported State-Space Parameterizations

System Identification Toolbox software supports the following parameterizations that
indicate which parameters are estimated and which remain fixed at specific values:

Free parameterization results in the estimation of all elements of the system
matrices A, B, C, D, and K. See “Estimate State-Space Models with Free-
Parameterization” on page 7-29.

Canonical parameterization represents a state-space system in a reduced-
parameter form where many entries of the A, B and C matrices are fixed to zeros and
ones. The free parameters appear in only a few of the rows and columns in the system
matrices A, B, C and D. The software supports companion, modal decomposition and
observability canonical forms. See “Estimate State-Space Models with Canonical
Parameterization” on page 7-30.

Structured parameterization lets you specify the fixed values of specific parameters
and exclude these parameters from estimation. You choose which entries of the system
matrices to estimate and which to treat as fixed. See “Estimate State-Space Models
with Structured Parameterization” on page 7-32.

Completely arbitrary mapping of parameters to state-space matrices. See “Estimate
Linear Grey-Box Models” on page 13-8.

See Also

“Estimate State-Space Models with Free-Parameterization” on page 7-29
“Estimate State-Space Models with Canonical Parameterization” on page 7-30
“Estimate State-Space Models with Structured Parameterization” on page 7-32
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Estimate State-Space Model With Order Selection

To estimate a state-space model, you must provide a value of its order, which represents
the number of states. When you do not know the order, you can search and select an
order using the following procedures.

Estimate Model With Selected Order in the App

You must have already imported your data into the app, as described in “Represent Data”.
To estimate model orders for a specific input delay:

1 In the System Identification app, select Estimate > State Space Models to open the
State Space Models dialog box.

2 Select the Pick best value in the range option and specify a range in the adjacent
field. The default range is 1:10.

-“\ State Space Models EI@

Model name: ss1 &
todel Order:

Specify value: 4

@) Pick bestwalue inthe ranged | 110

@ Continuous-time Discrete-time {Ts = 0L1)

» Model Structure Configuration

P} Estimation Options

Estimate | | Clase | | Help




Estimate State-Space Model With Order Selection

(Optional) Expand Model Structure Configuration to specify additional attributes
of the model structure when searching for best orders. Such attributes include
disturbance component, input delays, presence of feedthrough, and parameterization.

Expand Estimation Options and verify that Subspace (N4SID) is selected as the
Method.

Click Estimate.
This action opens the Model Order Selection window, which displays the relative
measure of how much each state contributes to the input-output behavior of the

model (log of singular values of the covariance matrix). The following figure shows an
example plot.

Click on a bar to select order.

- " Red: Default Choice (2)

435 1 Order:
o 4 1 2
% - N4Weight
= [151010]
&=
En 3 . Singular Value:
[75] 66.14
s 25 .
g | Insert |
2 4
| Close |
15 g
[ e
4 L [
0 5 10 15

Model Order

Select the rectangle that represents the cutoff for the states on the left that provide a
significant contribution to the input-output behavior.

In the previous figure, states 1 and 2 provide the most significant contribution. The
contributions to the right of state 2 drop significantly. Click Insert to estimate a
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model with this order. Red indicates the recommended choice. For information about
using the Model Order Selection window, see “Using the Model Order Selection
Window” on page 7-11.

This action adds a new model to the Model Board in the System Identification app.
The default name of the model is ss1. You can use this model as an initial guess for
estimating other state-space models, as described in “Estimate State-Space Models in
System Identification App” on page 7-13.

7 Click Close to close the window.

Estimate Model With Selected Order at the Command Line

You can estimate a state-space model with selected order using n4sid, ssest or
ssregest.

Use the following syntax to specify the range of model orders to try for a specific input
delay:

m = nd4sid(data,nl:n2);
where data is the estimation data set, nl and n2 specify the range of orders.

The command opens the Model Order Selection window. For information about using this
plot, see “Using the Model Order Selection Window” on page 7-11.

Alternatively, use ssest or ssregest:

ml = ssest(data,nn)
m2 = ssregest(data,nn)
where nn = [nl,n2,...,nN] specifies the vector or range of orders you want to try.

n4sid and ssregest estimate a model whose sample time matches that of data by
default, hence a discrete-time model for time-domain data. ssest estimates a continuous-
time model by default. You can change the default setting by including the Ts name-value
pair input arguments in the estimation command. For example, to estimate a discrete-
time model of optimal order, assuming Data.Ts>0, type:

model = ssest(data,nn, 'Ts',data.Ts);
or

model

ssregest(data,nn, 'Ts',data.Ts);



Estimate State-Space Model With Order Selection

To automatically select the best order without opening the Model Order Selection window,
typem = n4sid(data, 'best'), m = ssest(data, 'best') orm =
ssregest(data, 'best').

Using the Model Order Selection Window

The following figure shows a sample Model Order Selection window.

Click on a bar to select order.

5
T Red: Default Choice (2)
45} 1 Order:
w 4 I 2
% ie N4Weight
= 7 [15 10 10]
m
gx. 3t 1 Singular Value:
(7 66.14
s 25}
j:l | Insert |
2l _
| Close |
15} 1
[ e —
q L [1
0 5y 10 15

Model Order

You use this plot to decide which states provide a significant relative contribution to the
input-output behavior, and which states provide the smallest contribution. Based on this
plot, select the rectangle that represents the cutoff for the states on the left that provide a
significant contribution to the input-output behavior. The recommended choice is shown
in red. To learn how to generate this plot, see “Estimate Model With Selected Order in the
App” on page 7-8 or “Estimate Model With Selected Order at the Command Line” on page
7-10.
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The horizontal axis corresponds to the model order n. The vertical axis, called Log of

Singular values, shows the singular values of a covariance matrix constructed from the
observed data.

For example, in the previous figure, states 1 and 2 provide the most significant
contribution. However, the contributions of the states to the right of state 2 drop
significantly. This sharp decrease in the log of the singular values after n=2 indicates that
using two states is sufficient to get an accurate model.
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Estimate State-Space Models in System Identification
App
Prerequisites

* Import data into the System Identification app. See “Represent Data”. For supported
data formats, see “Data Supported by State-Space Models” on page 7-6.

* Perform data preprocessing. To improve the accuracy of your model, you detrend your
data. See “Ways to Prepare Data for System Identification” on page 2-6.

1 Select Estimate > State Space Models.

Import data -
‘l Operations
ol E <— Preprocess -
z1 1 .

ey

z1
Working Data

E=stimate —= i
Data Views Estimate —=
Transfer Function Models...
D Time plot

State Space Medels...

[7] pata spectra Process Models. .
Pohlynomial Models. ..
Nonlinear Models. ..
Spectral Models...

|:| Freguency function

The State Space Models dialog box opens.
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4\ State Space Models EI@

Model name: ss1 &
Model Order:

4

() Pick best value in the range: | 1:10

@ Continuous-time () Discrete-time (Ts = 0.1)

} Model Structure Configuration

4

jon Options

Tip For more information on the options in the dialog box, click Help.

Specify a model name by clicking ¥ adjacent to Model name. The name of the
model must be unique in the Model Board.

Select the Specify value option (if not already selected) and specify the model order
in the edit field. Model order refers to the number of states in the state-space model.

Tip When you do not know the model order, search for and select an order. For more
information, see “Estimate Model With Selected Order in the App” on page 7-8.

Select the Continuous-time or Discrete-time option to specify the type of model to
estimate.

You cannot estimate a discrete-time model if the working data is continuous-time
frequency-domain data.

Expand the Model Structure Configuration section to select the model structure,
such as canonical form, whether to estimate the disturbance component (K matrix)
and specification of feedthrough and input delays.



Estimate State-Space Models in System Identification App

w Model Structure Configuration

Form: | Free -

Include disturbance component (K)

Input Input Delay Feedthrough (D)
ul 0 | =

For more information about the type of state-space parameterization, see “Supported
State-Space Parameterizations” on page 7-7.

Expand the Estimation Options section to select the estimation method and
configure the cost function.

Select one of the following Estimation Method from the drop-down list and

configure the options. For more information about these methods, see “State-Space
Model Estimation Methods” on page 7-42.
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Subspace (N4SID)

w Estimation Options

Estimation Method: | Subspace (N4SID) 7
M4Weight: Aute T | NdHorizon: |Aute
Focus:

[] Allow unstable models
Estimate covariance

Display progress

Initial states: Aute x|

a In the N4Weight drop-down list, specify the weighting scheme used for singular-

value decomposition by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and Prediction Error
Minimization (PEM) methods.

b  In the N4Horizon field, specify the forward and backward prediction horizons

used by the N4SID algorithm.
The N4SID algorithm is used both by the subspace and PEM methods.

¢ In the Focus drop-down list, select how to weigh the relative importance of the

fit at different frequencies. For more information about each option, see
“Assigning Estimation Weightings” on page 7-21.

d  Select the Allow unstable models check box to specify whether to allow the

estimation process to use parameter values that may lead to unstable models.

Setting this option is same as setting the estimation option Focus to
'prediction' at the command line. An unstable model is delivered only if it
produces a better fit to the data than other stable models computed during the
estimation process.

e Select the Estimate covariance check box if you want the algorithm to compute

parameter uncertainties.



Estimate State-Space Models in System Identification App

Effects of such uncertainties are displayed on plots as model confidence regions.
Skipping uncertainty computation reduces computation time for complex models
and large data sets.

Select the Display progress check box to open a progress viewer window
during estimation.

g In the Initial state list, specify how you want the algorithm to treat initial states.
For more information about the available options, see “Specifying Initial States
for Iterative Estimation Algorithms” on page 7-41.

Prediction Error Minimization (PEM)

w Estimation Options

Estimation Methad: Prediction Error Minimization (PEM) iv
MN4Weight: Auto v | NdHerizon: |Auto
Focus: _Prediction )

[] Allow unstable models

Estimate covariance

Display progress I Regularization... J

Initial states: Auto hd I Iterations Options... J

In the N4Weight drop-down list, specify the weighting scheme used for singular-
value decomposition by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and Prediction Error
Minimization (PEM) methods.

In the N4Horizon field, specify the forward and backward prediction horizons
used by the N4SID algorithm.
The N4SID algorithm is used both by the subspace and PEM methods.

In the Focus drop-down list, select how to weigh the relative importance of the fit
at different frequencies. For more information about each option, see “Assigning
Estimation Weightings” on page 7-21.
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Select the Allow unstable models check box to specify whether to allow the
estimation process to use parameter values that may lead to unstable models.

Setting this option is same as setting the estimation option Focus to
'prediction’' at the command line. An unstable model is delivered only if it
produces a better fit to the data than other stable models computed during the
estimation process.

Select the Estimate covariance check box if you want the algorithm to compute
parameter uncertainties.

Effects of such uncertainties are displayed on plots as model confidence regions.
Skipping uncertainty computation reduces computation time for complex models
and large data sets.

Select the Display progress check box to open a progress viewer window during
estimation.

In the Initial state list, specify how you want the algorithm to treat initial states.
For more information about the available options, see “Specifying Initial States for
[terative Estimation Algorithms” on page 7-41.

Tip If you get an inaccurate fit, try setting a specific method for handling initial
states rather than choosing it automatically.

Click Regularization to obtain regularized estimates of model parameters.
Specify the regularization constants in the Regularization Options dialog box. To
learn more, see “Regularized Estimates of Model Parameters” on page 1-48.

Click Iteration Options to specify options for controlling the iterations. The
Options for Iterative Minimization dialog box opens.



Estimate State-Space Models in System Identification App

Options for Iterative Minimization EI@

Search Method
Chooze Autamatically (Auto) hi
Output weighting ('noise’ or a positive matrix)
Default
Maximum number of terations (Default: 200
Default
Termination tolerance (Defaut 0.04; 1e-5 for sgnonling

Drefault

Erraor threshold for autlier peratty (Defautt: 0)

Drefault

| Apply | | Close | | Help i

Iteration Options

In the Options for Iterative Minimization dialog box, you can specify the following
iteration options:

Search Method — Method used by the iterative search algorithm. Search
method is auto by default. The descent direction is calculated using gn
(Gauss-Newton), gna (Adaptive Gauss-Newton), lm (Levenberg-Marquardt),
lsgnonlin (Trust-Region Reflective Newton), and grad (Gradient Search)
successively at each iteration until a sufficient reduction in error is achieved.

Output weighting — Weighting applied to the loss function to be minimized.
Use this option for multi-output estimations only. Specify as 'noise' or a
positive semidefinite matrix of size equal the number of outputs.

Maximum number of iterations — Maximum number of iterations to use
during search.

Termination tolerance — Tolerance value when the iterations should
terminate.

Error threshold for outlier penalty — Robustification of the quadratic
criterion of fit.
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Regularized Reduction

w Estimation Options

Estimation Method: _EReqularized Reduction x|
Regularization Kernel: | TC | ARXOrders: Auto

Focus: Prediction x|

Reduction Method: | Truncate -7

Estirate covariance
Display progress

Initial states: Auto -

Estimate

In the Regularization Kernel drop-down list, select the regularizing kernel to
use for regularized estimation of the underlying ARX model. To learn more, see
“Regularized Estimates of Model Parameters” on page 1-48.

In the ARX Orders field, specify the order of the underlying ARX model. By
default, the orders are automatically computed by the estimation algorithm. If you
specify a value, it is recommended that you use a large value for nb order. To
learn more about ARX orders, see arx.

In the Focus drop-down list, select how to weigh the relative importance of the fit
at different frequencies. For more information about each option, see “Assigning
Estimation Weightings” on page 7-21.

In the Reduction Method drop-down list, specify the reduction method:
* Truncate — Discards the specified states without altering the remaining

states. This method tends to product a better approximation in the frequency
domain, but the DC gains are not guaranteed to match.

* MatchDC — Discards the specified states and alters the remaining states to
preserve the DC gain.

Select the Estimate covariance check box if you want the algorithm to compute
parameter uncertainties.
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Effects of such uncertainties are displayed on plots as model confidence regions.
Skipping uncertainty computation reduces computation time for complex models
and large data sets.

* Select the Display progress check box to open a progress viewer window during
estimation.

* In the Initial state list, specify how you want the algorithm to treat initial states.
For more information about the available options, see “Specifying Initial States for
[terative Estimation Algorithms” on page 7-41.

Tip If you get an inaccurate fit, try setting a specific method for handling initial
states rather than choosing it automatically.

The estimation process uses parameter values that always lead to a stable model.

7 Click Estimate to estimate the model. A new model gets added to the System
Identification app.
Next Steps

Validate the model by selecting the appropriate response type in the Model Views
area of the app. For more information about validating models, see “Validating Models
After Estimation” on page 17-3.

Export the model to the MATLAB workspace for further analysis by dragging it to the
To Workspace rectangle in the app.

Assigning Estimation Weightings

You can specify how the estimation algorithm weights the fit at various frequencies. In the
app, set Focus to one of the following options:

Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges. Corresponds to
minimizing one-step-ahead prediction, which typically favors the fit over a short time
interval. Optimized for output prediction applications.

Simulation — Uses the input spectrum to weigh the relative importance of the fit in
a specific frequency range. Does not use the noise model to weigh the relative
importance of how closely to fit the data in various frequency ranges. Optimized for
output simulation applications.
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Stability — Estimates the best stable model. For more information about model
stability, see “Unstable Models” on page 17-118.

Filter — Specify a custom filter to open the Estimation Focus dialog box, where you
can enter a filter, as described in “Simple Passband Filter” on page 2-132 or “Defining
a Custom Filter” on page 2-132. This prefiltering applies only for estimating the
dynamics from input to output. The disturbance model is determined from the
estimation data.
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Estimate State-Space Models at the Command Line

Black Box vs. Structured State-Space Model Estimation

You can estimate state-space models in two ways at the command line, depending upon
your prior knowledge of the nature of the system and your requirements.

Black Box Estimation

In this approach, you specify the model order, and, optionally, additional model structure
attributes that configure the overall structure of the state-space matrices. You call ssest,
ssregest or n4sid with data and model order as primary input arguments, and use
name-value pairs to specify any additional attributes, such as model sample time,
presence of feedthrough, absence of noise component, etc. You do not work directly with
the coefficients of the A, B, C, D, K, and X0 matrices.

Structured Estimation

In this approach, you create and configure an idss model that contains the initial values
for all the system matrices. You use the Structure property of the idss model to specify
all the parameter constraints. For example, you can designate certain coefficients of
system matrices as fixed and impose minimum/maximum bounds on the values of the
others. For quick configuration of the parameterization and whether to estimate
feedthrough and disturbance dynamics, use ssform.

After configuring the idss model with desired constraints, you specify this model as an
input argument to the ssest command. You cannot use n4sid or ssregest for
structured estimation.

Note

* The structured estimation approach is also referred to as grey-box modeling. However,
in this toolbox, the “grey box modeling” terminology is used only when referring to
idgrey and idnlgrey models.

* Using the structured estimation approach, you cannot specify relationships among
state-space coefficients. Each coefficient is essentially considered to be independent of
others. For imposing dependencies, or to use more complex forms of parameterization,
use the idgrey model and greyest estimator.
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Estimating State-Space Models Using ssest, ssregest and
ndsid

Prerequisites

* Represent input-output data as an iddata object or frequency-response data as an
frd or idfrd object. See “Representing Time- and Frequency-Domain Data Using
iddata Objects” on page 2-50. For supported data formats, see “Data Supported by
State-Space Models” on page 7-6.

* Perform data preprocessing. To improve the accuracy of results when using time-
domain data, you can detrend the data or specify the input/output offset levels as
estimation options. See “Ways to Prepare Data for System Identification” on page 2-6.

* Select a model order. When you do not know the model order, search and select for an
order. For more information, see “Estimate Model With Selected Order at the
Command Line” on page 7-10.

You can estimate continuous-time and discrete-time state-space models using the iterative
estimation command ssest that minimizes the prediction errors to obtain maximum-
likelihood values.

Use the following general syntax to both configure and estimate state-space models:
m = ssest(data,n,opt,Name,Value)

where data is the estimation data, n is the model order, and opt contains options for
configuring the estimation of the state-space models. These options include the handling
of the initial conditions, input and output offsets, estimation focus and search algorithm
options. opt can be followed by name-value pair input arguments that specify optional
model structure attributes such as the presence of feedthrough, the canonical form of the
model, and input delay.

As an alternative to ssest, you can use the noniterative subspace estimators n4sid or
ssregest:

m
m

n4sid(data,n,opt,Name,Value)
ssregest(data,n,opt,Name,Value)

Unless you specify the sample time as a name-value pair input argument, n4sid and
ssregest estimate a discrete-time model, while ssest estimates a continuous-time
model.
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Note ssest uses n4sid to initialize the state-space matrices, and takes longer than
n4sid to estimate a model but typically provides a better fit to data.

For information about validating your model, see “Validating Models After Estimation” on
page 17-3

Choosing the Structure of A, B, C Matrices

By default, all entries of the A, B, and C state-space matrices are treated as free
parameters. Using the Form name-value pair input argument of ssest , you can choose
various canonical forms, such as the companion and modal forms, that use fewer
parameters.

For more information about estimating a specific state-space parameterization, see:

* “Estimate State-Space Models with Free-Parameterization” on page 7-29
+ “Estimate State-Space Models with Canonical Parameterization” on page 7-30
+ “Estimate State-Space Models with Structured Parameterization” on page 7-32

Choosing Between Continuous-Time and Discrete-Time
Representations

For estimation of state-space models, you have the option of switching the model sample
time between zero and that of the estimation data. You can do this using the Ts name-
value pair input argument.

* By default, ssest estimates a continuous-time model. If you are using data set with
nonzero sample time, data, which includes all time domain data, you can also
estimate a discrete-time model by using:

model = ssest(data,nx, 'Ts',data.Ts);

If you are using continuous-time frequency-domain data, you cannot estimate a
discrete-time model.

* By default, n4sid and ssregest estimate a model whose sample time matches that of
the data. Thus, for time-domain data, n4sid and ssregest deliver a discrete-time
model. You can estimate a continuous-time model by using:

model = n4sid(data,nx, 'Ts',0);
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or

model = ssregest(data,nx,'Ts',0);

Choosing to Estimate D, K, and X0 Matrices

For state-space models with any parameterization, you can specify whether to estimate
the D, K and X0 matrices, which represent the input-to-output feedthrough, noise model
and the initial states, respectively.

For state-space models with structured parameterization, you can also specify to estimate
the D matrix. However, for free and canonical forms, the structure of the D matrix is set
based on your choice for the 'Feedthrough' name-value pair input argument.

D Matrix

By default, the D matrix is not estimated and its value is fixed to zero, except for static
models.

Black box estimation: Use the Feedthrough name-value pair input argument to
denote the presence or absence of feedthrough from individual inputs. For example, in
case of a two input model such that there is feedthrough from only the second input,
use:

model = n4sid(data,n, 'Feedthrough',[false truel);

Structured estimation: Configure the values of the init sys.Structure.D,
where init sys is an idss model that represents the desired model structure. To
force no feedthrough for the i-th input, set:

init sys.Structure.D.Value(:,i) = 0;
init sys.Structure.D.Free = true;
init sys.Structure.D.Free(:,i) = false;

The first line specifies the value of the i-th column of D as zero. The next line specifies
all the elements of D as free, estimable parameters. The last line specifies that the i-th
column of the D matrix is fixed for estimation.

Alternatively, use ssform with 'Feedthrough' name-value pair.

K Matrix

K represents the noise matrix of the model, such that the noise component of the model

1S:.
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% =Ax + Ke
¥y, =Cx +e

For frequency-domain data, no noise model is estimated and K is set to 0. For time-
domain data, K is estimated by default in the black box estimation setup. y" is the
contribution of the disturbances to the model output.

* Black box estimation: Use the DisturbanceModel name-value pair input argument
to indicate if the disturbance component is fixed to zero (specify Value = 'none') or
estimated as a free parameter (specify Value = 'estimate'). For example, use :

model = n4sid(data,n, 'DisturbanceModel’, 'none');

* Structured estimation: Configure the value of the init sys.Structure.K
parameter, where init sys is an idss model that represents the desired model
structure. You can fix some K matrix coefficients to known values and prescribe
minimum/maximum bounds for free coefficients. For example, to estimate only the first
column of the K matrix for a two output model:

kpar = init sys.Structure.K;

kpar.Free(:,1) true;

kpar.Free(:,2) false;

kpar.Value(:,2) = 0; % second column value is fixed to zero
init sys.Structure.K = kpar;

Alternatively, use ssform.

When not sure how to easily fix or free all coefficients of K, initially you can omit
estimating the noise parameters in K to focus on achieving a reasonable model for the
system dynamics. After estimating the dynamic model, you can use ssest to refine the
model while configuring the K parameters to be free. For example:

init _sys = ssest(data, n,'DisturbanceModel', 'none');
init _sys.Structure.K.Free = true;

sys = ssest(data,init sys);

where init sys is the dynamic model without noise.

To set K to zero in an existing model, you can set its Value to 0 and Free flag to false:

m.Structure.K.Value = 0;
m.Structure.K.Free = false;
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X0 Matrices

The initial state vector X0 is obtained as the by-product of model estimation. The n4sid,
ssest and ssregest commands return the value of X0 as their second output
arguments. You can choose how to handle initial conditions during model estimation by
using the InitialState estimation option. Use n4sidOptions (for n4sid),
ssestOptions (for ssest) or ssregestOptions (for ssregest) to create the
estimation option set. For example, in order to hold the initial states to zero during
estimation using n4sid:

opt = nd4sidOptions;

opt.InitialState = 'zero';

[m,X0] = ndsid(data,n,opt);

The returned X0 variable is a zero vector of length n.

When you estimate models using multiexperiment data, the X0 matrix contains as many
columns as data experiments.

For a complete list of values for the InitialStates option, see “Specifying Initial States
for Iterative Estimation Algorithms” on page 7-41.

See Also

More About
. “Loss Function and Model Quality Metrics” on page 1-64
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Estimate State-Space Models with Free-
Parameterization

The default parameterization of the state-space matrices A, B, C, D, and K is free; that is,
any elements in the matrices are adjustable by the estimation routines. Because the
parameterization of A, B, and C is free, a basis for the state-space realization is
automatically selected to give well-conditioned calculations.

To estimate the disturbance model K, you must use time-domain data.

Suppose that you have no knowledge about the internal structure of the discrete-time
state-space model. To quickly get started, use the following syntax:

m = ssest(data)
or
m = ssregest(data)

where data is your estimation data. ssest estimates a continuous-time state-space
model for an automatically selected order between 1 and 10. ssregest estimates a
discrete-time model.

To find a model of a specific order n, use the following syntax:
m = ssest(data,n)

or

m = ssregest(dat,n)

The iterative algorithm ssest is initialized by the subspace method n4sid. You can use
n4sid directly, as an alternative to ssest:

m = n4sid(data)

which automatically estimates a discrete-time model of the best order in the 1:10 range.
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What Is Canonical Parameterization?

Canonical parameterization represents a state-space system in a reduced parameter form
where many elements of A, B and C matrices are fixed to zeros and ones. The free
parameters appear in only a few of the rows and columns in state-space matrices A, B, C,
D, and K. The free parameters are identifiable — they can be estimated to unique values.
The remaining matrix elements are fixed to zeros and ones.

The software supports the following canonical forms:

Companion form: The characteristic polynomial appears in the rightmost column of
the A matrix.

Modal decomposition form: The state matrix A is block diagonal, with each block
corresponding to a cluster of nearby modes.

Note The modal form has a certain symmetry in its block diagonal elements. If you
update the parameters of a model of this form (as a structured estimation using
ssest), the symmetry is not preserved, even though the updated model is still block-
diagonal.

Observability canonical form: The free parameters appear only in select rows of the
A matrix and in the B and K matrices.

For more information about the distribution of free parameters in the observability
canonical form, see the Appendix 4A, pp 132-134, on identifiability of black-box
multivariable model structures in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999 (equation 4A.16).

Estimating Canonical State-Space Models

You can estimate state-space models with chosen parameterization at the command line.

For example, to specify an observability canonical form, use the 'Form' name-value pair
input argument, as follows:

m

= ssest(data,n, 'Form', 'canonical')
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Similarly, set 'Form' as 'modal' or 'companion' to specify modal decomposition and
companion canonical forms, respectively.

If you have time-domain data, the preceding command estimates a continuous-time
model. If you want a discrete-time model, specify the data sample time using the 'Ts'
name-value pair input argument:

md = ssest(data, n,'Form', 'canonical','Ts',data.Ts)

If you have continuous-time frequency-domain data, you can only estimate a continuous-
time model.
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What Is Structured Parameterization?

Structured parameterization lets you exclude specific parameters from estimation by
setting these parameters to specific values. This approach is useful when you can derive
state-space matrices from physical principles and provide initial parameter values based
on physical insight. You can use this approach to discover what happens if you fix specific
parameter values or if you free certain parameters.

There are two stages to the structured estimation procedure:

1 Specify the state-space model structure, as described in “Specify the State-Space
Model Structure” on page 7-32

2 Estimate the free model parameters, as described in “Estimate State-Space Models at
the Command Line” on page 7-23

This approach differs from estimating models with free and canonical parameterizations,
where it is not necessary to specify initial parameter values before the estimation. For
free parameterization, there is no structure to specify because it is assumed to be
unknown. For canonical parameterization, the structure is fixed to a specific form.

Note To estimate structured state-space models in the System Identification app, define
the corresponding model structures at the command line and import them into the
System Identification app.

Specify the State-Space Model Structure

To specify the state-space model structure:

1 Use idss to create a state-space model. For example:

A=1[01; 0 -11;

B = [0; 0.28];

C = eye(2);

D = zeros(2,1);

m = idss(A,B,C,D,K, 'Ts"',T)
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creates a discrete-time state-space structure, where A, B, C, D, and K specify the
initial values for the free parameters. T is the sample time.

Use the Structure property of the model to specify which parameters to estimate
and which to set to specific values.

More about Structure

Structure contains parameters for the five state-space matrices, A, B, C, D, and K.

For each parameter, you can set the following attributes:

Value — Parameter values. For example, sys.Structure.A.Value contains the
initial or estimated values of the A matrix.

NaN represents unknown parameter values.

Each property sys.A, sys.B, sys.(C, and sys.D is an alias to the corresponding
Value entry in the Structure property of sys. For example, sys.A is an alias to
the value of the property sys.Structure.A.Value

Minimum — Minimum value that the parameter can assume during estimation. For
example, sys.Structure.K.Minimum = 0 constrains all entries in the K matrix
to be greater than or equal to zero.

Maximum — Maximum value that the parameter can assume during estimation.

Free — Boolean specifying whether the parameter is a free estimation variable. If
you want to fix the value of a parameter during estimation, set the corresponding
Free = false. For example, if A is a 3-by-3 matrix, sys.Structure.A.Free =
eyes (3) fixes all of the off-diagonal entries in A, to the values specified in
sys.Structure.A.Value. In this case, only the diagonal entries in A are
estimable.

Scale — Scale of the parameter’s value. Scale is not used in estimation.
Info — Structure array for storing parameter units and labels. The structure has
Label and Unit fields.

Specify parameter units and labels as character vectors. For example, 'Time'.

For example, if you want to fix A(1,2)=A(2,1)=0, use:

33 33

.Structure.A.Value(1,2) = 0;
.Structure.A.Value(2,1) = 0;
.Structure.A.Free(1,2) = false;
.Structure.A.Free(2,1) = false;
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The estimation algorithm only estimates the parameters in A for which
m.Structure.A.Freeis true.

Use physical insight, whenever possible, to initialize the parameters for the iterative
search algorithm. Because it is possible that the numerical minimization gets stuck in
a local minimum, try several different initialization values for the parameters. For
random initialization, use init. When the model structure contains parameters with
different orders of magnitude, try to scale the variables so that the parameters are all
roughly the same magnitude.

Alternatively, to quickly configure the parameterization and whether to estimate
feedthrough and disturbance dynamics, use ssform.

3 Use ssest to estimate the model, as described in “Estimate State-Space Models at
the Command Line” on page 7-23.

The iterative search computes gradients of the prediction errors with respect to the
parameters using numerical differentiation. The step size is specified by the nuderst
command. The default step size is equal to 10-* times the absolute value of a parameter or
equal to 1077, whichever is larger. To specify a different step size, edit the nuderst
MATLARB file.

Are Grey-Box Models Similar to State-Space Models with
Structured Parameterization?

You estimate state-space models with structured parameterization on page 7-32 when you
know some parameters of a linear system and need to estimate the others. These models
are therefore similar to grey-box models. However, in this toolbox, the "grey box
modeling" terminology is used only when referring to idgrey and idnlgrey models. In
these models, you can specify complete linear or nonlinear models with complicated
relationships between the unknown parameters.

If you have independent unknown matrix elements in a linear state-space model
structure, then it is easier and quicker to use state-space models with structured
parameterizations. For imposing dependencies, or to use more complex forms of
parameterization, use the idgrey model and the associated greyest estimator. For more
information, see “Grey-Box Model Estimation”.

If you want to incorporate prior knowledge regarding the state and output covariances
into the estimation process, use an idgrey model to identify your system using a general
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state-space model structure. For more information, see “Identifying State-Space Models
with Separate Process and Measurement Noise Descriptions” on page 13-70.

Estimate Structured Discrete-Time State-Space Models

This example shows how to estimate the unknown parameters of a discrete-time model.

0,.0,. 0.0,

In this example, you estimate % in the following discrete-time model:

] 1 @, 0, A
I | = (1) ) (1)
xit+ 1) 0 1 X + 0, U + 0, e

vitl=[1 0x(1) + el

© = |°
=10

(01:02.05,0,.05)

Suppose that the nominal values of the unknown parameters are -1, 2,

3, 4,and 5, respectively.

The discrete-time state-space model structure is defined by the following equation:
xXkT+T) = Ax(kT) + BulkT) + KelkT)
VikT) = Cx(kT) + DulkT) + e kT)
x(0) = x0

Construct the parameter matrices and initialize the parameter values using the nominal
parameter values.

A = [11'1101111
B =1[2;3];

C = 1[1,0];

D =0;

K = [4;5];

Construct the state-space model object.
m = idss(A,B,C,D,K);

Specify the parameter values in the structure matrices that you do not want to estimate.
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= m.Structure;
A.Free(l,1) = false;
.A.Free(2,:) = false;
C.Free = false;
.Structure = S;

S ununwuvom

D is initialized, by default, as a fixed value, and K and B are initialized as free values.
Suppose you want to fix the initial states to known zero values. To enforce this, configure
the InitialState estimation option.

opt = ssestOptions;
opt.InitialState = 'zero';

Load estimation data.

load iddatal z1;

Estimate the model structure.
m = ssest(zl,m,opt);

where z1 is name of the iddata object. The data can be time-domain or frequency-
domain data. The iterative search starts with the nominal values in the A, B, C, D, and K
matrices.

Estimate Structured Continuous-Time State-Space Models

This example shows how to estimate the unknown parameters of a continuous-time
model.

In this example, you estimate 01 0. 05 i the following continuous-time model:
N i1 -{} J i i1 [ (} i %
x(1) = 0 g xir) 4+ 0, uit)
o . .
(t = Xt S
yiz) 0 1 i+ et
[,
X0 =
L0
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This equation represents an electrical motor, where *1'#/ = *1'5} ig the angular position

of the motor shaft, and ¥2'¥' = %2'¥) s the angular velocity. The parameter ~th is the

inverse time constant of the motor, and %1 | 01 is the static gain from the input to the
angular velocity.

0,

The motor is at rest at t=0, but its angular position “* is unknown. Suppose that the

g, = —1 0, =025

approximate nominal values of the unknown parameters are and

The variance of the errors in the position measurement is 0.01 , and the variance in the
angular velocity measurements is 0.1 . For more information about this example, see the
section on state-space models in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

The continuous-time state-space model structure is defined by the following equation:
K1) = Fx(1) + Gu(t) + Kwi1)

yit) = Hxlt) + Dult) + wii)
x(0) =x0

Construct the parameter matrices and initialize the parameter values using the nominal
parameter values.

A=101;0 -1];
B =[0;0.25];
C = eye(2);

D = [0;0];

K = zeros(2,2);
x0 = [0;0];

The matrices correspond to continuous-time representation. However, to be consistent
with the idss object property name, this example uses A, B, and C instead of F, G, and H.

Construct the continuous-time state-space model object.
m = idss(A,B,C,D,K,'Ts"',0);

Specify the parameter values in the structure matrices that you do not want to estimate.
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m.Structure;

.Free(1,:) = false;

.Free(2,1) = false;

.Free(1l) = false;

.Free false;

.Free false;

.Free false;

.Structure = S;

.NoiseVariance = [0.01 0; 0 0.1];

XoOw> >

S3SuVLuununnunnm

The initial state is partially unknown. Use the InitialState option of the
ssestOptions option set to configure the estimation behavior of X0.

opt = ssestOptions;
opt.InitialState = idpar(x0);
opt.InitialState.Free(2) = false;

Estimate the model structure.
load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));

z = iddata(y,u,0.1);
m = ssest(z,m,opt);

The iterative search for a minimum is initialized by the parameters in the nominal model
m . The continuous-time model is sampled using the same sample time as the data during
estimation.

Simulate this system using the sample time T=0. 1 for input u and the noise realization e.

e = randn(300,2);

ul = idinput(300);

simdat = iddata([],ul,'Ts',0.1);

simopt = simOptions('AddNoise',true, 'NoiseData',e);
yl = sim(m,simdat, simopt);

The continuous system is sampled using Ts=0. 1 for simulation purposes. The noise
sequence is scaled according to the matrix m.NoiseVariance.
If you discover that the motor was not initially at rest, you can estimate * 20) by setting

the second element of the InitialState parameter to be free.

opt.InitialState.Free(2) = true;
m _new = ssest(z,m,opt);
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Estimate State-Space Equ