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What Are Model Objects?

Model Objects Represent Linear Systems
In Control System Toolbox™, System Identification Toolbox, and Robust Control
Toolbox™ software, you represent linear systems as model objects. In System
Identification Toolbox, you also represent nonlinear models as model objects. Model
objects are specialized data containers that encapsulate model data and other attributes
in a structured way. Model objects allow you to manipulate linear systems as single
entities rather than keeping track of multiple data vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or multiple-input,
multiple-output (MIMO) systems. You can represent both continuous- and discrete-time
linear systems.

The main families of model objects are:

• Numeric Models — Basic representation of linear systems with fixed numerical
coefficients. This family also includes identified models that have coefficients
estimated with System Identification Toolbox software.

• Generalized Models — Representations that combine numeric coefficients with
tunable or uncertain coefficients. Generalized models support tasks such as parameter
studies or compensator tuning.

About Model Data
The data encapsulated in your model object depends on the model type you use. For
example:

• Transfer functions store the numerator and denominator coefficients
• State-space models store the A, B, C, and D matrices that describe the dynamics of the

system
• PID controller models store the proportional, integral, and derivative gains

Other model attributes stored as model data include time units, names for the model
inputs or outputs, and time delays.
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Note All model objects are MATLAB® objects, but working with them does not require a
background in object-oriented programming. To learn more about objects and object
syntax, see “Role of Classes in MATLAB” (MATLAB).

See Also

More About
• “Types of Model Objects” on page 1-5
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Types of Model Objects
The following diagram illustrates the relationships between the types of model objects in
Control System Toolbox, Robust Control Toolbox, and System Identification Toolbox
software. Model types that begin with id require System Identification Toolbox software.
Model types that begin with u require Robust Control Toolbox software. All other model
types are available with Control System Toolbox software.
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1-5



The diagram illustrates the following two overlapping broad classifications of model
object types:
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• Dynamic System Models vs. Static Models — In general, Dynamic System Models
represent systems that have internal dynamics, while Static Models represent static
input/output relationships.

• Numeric Models vs. Generalized Models — Numeric Models are the basic numeric
representation of linear systems with fixed coefficients. Generalized Models represent
systems with tunable or uncertain components.

See Also

More About
• “What Are Model Objects?” on page 1-3
• “Dynamic System Models” on page 1-8
• “Numeric Models” on page 1-10

 See Also
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Dynamic System Models
Dynamic System Models generally represent systems that have internal dynamics or
memory of past states such as integrators, delays, transfer functions, and state-space
models.

Most commands for analyzing linear systems, such as bode, margin, and
linearSystemAnalyzer, work on most Dynamic System Model objects. For Generalized
Models, analysis commands use the current value of tunable parameters and the nominal
value of uncertain parameters. Commands that generate response plots display random
samples of uncertain models.

The following table lists the Dynamic System Models.

Model Family Model Types
Numeric LTI models — Basic numeric
representation of linear systems
(requires Control System Toolbox)

tf
zpk
ss
frd
pid
pidstd
pid2
pidstd2

Identified LTI models — Representations of
linear systems with tunable coefficients,
whose values can be identified using
measured input/output data.
(requires System Identification Toolbox)

idtf
idss
idfrd
idgrey
idpoly
idproc

Identified nonlinear models —
Representations of nonlinear systems with
tunable coefficients, whose values can be
identified using input/output data. Limited

idnlarx
idnlhw

1 Choosing Your System Identification Approach
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Model Family Model Types
support for commands that analyze linear
systems.
(requires System Identification Toolbox)

idnlgrey

Generalized LTI models — Representations
of systems that include tunable or uncertain
coefficients
(tunable models require Control System
Toolbox; uncertain models require Robust
Control Toolbox)

genss
genfrd
uss
ufrd

Dynamic Control Design Blocks — Tunable,
uncertain, or switch analysis points for
constructing models of control systems
(tunable Control Design Blocks and analysis
points require Control System Toolbox;
uncertain Control Design Blocks require
Robust Control Toolbox)

tunableGain
tunableTF
tunableSS
tunablePID
tunablePID2
ultidyn
udyn
AnalysisPoint

See Also

More About
• “Numeric Linear Time Invariant (LTI) Models” on page 1-10
• “Identified LTI Models” on page 1-11
• “Identified Nonlinear Models” on page 1-11
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Numeric Models
Numeric Linear Time Invariant (LTI) Models
Numeric LTI models are the basic numeric representation of linear systems or
components of linear systems. Use numeric LTI models for modeling dynamic
components, such as transfer functions or state-space models, whose coefficients are
fixed, numeric values. You can use numeric LTI models for linear analysis or control
design tasks.

The following table summarizes the available types of numeric LTI models.

Model Type Description
tf Transfer function model in polynomial form
zpk Transfer function model in zero-pole-gain (factorized) form
ss State-space model
frd Frequency response data model
pid Parallel-form PID controller
pidstd Standard-form PID controller
pid2 Parallel-form two-degree-of-freedom (2-DOF) PID controller
pidstd2 Standard-form 2-DOF PID controller

Creating Numeric LTI Models

For information about creating numeric LTI models, see:

• “Transfer Functions” (Control System Toolbox)
• “State-Space Models” (Control System Toolbox)
• “Frequency Response Data (FRD) Models” (Control System Toolbox)
• “Proportional-Integral-Derivative (PID) Controllers” (Control System Toolbox)

Applications of Numeric LTI Models

You can use Numeric LTI models to represent block diagram components such as plant or
sensor dynamics. By connecting Numeric LTI models together, you can derive Numeric
LTI models of block diagrams. Use Numeric LTI models for most modeling, analysis, and
control design tasks, including:

1 Choosing Your System Identification Approach
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• Analyzing linear system dynamics using analysis commands such as bode, step, or
impulse.

• Designing controllers for linear systems using the Control System Designer app or
the PID Tuner GUI (Control System Toolbox).

• Designing controllers using control design commands such as pidtune, rlocus, or
lqr/lqg.

Identified LTI Models
Identified LTI Models represent linear systems with coefficients that are identified using
measured input/output data. You can specify initial values and constraints for the
estimation of the coefficients.

The following table summarizes the available types of identified LTI models.

Model Type Description
idtf Transfer function model in polynomial form, with

identifiable parameters
idss State-space model, with identifiable parameters
idpoly Polynomial input-output model, with identifiable parameters
idproc Continuous-time process model, with identifiable

parameters
idfrd Frequency-response model, with identifiable parameters
idgrey Linear ODE (grey-box) model, with identifiable parameters

Identified Nonlinear Models
Identified Nonlinear Models represent nonlinear systems with coefficients that are
identified using measured input/output data. You can specify initial values and constraints
for the estimation of the coefficients.

The following table summarizes the available types of identified nonlinear models.

Model Type Description
idnlarx Nonlinear ARX model, with identifiable

parameters

 Numeric Models
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Model Type Description
idnlgrey Nonlinear ODE (grey-box) model, with

identifiable parameters
idnlhw Hammerstein-Wiener model, with

identifiable parameters

1 Choosing Your System Identification Approach
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About Identified Linear Models

What are IDLTI Models?
System Identification Toolbox software uses objects to represent a variety of linear and
nonlinear model structures. These linear model objects are collectively known as
Identified Linear Time-Invariant (IDLTI) models.

IDLTI models contain two distinct dynamic components:

• Measured component — Describes the relationship between the measured inputs
and the measured output (G)

• Noise component — Describes the relationship between the disturbances at the
output and the measured output (H)

Models that only have the noise component H are called time-series or signal models.
Typically, you create such models using time-series data that consist of one or more
outputs y(t) with no corresponding input.

The total output is the sum of the contributions from the measured inputs and the
disturbances: y = G u + H e, where u represents the measured inputs and e the
disturbance. e(t) is modeled as zero-mean Gaussian white noise with variance Λ. The
following figure illustrates an IDLTI model.

e

u y

G

H
IDLTI

When you simulate an IDLTI model, you study the effect of input u(t) (and possibly initial
conditions) on the output y(t). The noise e(t) is not considered. However, with finite-
horizon prediction of the output, both the measured and the noise components of the
model contribute towards computation of the (predicted) response.
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u
H

1-H
y_measured

y_predicted

G
-1

-1

One-step ahead prediction model corresponding to a linear identified model (y =
Gu+He)

Measured and Noise Component Parameterizations
The various linear model structures provide different ways of parameterizing the transfer
functions G and H. When you construct an IDLTI model or estimate a model directly using
input-output data, you can configure the structure of both G and H, as described in the
following table:

Model
Type

Transfer Functions G and H Configuration Method

State space
model
(idss)

Represents an identified state-space
model structure, governed by the
equations:

&x Ax Bu Ke

y Cx Du e

= + +

= + +

where the transfer function between the
measured input u and output y is

G s C sI A B D( ) ( )= - +
-1  and the noise

transfer function is

H s C sI A K I( ) ( )= - +
-1 .

Construction: Use idss to create a model,
specifying values of state-space matrices
A, B, C, D and K as input arguments
(using NaNs to denote unknown entries).

Estimation: Use ssest or n4sid,
specifying name-value pairs for various
configurations, such as, canonical
parameterization of the measured
dynamics ('Form'/'canonical'),
denoting absence of feedthrough by fixing
D to zero ('Feedthrough'/false), and
absence of noise dynamics by fixing K to
zero ('DisturbanceModel'/'none').
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Model
Type

Transfer Functions G and H Configuration Method

Polynomial
model
(idpoly)

Represents a polynomial model such as
ARX, ARMAX and BJ. An ARMAX model,
for example, uses the input-output
equation Ay(t) = Bu(t)+Ce(t), so that the
measured transfer function G is

G s A B( ) =
-1 , while the noise transfer

function is H s A C( ) =
-1 .

The ARMAX model is a special
configuration of the general polynomial
model whose governing equation is:

Ay t
B

F
u t

C

D
e t( ) ( ) ( )= +

The autoregressive component, A, is
common between the measured and noise
components. The polynomials B and F
constitute the measured component while
the polynomials C and D constitute the
noise component.

Construction: Use idpoly to create a
model using values of active polynomials
as input arguments. For example, to
create an Output-Error model which uses
G = B/F as the measured component and
has a trivial noise component (H = 1).
enter:

y = idpoly([],B,[],[],F)

Estimation: Use the armax, arx, or bj,
specifying the orders of the polynomials as
input arguments. For example, bj
requires you to specify the orders of the B,
C, D, and F polynomials to construct a
model with governing equation

y t
B

F
u t

C

D
e t( ) ( ) ( )= +

Transfer
function
model
(idtf)

Represents an identified transfer function
model, which has no dynamic elements to
model noise behavior. This object uses the
trivial noise model H(s) = I. The governing
equation is

y t
num

den
u t e t( ) ( ) ( )= +

Construction: Use idtf to create a model,
specifying values of the numerator and
denominator coefficients as input
arguments. The numerator and
denominator vectors constitute the
measured component G = num(s)/
den(s). The noise component is fixed to H
= 1.

Estimation: Use tfest, specifying the
number of poles and zeros of the
measured component G.
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Model
Type

Transfer Functions G and H Configuration Method

Process
model
(idproc)

Represents a process model, which
provides options to represent the noise
dynamics as either first- or second-order
ARMA process (that is, H(s)= C(s)/A(s),
where C(s) and A(s) are monic
polynomials of equal degree). The
measured component, G(s), is represented
by a transfer function expressed in pole-
zero form.

For process (and grey-box) models, the
noise component is often treated as an on-
demand extension to an otherwise
measured component-centric
representation. For these models, you can
add a noise component by using the
DisturbanceModel estimation option.
For example:

model = procest(data,'P1D')

estimates a model whose equation is:

y s K
T s

e u s e sp
p

sTd
( )

( )
( ) ( ).=

+

+
-1

11

To add a second order noise component to
the model, use:

Options = procestOptions('DisturbanceModel','ARMA1');
model = procest(data,'P1D',Options);

This model has the equation:

y s K
T s

e u s
c s

d s
e sp

p

sTd
( )

( )
( ) ( )=

+

+

+

+

-1

1

1

11

1

1

where the coefficients c1 and d1
parameterize the noise component of the
model. If you are constructing a process
model using the idproc command,
specify the structure of the measured
component using the Type input
argument and the noise component by
using the NoiseTF name-value pair. For
example,
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Model
Type

Transfer Functions G and H Configuration Method

model = idproc('P1','Kp',1,'Tp1',1,'NoiseTF',...
struct('num',[1 0.1],'den',[1 0.5]))

creates the process model y(s) = 1/(s+1)
u(s) + (s + 0.1)/(s + 0.5) e(s)

Sometimes, fixing coefficients or specifying bounds on the parameters are not sufficient.
For example, you may have unrelated parameter dependencies in the model or
parameters may be a function of a different set of parameters that you want to identify
exclusively. For example, in a mass-spring-damper system, the A and B parameters both
depend on the mass of the system. To achieve such parameterization of linear models, you
can use grey-box modeling where you establish the link between the actual parameters
and model coefficients by writing an ODE file. To learn more, see “Grey-Box Model
Estimation”.

Linear Model Estimation
You typically use estimation to create models in System Identification Toolbox. You
execute one of the estimation commands, specifying as input arguments the measured
data, along with other inputs necessary to define the structure of a model. To illustrate,
the following example uses the state-space estimation command, ssest, to create a state
space model. The first input argument data specifies the measured input-output data.
The second input argument specifies the order of the model.

sys = ssest(data,4)

The estimation function treats the noise variable e(t) as prediction error – the residual
portion of the output that cannot be attributed to the measured inputs. All estimation
algorithms work to minimize a weighted norm of e(t) over the span of available
measurements. The weighting function is defined by the nature of the noise transfer
function H and the focus of estimation, such as simulation or prediction error
minimization.

Black Box (“Cold Start”) Estimation

In a black-box estimation, you only have to specify the order to configure the structure of
the model.

sys = estimator(data,orders) 
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where estimator is the name of an estimation command to use for the desired model
type.

For example, you use tfest to estimate transfer function models, arx for ARX-structure
polynomial models, and procest for process models.

The first argument, data, is time- or frequency domain data represented as an iddata or
idfrd object. The second argument, orders, represents one or more numbers whose
definitions depends upon the model type:

• For transfer functions, orders refers to the number of poles and zeros.
• For state-space models, orders refers to the number of states.
• For process models, orders denotes the structural elements of a process model, such

as, the number of poles and presence of delay and integrator.

When working with the app, you specify the orders in the appropriate edit fields of
corresponding model estimation dialogs.

Structured Estimations

In some situations, you want to configure the structure of the desired model more closely
than what is achieved by simply specifying the orders. In such cases, you construct a
template model and configure its properties. You then pass that template model as an
input argument to the estimation commands in place of orders.

To illustrate, the following example assigns initial guess values to the numerator and the
denominator polynomials of a transfer function model, imposes minimum and maximum
bounds on their estimated values, and then passes the object to the estimator function.

% Initial guess for numerator
num = [1 2];
den = [1 2 1 1];
% Initial guess for the denominator 
sys = idtf(num,den);
% Set min bound on den coefficients to 0.1
sys.Structure.Denominator.Minimum = [1 0.1 0.1 0.1]; 
sysEstimated = tfest(data,sys); 

The estimation algorithm uses the provided initial guesses to kick-start the estimation and
delivers a model that respects the specified bounds.
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You can use such a model template to also configure auxiliary model properties such as
input/output names and units. If the values of some of the model’s parameters are initially
unknown, you can use NaNs for them in the template.

Estimation Options

There are many options associated with a model’s estimation algorithm that configure the
estimation objective function, initial conditions and numerical search algorithm, among
other things. For every estimation command, estimator, there is a corresponding option
command named estimatorOptions. To specify options for a particular estimator
command, such as tfest, use the options command that corresponds to the estimation
command, in this case, tfestOptions. The options command returns an options set that
you then pass as an input argument to the corresponding estimation command.

For example, to estimate an Output-Error structure polynomial model, you use oe. To
specify simulation as the focus and lsqnonlin as the search method, you use
oeOptions:

load iddata1 z1
Options = oeOptions('Focus','simulation','SearchMethod','lsqnonlin');
sys= oe(z1,[2 2 1],Options);

Information about the options used to create an estimated model is stored in the
OptionsUsed field of the model’s Report property. For more information, see
“Estimation Report” on page 1-29.

See Also

More About
• “Types of Model Objects” on page 1-5
• “Available Linear Models” on page 1-25
• “About Identified Nonlinear Models” on page 11-2

 See Also

1-19



Linear Model Structures
About System Identification Toolbox Model Objects
Objects are instances of model classes. Each class is a blueprint that defines the following
information about your model:

• How the object stores data
• Which operations you can perform on the object

This toolbox includes nine classes for representing models. For example, idss represents
linear state-space models and idnlarx represents nonlinear ARX models. For a complete
list of available model objects, see “Available Linear Models” on page 1-25 and “Available
Nonlinear Models” on page 11-12.

Model properties define how a model object stores information. Model objects store
information about a model, such as the mathematical form of a model, names of input and
output channels, units, names and values of estimated parameters, parameter
uncertainties, and estimation report. For example, an idss model has an InputName
property for storing one or more input channel names.

The allowed operations on an object are called methods. In System Identification Toolbox
software, some methods have the same name but apply to multiple model objects. For
example, step creates a step response plot for all dynamic system objects. However,
other methods are unique to a specific model object. For example, canon is unique to
state-space idss models and linearize to nonlinear black-box models.

Every class has a special method, called the constructor, for creating objects of that class.
Using a constructor creates an instance of the corresponding class or instantiates the
object. The constructor name is the same as the class name. For example, idss and
idnlarx are both the name of the class and the name of the constructor for instantiating
the linear state-space models and nonlinear ARX models, respectively.

When to Construct a Model Structure Independently of
Estimation
You use model constructors to create a model object at the command line by specifying all
required model properties explicitly.

You must construct the model object independently of estimation when you want to:
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• Simulate or analyze the effect of model parameters on its response, independent of
estimation.

• Specify an initial guess for specific model parameter values before estimation. You can
specify bounds on parameter values, or set up the auxiliary model information in
advance, or both. Auxiliary model information includes specifying input/output names,
units, notes, user data, and so on.

In most cases, you can use the estimation commands to both construct and estimate the
model—without having to construct the model object independently. For example, the
estimation command tfest creates a transfer function model using data and the number
of poles and zeros of the model. Similarly, nlarx creates a nonlinear ARX model using
data and model orders and delays that define the regressor configuration. For information
about how to both construct and estimate models with a single command, see “Model
Estimation Commands” on page 1-44.

In case of grey-box models, you must always construct the model object first and then
estimate the parameters of the ordinary differential or difference equation.

Commands for Constructing Linear Model Structures
The following table summarizes the model constructors available in the System
Identification Toolbox product for representing various types of linear models.

After model estimation, you can recognize the corresponding model objects in the
MATLAB Workspace browser by their class names. The name of the constructor matches
the name of the object it creates.

For information about how to both construct and estimate models with a single command,
see “Model Estimation Commands” on page 1-44.
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Summary of Model Constructors

Model Constructor Resulting Model Class
idfrd Nonparametric frequency-response model.
idproc Continuous-time, low-order transfer functions

(process models).
idpoly Linear input-output polynomial models:

• ARX
• ARMAX
• Output-Error
• Box-Jenkins

idss Linear state-space models.
idtf Linear transfer function models.
idgrey Linear ordinary differential or difference equations

(grey-box models). You write a function that translates
user parameters to state-space matrices. Can also be
viewed as state-space models with user-specified
parameterization.

For more information about when to use these commands, see “When to Construct a
Model Structure Independently of Estimation” on page 1-20.

Model Properties
Categories of Model Properties

The way a model object stores information is defined by the properties of the
corresponding model class.

Each model object has properties for storing information that are relevant only to that
specific model type. The idtf, idgrey, idpoly, idproc, and idss model objects are
based on the idlti superclass and inherit all idlti properties.

In general, all model objects have properties that belong to the following categories:

• Names of input and output channels, such as InputName and OutputName
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• Sample time of the model, such as Ts
• Units for time or frequency
• Model order and mathematical structure (for example, ODE or nonlinearities)
• Properties that store estimation results (Report)
• User comments, such as Notes and Userdata

For information about getting help on object properties, see the model reference pages.

Viewing Model Properties and Estimated Parameters

The following table summarizes the commands for viewing and changing model property
values. Property names are not case sensitive. You do not need to type the entire property
name if the first few letters uniquely identify the property.

Task Command Example
View all model
properties and
their values

get Load sample data, compute an ARX model, and
list the model properties:

load iddata8
m_arx=arx(z8,[4 3 2 3 0 0 0]);
get(m_arx)

Access a specific
model property

Use dot notation View the A matrix containing the estimated
parameters in the previous model:

m_arx.A

For properties, such as
Report, that are configured
like structures, use dot
notation of the form
model.PropertyName.Fiel
dName.
FieldName is the name of
any field of the property.

View the method used in ARX model estimation:

m_arx.Report.Method

Change model
property values

dot notation Change the input delays for all three input
channels to [1 1 1] for an ARX model:

m_arx.InputDelay = [1 1 1]
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Task Command Example
Access model
parameter values
and uncertainty
information

Use getpar, getpvec and
getcov
See Also: polydata,
idssdata, tfdata, zpkdata

• View a table of all parameter attributes:

getpar(m_arx)
• View the A polynomial and 1 standard

uncertainty of an ARX model:

[a,~,~,~,~,da] = polydata(m_arx)

Set model
property values
and uncertainty
information

Use setpar, setpvec and
setcov

• Set default parameter labels:

m_arx = setpar(m_arx,'label','default')
• Set parameter covariance data:

m_arx = setcov(m_arx,cov)
Get number of
parameters

Use nparams Get the number of parameters:

nparams(sys)

See Also
Validate each model directly after estimation to help fine-tune your modeling strategy.
When you do not achieve a satisfactory model, you can try a different model structure and
order, or try another identification algorithm. For more information about validating and
troubleshooting models, see “Validating Models After Estimation” on page 17-3.
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Available Linear Models
A linear model is often sufficient to accurately describe the system dynamics and, in most
cases, you should first try to fit linear models. Available linear structures include transfer
functions and state-space models, summarized in the following table.

Model Type Usage Learn More
Transfer function (idtf) Use this structure to

represent transfer functions:

y
num

den
u e= +

where num and den are
polynomials of arbitrary
lengths. You can specify
initial guesses for, and
estimate, num, den, and
transport delays.

“Transfer Function Models”

Process model (idproc) Use this structure to
represent process models
that are low order transfer
functions expressed in pole-
zero form. They include
integrator, delay, zero, and
up to 3 poles.

“Process Models”
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Model Type Usage Learn More
State-space model (idss) Use this structure to

represent known state-space
structures and black-box
structures. You can fix
certain parameters to
known values and estimate
the remaining parameters.
You can also prescribe
minimum/maximum bounds
on the values of the free
parameters. If you need to
specify parameter
dependencies or
parameterize the state-
space matrices using your
own parameters, use a grey-
box model.

“State-Space Models”
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Model Type Usage Learn More
Polynomial models (idpoly) Use to represent linear

transfer functions based on
the general form input-
output polynomial form:

Ay
B

F
u

C

D
e= +

where A, B, C, D and F are
polynomials with
coefficients that the toolbox
estimates from data.

Typically, you begin
modeling using simpler
forms of this generalized
structure (such as ARX:

Ay Bu e= +  and OE:

y
B

F
u e= + ) and, if

necessary, increase the
model complexity.

“Input-Output Polynomial
Models”

Grey-box model (idgrey) Use to represent arbitrary
parameterizations of state-
space models. For example,
you can use this structure to
represent your ordinary
differential or difference
equation (ODE) and to
define parameter
dependencies.

“Linear Grey-Box Models”
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See Also

More About
• “Linear Model Structures” on page 1-20
• “About Identified Linear Models” on page 1-13
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Estimation Report

What is an Estimation Report?
The estimation report contains information about the results and options used for a model
estimation. This report is stored in the Report property of the estimated model. The
exact contents of the report depend on the estimator function you use to obtain the
model.

Specifically, the estimation report has the following information:

• Status of the model — whether the model is constructed or estimated
• How the initial conditions are handled during estimation
• Termination conditions for iterative estimation algorithms
• Final prediction error (FPE), percent fit to estimation data, and mean-square error

(MSE)
• Raw, normalized, and small sample-size corrected Akaike Information Criteria (AIC)

and Bayesian Information Criterion (BIC)
• Type and properties of the estimation data
• All estimated quantities — parameter values, initial states for state-space and grey-box

models, and their covariances
• The option set used for configuring the estimation algorithm

To learn more about the report produced for a specific estimator, see the corresponding
reference page.

You can use the report to:

• Keep an estimation log, such as the data, default and other settings used, and
estimated results such as parameter values, initial conditions, and fit. See “Access
Estimation Report” on page 1-30.

• Compare options or results of separate estimations. See “Compare Estimated Models
Using Estimation Report” on page 1-31.

• Configure another estimation using the previously specified options. See “Analyze and
Refine Estimation Results Using Estimation Report” on page 1-32.
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Access Estimation Report
This example shows how to access the estimation report.

The estimation report keeps a log of information such as the data used, default and other
settings used, and estimated results such as parameter values, initial conditions, and fit.

After you estimate a model, use dot notation to access the estimation report. For example:

load iddata1 z1;
np = 2;
sys = tfest(z1,np);
sys_report = sys.Report

sys_report = 
              Status: 'Estimated using TFEST'
              Method: 'TFEST'
    InitializeMethod: 'IV'
            N4Weight: 'Not applicable'
           N4Horizon: 'Not applicable'
    InitialCondition: 'estimate'
                 Fit: [1x1 struct]
          Parameters: [1x1 struct]
         OptionsUsed: [1x1 idoptions.tfest]
           RandState: []
            DataUsed: [1x1 struct]
         Termination: [1x1 struct]

Explore the options used during the estimation.

sys.Report.OptionsUsed

Option set for the tfest command:

      InitializeMethod: 'iv'
     InitializeOptions: [1x1 struct]
      InitialCondition: 'auto'
               Display: 'off'
           InputOffset: []
          OutputOffset: []
    EstimateCovariance: 1
        Regularization: [1x1 struct]
          SearchMethod: 'auto'
         SearchOptions: [1x1 idoptions.search.identsolver]

1 Choosing Your System Identification Approach

1-30



       WeightingFilter: []
      EnforceStability: 0
          OutputWeight: []
              Advanced: [1x1 struct]

View the fit of the transfer function model with the estimation data.

sys.Report.Fit

ans = struct with fields:
    FitPercent: 70.7720
       LossFcn: 1.6575
           MSE: 1.6575
           FPE: 1.7252
           AIC: 1.0150e+03
          AICc: 1.0153e+03
          nAIC: 0.5453
           BIC: 1.0372e+03

Compare Estimated Models Using Estimation Report
This example shows how to compare multiple estimated models using the estimation
report.

Load estimation data.

load iddata1 z1;

Estimate a transfer function model.

np = 2;
sys_tf = tfest(z1,np);

Estimate a state-space model.

sys_ss = ssest(z1,2);

Estimate an ARX model.

sys_arx = arx(z1, [2 2 1]);

Compare the percentage fit of the estimated models to the estimation data.
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fit_tf = sys_tf.Report.Fit.FitPercent

fit_tf = 70.7720

fit_ss = sys_ss.Report.Fit.FitPercent

fit_ss = 76.3808

fit_arx = sys_arx.Report.Fit.FitPercent

fit_arx = 68.7220

The comparison shows that the state-space model provides the best percent fit to the
data.

Analyze and Refine Estimation Results Using Estimation
Report
This example shows how to analyze an estimation and configure another estimation using
the estimation report.

Estimate a state-space model that minimizes the 1-step ahead prediction error.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','mrdamper.mat'));
z = iddata(F,V,Ts);
opt = ssestOptions;
opt.Focus = 'prediction';
opt.Display = 'on';
sys1 = ssest(z,2,opt);

sys1 has good 1-step prediction ability as indicated by >90% fit of the prediction results
to the data.

Use compare(z,sys1) to check the model's ability to simulate the measured output F
using the input V. The model's simulated response has only 45% fit to the data.

Perform another estimation where you retain the original options used for sys1 except
that you change the focus to minimize the simulation error.

Fetch the options used by sys1 stored in its Report property. This approach is useful
when you have saved the estimated model but not the corresponding option set used for
the estimation.
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opt2 = sys1.Report.OptionsUsed;

Change the focus to simulation and re-estimate the model.

opt2.Focus = 'simulation';
sys2 = ssest(z,sys1,opt2);

Compare the simulated response to the estimation data using compare(z,sys1,sys2).
The fit improves to 53%.

See Also

More About
• “About Identified Linear Models” on page 1-13
• “About Identified Nonlinear Models” on page 11-2
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Imposing Constraints on Model Parameter Values
All identified linear (IDLTI) models, except idfrd, contain a Structure property. The
Structure property contains the adjustable entities (parameters) of the model. Each
parameter has attributes such as value, minimum/maximum bounds, and free/fixed status
that allow you to constrain them to desired values or a range of values during estimation.
You use the Structure property to impose constraints on the values of various model
parameters.

The Structure property contains the essential parameters that define the structure of a
given model:

• For identified transfer functions, includes the numerator, denominator, and delay
parameters

• For polynomial models, includes the list of active polynomials
• For state-space models, includes the list of state-space matrices

For information about other model types, see the model reference pages.

For example, the following example constructs an idtf model, specifying values for the
Numerator and Denominator parameters:

num = [1 2];
den = [1 2 2];
sys = idtf(num,den)

You can update the value of the Numerator and Denominator properties after you
create the object as follows:

new_den = [1 1 10];
sys.Denominator = new_den;

To fix the denominator to the value you specified (treat its coefficients as fixed
parameters), use the Structure property of the object as follows:

sys.Structure.Denominator.Value = new_den;
sys.Structure.Denominator.Free = false(1,3);

For a transfer function model, the Numerator, Denominator, and IODelay model
properties are simply pointers to the Value attribute of the corresponding parameter in
the Structure property.
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IDTF Model Properties
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Similar relationships exist for other model structures. For example, the A property of a
state-space model contains the double value of the state matrix. It is an alias to the A
parameter value stored in Structure.A.Value.
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Recommended Model Estimation Sequence
System identification is an iterative process, where you identify models with different
structures from data and compare model performance. You start by estimating the
parameters of simple model structures. If the model performance is poor, you gradually
increase the complexity of the model structure. Ultimately, you choose the simplest model
that best describes the dynamics of your system.

Another reason to start with simple model structures is that higher-order models are not
always more accurate. Increasing model complexity increases the uncertainties in
parameter estimates and typically requires more data (which is common in the case of
nonlinear models).

Note Model structure is not the only factor that determines model accuracy. If your
model is poor, you might need to preprocess your data by removing outliers or filtering
noise. For more information, see “Ways to Prepare Data for System Identification” on
page 2-6.

Estimate impulse-response and frequency-response models first to gain insight into the
system dynamics and assess whether a linear model is sufficient. For more information,
see “Correlation Models” and “Frequency-Response Models”. Then, estimate parametric
models in the following order:

1 Transfer function, ARX polynomial, and state-space models provide the simplest
structures. Estimation of ARX and state-space models let you determine the model
orders.

In the System Identification app. Choose to estimate the Transfer function models,
ARX polynomial models, and the state-space model using the n4sid method.

At the command line. Use the tfest, arx, and the n4sid commands, respectively.

For more information, see “Input-Output Polynomial Models” and “State-Space
Models”.

2 ARMAX and BJ polynomial models provide more complex structures and require
iterative estimation. Try several model orders and keep the model orders as low as
possible.

In the System Identification app. Select to estimate the BJ and ARMAX polynomial
models.
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At the command line. Use the bj or armax commands.

For more information, see “Input-Output Polynomial Models”.
3 Nonlinear ARX or Hammerstein-Wiener models provide nonlinear structures. For

more information, see “Nonlinear Model Identification”.

For general information about choosing you model strategy, see “System Identification
Overview”. For information about validating models, see “Validating Models After
Estimation” on page 17-3.
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Supported Models for Time- and Frequency-Domain
Data

Supported Models for Time-Domain Data
Continuous-Time Models

You can directly estimate the following types of continuous-time models:

• Transfer function models.
• Process models.
• State-space models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time
model.

Discrete-Time Models

You can estimate all linear on page 1-20 and nonlinear on page 11-7 models supported
by the System Identification Toolbox product as discrete-time models, except process
models, which are defined only in continuous-time..

ODEs (Grey-Box Models)

You can estimate both continuous-time and discrete-time models from time-domain data
for linear and nonlinear differential and difference equations.

Nonlinear Models

You can estimate discrete-time Hammerstein-Wiener and nonlinear ARX models from
time-domain data.

You can also estimate nonlinear grey-box models from time-domain data. See “Estimate
Nonlinear Grey-Box Models” on page 13-34.

Supported Models for Frequency-Domain Data
There are two types of frequency-domain data:
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• Frequency response data
• Frequency domain input/output signals which are Fourier Transforms of the

corresponding time domain signals.

The data is considered continuous-time if its sample time (Ts) is 0, and is considered
discrete-time if the sample time is nonzero.

Continuous-Time Models

You can estimate the following types of continuous-time models directly:

• Transfer function models using continuous- or discrete-time data.
• Process models using continuous- or discrete-time data.
• Input-output polynomial models of output-error structure using continuous time data.
• State-space models using continuous- or discrete-time data.

From continuous-time frequency-domain data, you can only estimate continuous-time
models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time
model.

Discrete-Time Models

You can estimate all linear model types supported by the System Identification Toolbox
product as discrete-time models, except process models, which are defined in continuous-
time only. For estimation of discrete-time models, you must use discrete-time data.

The noise component of a model cannot be estimated using frequency domain data,
except for ARX models. Thus, the K matrix of an identified state-space model, the noise
component, is zero. An identified polynomial model has output-error (OE) or ARX
structure; BJ/ARMAX or other polynomial structure with nontrivial values of C or D
polynomials cannot be estimated.

ODEs (Grey-Box Models)

For linear grey-box models, you can estimate both continuous-time and discrete-time
models from frequency-domain data. The noise component of the model, the K matrix,
cannot be estimated using frequency domain data; it remains fixed to 0.

Nonlinear grey-box models are supported only for time-domain data.
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Nonlinear Black-Box Models

Nonlinear black box (nonlinear ARX and Hammerstein-Wiener models) cannot be
estimated using frequency domain data.

See Also
“Supported Continuous- and Discrete-Time Models” on page 1-41
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Supported Continuous- and Discrete-Time Models
For linear and nonlinear ODEs (grey-box models), you can specify any ordinary
differential or difference equation to represent your continuous-time or discrete-time
model in state-space form, respectively. In the linear case, both time-domain and
frequency-domain data are supported. In the nonlinear case, only time-domain data is
supported.

For black-box models, the following tables summarize supported continuous-time and
discrete-time models.
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Supported Continuous-Time Models

Model Type Description
Transfer function models Estimate continuous-time transfer function models directly

using tfest from either time- and frequency-domain data.
If you estimated a discrete-time transfer function model from
time-domain data, then use d2c to transform it into a
continuous-time model.

Low-order transfer functions
(process models)

Estimate low-order process models for up to three free poles
from either time- or frequency-domain data.

Linear input-output polynomial
models

To get a linear, continuous-time model of arbitrary structure
from time-domain data, you can estimate a discrete-time
model, and then use d2c to transform it into a continuous-time
model.
You can estimate only polynomial models of Output Error
structure using continuous-time frequency domain data.. Other
structures that include noise models, such as Box-Jenkins (BJ)
and ARMAX, are not supported for frequency-domain data.

State-space models Estimate continuous-time state-space models directly using the
estimation commands from either time- and frequency-domain
data.
If you estimated a discrete-time state-space model from time-
domain data, then use d2c to transform it into a continuous-
time model.

Linear ODEs (grey-box) models If the MATLAB file returns continuous-time model matrices,
then estimate the ordinary differential equation (ODE)
coefficients using either time- or frequency-domain data.

Nonlinear ODEs (grey-box) models If the MATLAB file returns continuous-time output and state
derivative values, estimate arbitrary differential equations
(ODEs) from time-domain data.
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Supported Discrete-Time Models

Model Type Description
Linear input-output polynomial
models

Estimate arbitrary-order, linear parametric models from time-
or frequency-domain data.
To get a discrete-time model, your data sample time must be
set to the (nonzero) value you used to sample in your
experiment.

“Nonlinear Model Identification” Estimate from time-domain data only.
Linear ODEs (grey-box) models If the MATLAB file returns discrete-time model matrices, then

estimate ordinary difference equation coefficients from time-
domain or discrete-time frequency-domain data.

Nonlinear ODEs (grey-box) models If the MATLAB file returns discrete-time output and state
update values, estimate ordinary difference equations from
time-domain data.
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Model Estimation Commands
In most cases, a model can be created by using a model estimation command on a
dataset. For example, ssest(data,nx) creates a continuous-time state-space model of
order Nx using the input/output of frequency response data DATA.

Note For ODEs (grey-box models), you must first construct the model structure and then
apply an estimation command (either greyest or pem) to the resulting model object.

The following table summarizes System Identification Toolbox estimation commands. For
detailed information about using each command, see the corresponding reference page.

Commands for Constructing and Estimating Models

Model Type Estimation Commands
Transfer function models tfest
Process models procest
Linear input-output polynomial
models

armax (ARMAX only)
arx (ARX only)
bj (BJ only)
iv4 (ARX only)
oe (OE only)
polyest (for all models)

State-space models n4sid
ssest

Time-series models ar
arx (for multiple outputs)
ivar
nlarx(for nonlinear time-series models)

Nonlinear ARX models nlarx
Hammerstein-Wiener models nlhw
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Modeling Multiple-Output Systems

About Modeling Multiple-Output Systems
You can estimate multiple-output model directly using all the measured inputs and
outputs, or you can try building models for subsets of the most important input and
output channels. To learn more about each approach, see:

• “Modeling Multiple Outputs Directly” on page 1-45
• “Modeling Multiple Outputs as a Combination of Single-Output Models” on page 1-45

Modeling multiple-output systems is more challenging because input/output couplings
require additional parameters to obtain a good fit and involve more complex models. In
general, a model is better when more data inputs are included during modeling. Including
more outputs typically leads to worse simulation results because it is harder to reproduce
the behavior of several outputs simultaneously.

If you know that some of the outputs have poor accuracy and should be less important
during estimation, you can control how much each output is weighed in the estimation.
For more information, see “Improving Multiple-Output Estimation Results by Weighing
Outputs During Estimation” on page 1-46.

Modeling Multiple Outputs Directly
You can perform estimation with linear and nonlinear models for multiple-output data.

Tip Estimating multiple-output state-space models directly generally produces better
results than estimating other types of multiple-output models directly.

Modeling Multiple Outputs as a Combination of Single-Output
Models
You may find that it is harder for a single model to explain the behavior of several outputs.
If you get a poor fit estimating a multiple-output model directly, you can try building
models for subsets of the most important input and output channels.
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Use this approach when no feedback is present in the dynamic system and there are no
couplings between the outputs. If you are unsure about the presence of feedback, see
“How to Analyze Data Using the advice Command” on page 2-101.

To construct partial models, use subreferencing to create partial data sets, such that each
data set contains all inputs and one output. For more information about creating partial
data sets, see the following topics:

• For working in the System Identification app, see “Create Data Sets from a Subset of
Signal Channels” on page 2-33.

• For working at the command line, see the “Select Data Channels, I/O Data and
Experiments in iddata Objects” on page 2-54.

After validating the single-output models, use vertical concatenation to combine these
partial models into a single multiple-output model. For more information about
concatenation, see “Increasing Number of Channels or Data Points of iddata Objects” on
page 2-58 or “Adding Input or Output Channels in idfrd Objects” on page 2-87.

You can try refining the concatenated multiple-output model using the original (multiple-
output) data set.

Improving Multiple-Output Estimation Results by Weighing
Outputs During Estimation
When estimating linear and nonlinear black-box models for multiple-output systems, you
can control the relative importance of output channels during the estimation process. The
ability to control how much each output is weighed during estimation is useful when some
of the measured outputs have poor accuracy or should be treated as less important during
estimation. For example, if you have already modeled one output well, you might want to
focus the estimation on modeling the remaining outputs. Similarly, you might want to
refine a model for a subset of outputs.

Use the OutputWeight estimation option to indicate the desired output weighting. If you
set this option to 'noise', an automatic weighting, equal to the inverse of the estimated
noise variance, is used for model estimation. You can also specify a custom weighting
matrix, which must be a positive semi-definite matrix.

Note
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• The OutputWeight option is not available for polynomial models, except ARX models,
since their estimation algorithm estimates the parameters one output at a time.

• Transfer function (idtf) and process models (idproc) ignore OutputWeight when
they contain nonzero or free transport delays. In the presence of delays, the
estimation is carried out one output at a time.

For more information about the OutputWeight option, see the estimation option sets,
such as arxOptions, ssestOptions, tfestOptions, nlarxOptions, and
nlhwOptions.

Note For multiple-output idnlarx models containing neuralnet or treepartition
nonlinearity estimators, output weighting is ignored because each output is estimated
independently.
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Regularized Estimates of Model Parameters
What Is Regularization?
Regularization is the technique for specifying constraints on the flexibility of a model,
thereby reducing uncertainty in the estimated parameter values.

Model parameters are obtained by fitting measured data to the predicted model response,
such as a transfer function with three poles or a second-order state-space model. The
model order is a measure of its flexibility — higher the order, the greater the flexibility.
For example, a model with three poles is more flexible than one with two poles.
Increasing the order causes the model to fit the observed data with increasing accuracy.
However, the increased flexibility comes with the price of higher uncertainty in the
estimates, measured by a higher value of random or variance error. On the other hand,
choosing a model with too low an order leads to larger systematic errors. Such errors
cannot be attributed to measurement noise and are also known as bias error.

Ideally, the parameters of a good model should minimize the mean square error (MSE),
given by a sum of systematic error (bias) and random error (variance):

MSE = |Bias|2 + Variance

The minimization is thus a tradeoff in constraining the model. A flexible (high order)
model gives small bias and large variance, whereas a simpler (low order) model results in
larger bias and smaller variance errors. Typically, you can investigate this tradeoff
between bias and variance errors by cross-validation tests on a set of models of
increasing flexibility. However, such tests do not always give full control in managing the
parameter estimation behavior. For example:

• You cannot use the known (a priori) information about the model to influence the
quality of the fits.

• In grey-box and other structured models, the order is fixed by the underlying ODEs
and cannot be changed. If the data is not rich enough to capture the full range of
dynamic behavior, this typically leads to high uncertainty in the estimated values.

• Varying the model order does not let you explicitly shape the variance of the
underlying parameters.

Regularization gives you a better control over the bias versus variance tradeoff by
introducing an additional term in the minimization criterion that penalizes the model
flexibility. Without regularization, for a model with one output and no weighting, the
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parameter estimates are obtained by minimizing a weighted quadratic norm of the
prediction errors ε(t,θ):
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where t is the time variable, N is the number of data samples, and ε(t,θ) is the predicted
error computed as the difference between the observed output and the predicted output
of the model.

Regularization modifies the cost function by adding a term proportional to the square of
the norm of the parameter vector θ, so that the parameters θ are obtained by minimizing:
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where λ is a positive constant that has the effect of trading variance error in VN(θ) for
bias error — the larger the value of λ, the higher the bias and lower the variance of θ. The
added term penalizes the parameter values with the effect of keeping their values small
during estimation. In statistics, this type of regularization is called ridge regression. For
more information, see “Ridge Regression” (Statistics and Machine Learning Toolbox).

Note Another choice for the norm of θ vector is the L1-norm, known as lasso
regularization. However, System Identification Toolbox supports only the 2-norm based
penalty, known as L2 regularization, as shown in the previous equation.

The penalty term is made more effective by using a positive definite matrix R, which
allows weighting and/or rotation of the parameter vector:
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The square matrix R gives additional freedom for:

• Shaping the penalty term to meet the required constraints, such as keeping the model
stable
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• Adding known information about the model parameters, such as reliability of the
individual parameters in the θ vector

For structured models such as grey-box models, you may want to keep the estimated
parameters close to their guess values to maintain the physical validity of the estimated

model. This can be achieved by generalizing the penalty term to l q q q q-( ) -( )* *
T

R ,
such that the cost function becomes:
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Minimizing this cost function has the effect of estimating θ such that their values remain
close to initial guesses θ*.

In regularization:

• θ* represents prior knowledge about the unknown parameters.
• λ*R represents the confidence in the prior knowledge of the unknown parameters.

This implies that the larger the value, the higher the confidence.

A formal interpretation in a Bayesian setting is that θ has a prior distribution that is

Gaussian with mean θ* and covariance matrix s l
2 1

/ R
- , where σ2 is the variance of ε(t).

The use of regularization can therefore be linked to some prior information about the
system. This could be quite soft, such as the system is stable.

You can use the regularization variables λ and R as tools to find a good model that
balances complexity and provides the best tradeoff between bias and variance. You can
obtain regularized estimates of parameters for transfer function, state-space, polynomial,
grey-box, process, and nonlinear black-box models. The three terms defining the penalty
term, λ, R and θ*, are represented by regularization options Lambda, R, and Nominal,
respectively in the toolbox. You can specify their values in the estimation option sets for
both linear and nonlinear models. In the System Identification app, click Regularization
in the linear model estimation dialog box or Estimation Options in the Nonlinear Models
dialog box.

When to Use Regularization
Use regularization for:
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• Identifying overparameterized models.
• Imposing a priori knowledge of model parameters in structured models.
• Incorporating knowledge of system behavior in ARX and FIR models.

Identifying Overparameterized Models

Over-parameterized models are rich in parameters. Their estimation typically yields
parameter values with a high level of uncertainty. Over-parameterization is common for
nonlinear ARX (idnlarx) models and can also be for linear state-space models using free
parameterization.

In such cases, regularization improves the numerical conditioning of the estimation. You
can explore the bias-vs.-variance tradeoff using various values of the regularization
constant Lambda. Typically, the Nominal option is its default value of 0, and R is an
identity matrix such that the following cost function is minimized:
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In the following example, a nonlinear ARX model estimation using a large number of
neurons leads to an ill-conditioned estimation problem.

% Load estimation data.
load regularizationExampleData.mat nldata
% Estimate model without regularization.
Orders = [1 2 1];
NL = sigmoidnet('NumberOfUnits',30);
sys = nlarx(nldata,Orders,NL);
compare(nldata,sys)

Applying even a small regularizing penalty produces a good fit for the model to the data.

% Estimate model using regularization constant λ = 1e-8.
opt = nlarxOptions;
opt.Regularization.Lambda = 1e-8;
sysr = nlarx(nldata,Orders,NL,opt);
compare(nldata,sysr)

Imposing A Priori Knowledge of Model Parameters in Structured Models

In models derived from differential equations, the parameters have physical significance.
You may have a good guess for typical values of those parameters even if the reliability of
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the guess may be different for each parameter. Because the model structure is fixed in
such cases, you cannot simplify the structure to reduce variance errors.

Using the regularization constant Nominal, you can keep the estimated values close to
their initial guesses. You can also design R to reflect the confidence in the initial guesses
of the parameters. For example, if θ is a 2-element vector and you can guess the value of
the first element with more confidence than the second one, set R to be a diagonal matrix
of size 2-by-2 such that R(1,1) >> R(2,2).

In the following example, a model of a DC motor is parameterized by static gain G and
time constant τ. From prior knowledge, suppose you know that G is about 4 and τ is about
1. Also, assume that you have more confidence in the value of τ than G and would like to
guide the estimation to remain close to the initial guess.

% Load estimation data.
load regularizationExampleData.mat motorData
% Create idgrey model for DC motor dynamics. 
mi = idgrey(@DCMotorODE,{'G',4;'Tau',1},'cd',{}, 0);
mi = setpar(mi,'label','default'); 
% Configure Regularization options.
opt = greyestOptions;
opt.Regularization.Lambda = 100;
% Specify that the second parameter better known than the first.
opt.Regularization.R = [1, 1000]; 
% Specify initial  guess as Nominal. 
opt.Regularization.Nominal = 'model';
% Estimate model.
sys = greyest(motorData,mi,opt)
getpar(sys)

Incorporating Knowledge of System Behavior in ARX and FIR Models

In many situations, you may know the shape of the system impulse response from impact
tests. For example, it is quite common for stable systems to have an impulse response
that is smooth and exponentially decaying. You can use such prior knowledge of system
behavior to derive good values of regularization constants for linear-in-parameter models
such as ARX and FIR structure models using the arxRegul command.

For black-box models of arbitrary structure, it is often difficult to determine the optimal
values of Lambda and R that yield the best bias-vs.-variance tradeoff. Therefore, it is
recommended that you start by obtaining the regularized estimate of an ARX or FIR
structure model. Then, convert the model to a state-space, transfer function or polynomial
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model using the idtf, idss, or idpoly commands, followed by order reduction if
required.

In the following example, direct estimation of a 15th order continuous-time transfer
function model fails due to numerical ill-conditioning.

% Load estimation data.
load dryer2
Dryer = iddata(y2,u2,0.08);
Dryerd = detrend(Dryer,0);
Dryerde = Dryerd(1:500);
xe = Dryerd(1:500);
ze = Dryerd(1:500);
zv = Dryerd(501:end);
% Estimate model without regularization.
sys1 = tfest(ze,15);

Therefore, use regularized ARX estimation and then convert the model to transfer
function structure.

% Specify regularization constants.
[L, R] = arxRegul(ze,[15 15 1]);
optARX = arxOptions;
optARX.Regularization.Lambda = L;
optARX.Regularization.R = R;
% Estimate ARX model.
sysARX = arx(ze,[15 15 1],optARX);
% Convert model to continuous time. 
sysc = d2c(sysARX);
% Convert model to transfer function.
sys2 = idtf(sysc);
% Validate the models sys1 and sys2.
compare(zv,sys1,sys2)

Choosing Regularization Constants
A guideline for selecting the regularization constants λ and R is in the Bayesian
interpretation. The added penalty term is an assumption that the parameter vector θ is a

Gaussian random vector with mean θ* and covariance matrix s l
2 1

/ R
- .

You can relate naturally to such an assumption for a grey-box model, where the
parameters are of known physical interpretation. In other cases, this may be more
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difficult. Then, you have to use ridge regression (R = 1; θ* = 0) and tune λ by trial and
error.

Use the following techniques for determining λ and R values:

• Incorporate prior information using tunable kernels.
• Perform cross-validation tests.

Incorporate Prior Information Using Tunable Kernels

Tuning the regularization constants for ARX models in arxRegul is based on simple
assumptions about the properties of the true impulse responses.

In the case of an FIR model, the parameter vector contains the impulse response
coefficients bk for the system. From prior knowledge of the system, it is often known that
the impulse response is smooth and exponentially decaying:

E b C corr b bk
k

k k[ ] = { } =-
2

1m r,   

where corr means correlation. The equation is a parameterization of the regularization
constants in terms of coefficients C, μ, and ρ and the chosen shape (decaying polynomial)
is called a kernel. The kernel thus contains information about parameterization of the
prior covariance of the impulse response coefficients.

You can estimate the parameters of the kernel by adjusting them to the measured data
using the RegularizationKernel input of the arxRegul command. For example, the

DC kernel estimates all three parameters while the TC kernel links r m= . This
technique of tuning kernels applies to all linear-in-parameter models such as ARX and FIR
models.

Perform Cross-Validation Tests

A general way to test and evaluate any regularization parameters is to estimate a model
based on certain parameters on an estimation data set, and evaluate the model fit for
another validation data set. This is known as cross-validation.

Cross-validation is entirely analogous to the method for selecting model order:

1 Generate a list of candidate λ and R values to be tested.
2 Estimate a model for each candidate regularization constant set.
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3 Compare the model fit to the validation data.
4 Use the constants that give the best fit to the validation data.

For example:

% Create estimation and validation data sets.
ze = z(1:N/2);
zv = z(N/2:end);
% Specify regularization options and estimate models.
opt = ssestOptions;
for tests = 1:M
opt.Regularization.Lambda = Lvalue(test);
opt.Regularization.R = Rvalue(test);
m{test} = ssest(ze,order,opt);
end
% Compare models with validation data for model fit.
[~,fit] = compare(zv,m{:))
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See Also

Related Examples
• “Estimate Regularized ARX Model Using System Identification App” on page 1-57
• “Regularized Identification of Dynamic Systems” on page 1-77
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More About
• “Loss Function and Model Quality Metrics” on page 1-64
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Estimate Regularized ARX Model Using System
Identification App

This example shows how to estimate regularized ARX models using automatically
generated regularization constants in the System Identification app.

Open a saved System Identification App session.

filename = fullfile(matlabroot,'help','toolbox',...
           'ident','examples','ex_arxregul.sid');
systemIdentification(filename)

The session imports the following data and model into the System Identification app:

• Estimation data eData

The data is collected by simulating a system with the following known transfer
function:

G z
z z

z z
( ) =

+ +

- +

- -

- -

0 02008 0 04017 0 02008

1 1 56 0 6414

1 2

1 2

. . .

. .

• Transfer function model trueSys

trueSys is the transfer function model used to generate the estimation data eData
described previously. You also use the impulse response of this model later to compare
the impulse responses of estimated ARX models.
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Estimate a 50th-order ARX model.

1 In the System Identification app, select Estimate > Polynomial Models to open the
Polynomial Models dialog box.

2 Verify that ARX is selected in the Structure list.
3 In the Orders field, specify [0 50 0] as the ARX model order and delay.

4 Click Estimate to estimate the model.

A model arx0500 is added to the System Identification app.

Estimate a 50th-order regularized ARX model.

1 In the Polynomial Models dialog box, click Regularization.
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2 In the Regularization Options dialog box, select TC from the Regularization Kernel
drop-down list.

Specifying this option automatically determines regularization constants using the TC
regularization kernel. To learn more, see the arxRegul reference page.

Click Close to close the dialog box.
3 In the Name field in the Polynomial Models dialog box, type arx0500reg.
4 Click Estimate.

A model arx0500reg is added to the System Identification app.
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Compare the unregularized and regularized model outputs to estimation data.

Select the Model output check box in the System Identification app.

The Measured and simulated model output plot shows that both the models have an 84%
fit with the data.

Determine if regularization leads to parameter values with less variance.

Because the model fit to the estimation data is similar with and without using
regularization, compare the impulse response of the ARX models with the impulse
responses of trueSys, the system used to collect the estimation data.

1 Click the trueSys icon in the model board of the System Identification app.
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2 Select the Transient resp check box to open the Transient Response plot window.

By default, the plot shows the step response.
3 In the Transient response plot window, select Options > Impulse response to

change to plot to display the impulse response.
4 Select Options > Show 99% confidence intervals to plot the confidence intervals.
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The plot shows that the impulse response of the unregularized model arx0500 is far
off from the true system and has huge uncertainties.

To get a closer look at the model fits to the data and the variances, magnify a portion
of the plot.

1 Choosing Your System Identification Approach

1-62



The fit of the regularized ARX model arx0500reg closely matches the impulse
response of the true system and the variance is greatly reduced as compared to the
unregularized model.

See Also

Related Examples
• “Regularized Identification of Dynamic Systems” on page 1-77

More About
• “Regularized Estimates of Model Parameters” on page 1-48
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Loss Function and Model Quality Metrics
What is a Loss Function?
The System Identification Toolbox software estimates model parameters by minimizing
the error between the model output and the measured response. This error, called loss
function or cost function, is a positive function of prediction errors e(t). In general, this
function is a weighted sum of squares of the errors. For a model with ny-outputs, the loss
function V(θ) has the following general form:

V
N

e t W e t

t

N
T( )   ,     ,q q q q= ( ) ( ) ( )

=

Â
1

1

where:

• N is the number of data samples.
• e(t,θ) is ny-by-1 error vector at a given time t, parameterized by the parameter vector

θ.
• W(θ) is the weighting matrix, specified as a positive semidefinite matrix. If W is a

diagonal matrix, you can think of it as a way to control the relative importance of
outputs during multi-output estimations. When W is a fixed or known weight, it does
not depend on θ.

The software determines the parameter values by minimizing V(θ) with respect to θ.

For notational convenience, V(θ) is expressed in its matrix form:

V
N

trace E E W
Tq q q q( ) = ( ) ( )( )1

    ( )

E(θ) is the error matrix of size N-by-ny. The i:th row of E(θ) represents the error value at
time t = i.

The exact form of V(θ) depends on the following factors:

• Model structure. For example, whether the model that you want to estimate is an ARX
or a state-space model.

• Estimator and estimation options. For example, whether you are using n4sid or
ssest estimator and specifying options such as Focus and OutputWeight.
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Options to Configure the Loss Function
You can configure the loss function for your application needs. The following estimation
options, when available for the estimator, configure the loss function:

Estimation
Option

Description Notes

Focus Focus option affects how e(t) in the loss function is
computed:

• When Focus is 'prediction', e(t) represents 1-
step ahead prediction error:

e t y t y tp measured predicted( ) = ( ) - ( )

• When Focus is 'simulation', e(t) represents
the simulation error:

e t y t y ts measured simulated( ) = ( ) - ( )

Note For models whose noise component is trivial,
(H(q) = 1), ep(t), and es(t) are equivalent.

The Focus option can also be interpreted as a
weighting filter in the loss function. For more
information, see “Effect of Focus and WeightingFilter
Options on the Loss Function” on page 1-70.

• Specify the Focus
option in the estimation
option sets.

• The estimation option
sets for oe and tfest
do not have a Focus
option because the
noise-component for
the estimated models is
trivial, and so ep(t) and
es(t) are equivalent.
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Estimation
Option

Description Notes

WeightingFil
ter

When you specify a weighting filter, prefiltered
prediction or simulation error is minimized:

e t e tf ( ) ( ( ))= L

where L(.)  is a linear filter. The WeightingFilter
option can be interpreted as a custom weighting filter
that is applied to the loss function. For more
information, see “Effect of Focus and WeightingFilter
Options on the Loss Function” on page 1-70.

• Specify the
WeightingFilter
option in the estimation
option sets. Not all
options for
WeightingFilter are
available for all
estimation commands.
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Estimation
Option

Description Notes

EnforceStabi
lity

When EnforceStability is true, the minimization
objective also contains a constraint that the estimated
model must be stable.

• Specify the
EnforceStability
option in the estimation
option sets.

• The estimation option
sets for procest and
ssregest commands
do not have an
EnforceStability
option. These
estimation commands
always yield a stable
model.

• The estimation
commands tfest and
oe always yield a stable
model when used with
time-domain estimation
data.

• Identifying unstable
plants requires data
collection under a
closed loop with a
stabilizing feedback
controller. A reliable
estimation of the plant
dynamics requires a
sufficiently rich noise
component in the
model structure to
separate out the plant
dynamics from
feedback effects. As a
result, models that use
a trivial noise
component (H(q) = 1),
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Estimation
Option

Description Notes

such as models
estimated by tfest
and oe commands, do
not estimate good
results for unstable
plants.

OutputWeight OutputWeight option configures the weighting
matrix W(θ) in the loss function and lets you control
the relative importance of output channels during
multi-output estimations.

• When OutputWeight is 'noise', W(θ) equals the
inverse of the estimated variance of error e(t):

W
N

E E
Tq q q( ) = ( ) ( )Ê

ËÁ
ˆ
¯̃
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1

1

 

Because W depends on θ, the weighting is
determined as a part of the estimation.
Minimization of the loss function with this weight
simplifies the loss function to:

V det
N

E E
Tq q q( ) = ( ) ( )Ê

ËÁ
ˆ
¯̃

1
 

Using the inverse of the noise variance is the
optimal weighting in the maximum likelihood
sense.

• When OutputWeight is an ny-by-ny positive
semidefinite matrix, a constant weighting is used.
This loss function then becomes a weighted sum of
squared errors.

• Specify the
OutputWeight option
in the estimation option
sets. Not all options for
OutputWeight are
available for all
estimation commands.

• OutputWeight is not
available for polynomial
model estimation
because such models
are always estimated
one output at a time.

• OutputWeight cannot
be 'noise' when
SearchMethod is
'lsqnonlin'.
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Estimation
Option

Description Notes

ErrorThresho
ld

ErrorThreshold option specifies the threshold for
when to adjust the weight of large errors from
quadratic to linear. Errors larger than
ErrorThreshold times the estimated standard
deviation have a linear weight in the loss function.
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where:

• I represents those time instants for which

   

 

*e t  ( ) < r s , where ρ is the error threshold.
• J represents the complement of I, that is, the time

instants for which e t  ( ) >= r s* .
• σ is the estimated standard deviation of the error.

The error v(t,θ) is defined as:

v t e t

e t

, , *
,

q q s
r

q
( ) = ( )

( )

• Specify the
ErrorThreshold
option in the estimation
option sets.

• A typical value for the
error threshold ρ = 1.6
minimizes the effect of
data outliers on the
estimation results.
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Estimation
Option

Description Notes

Regularizati
on

Regularization option modifies the loss function to
add a penalty on the variance of the estimated
parameters.

The loss function is set up with the goal of minimizing
the prediction errors. It does not include specific
constraints on the variance (a measure of reliability)
of estimated parameters. This can sometimes lead to
models with large uncertainty in estimated model
parameters, especially when the model has many
parameters.

Regularization introduces an additional term in
the loss function that penalizes the model flexibility:

V
N

e t W e t
N

R

t

N

T
T

q q q q l q q q q( ) = ( ) ( ) ( )+ -( ) -( )
=

Â  ,     ,        
* *1 1

1

The second term is a weighted (R) and scaled (λ)
variance of the estimated parameter set θ about its
nominal value θ*.

• Specify the
Regularization
option in the estimation
option sets.

• For linear-in-parameter
models (FIR models)
and ARX models, you
can compute optimal
values of the
regularization variables
R and λ using the
arxRegul command.

Effect of Focus and WeightingFilter Options on the Loss Function

The Focus option can be interpreted as a weighting filter in the loss function. The
WeightingFilter option is an additional custom weighting filter that is applied to the
loss function.

To understand the effect of Focus and WeightingFilter, consider a linear single-input
single-output model:

y t G q u t H q e t( ) ( , ) ( ) ( , ) ( )= +q q  

Where G(q,θ) is the measured transfer function, H(q,θ) is the noise model, and e(t)
represents the additive disturbances modeled as white Gaussian noise. q is the time-shift
operator.

In frequency domain, the linear model can be represented as:
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Y G U H E( ) ( , ) ( ) ( , ) ( )w w q w w q w= +

where Y(ω), U(ω), and E(ω) are the Fourier transforms of the output, input, and output
error, respectively. G(ω,θ) and H(ω,θ) represent the frequency response of the input-
output and noise transfer functions, respectively.

The loss function to be minimized for the SISO model is given by:

V
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Using Parseval’s Identity, the loss function in frequency-domain is:

V
N

E( , )   ( )q w w=
1 2

Substituting for E(ω) gives:
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Thus, you can interpret minimizing the loss function V as fitting G(θ,ω) to the empirical

transfer function Y U( ) / ( )w w , using 
U

H

( )

( , )

w

q w

2

2
 as a weighting filter. This corresponds to

specifying Focus as 'prediction'. The estimation emphasizes frequencies where input

has more power ( U( )w
2  is greater) and de-emphasizes frequencies where noise is

significant ( H( , )q w
2  is large).

When Focus is specified as 'simulation', the inverse weighting with H( , )q w
2  is not

used. That is, only the input spectrum is used to weigh the relative importance of the
estimation fit in a specific frequency range.

When you specify a linear filter L  as WeightingFilter, it is used as an additional
custom weighting in the loss function.
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Here L( )w  is the frequency response of the filter. Use L( )w  to enhance the fit of the
model response to observed data in certain frequencies, such as to emphasize the fit close
to system resonant frequencies.

The estimated value of input-output transfer function G is the same as what you get if you

instead first prefilter the estimation data with L(.)  using idfilt, and then estimate the

model without specifying WeightingFilter. However, the effect of L(.)  on the
estimated noise model H depends on the choice of Focus:

• Focus is 'prediction' — The software minimizes the weighted prediction error

e t e tf p( ) ( ( ))= L , and the estimated model has the form:

y t G q u t H q e t( ) ( ) ( ) ( ) ( )= + 1

Where H q H q q1( ) ( ) / ( )= L . Thus, the estimation with prediction focus creates a biased
estimate of H. This is the same estimated noise model you get if you instead first

prefilter the estimation data with L(.)  using idfilt, and then estimate the model.

When H is parameterized independent of G, you can treat the filter L(.)  as a way of
affecting the estimation bias distribution. That is, you can shape the trade-off between
fitting G to the system frequency response and fitting H / L  to the disturbance
spectrum when minimizing the loss function. For more details see, section 14.4 in
System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice
Hall PTR, 1999.

• Focus is 'simulation' — The software first estimates G by minimizing the

weighted simulation error e t e tf s( ) ( ( ))= L , where

e t y t G q u ts measured measured( ) = ( ) - ( )( ) . Once G is estimated, the software fixes it and
computes H by minimizing pure prediction errors e(t) using unfiltered data. The
estimated model has the form:
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y t G q u t He t( ) ( ) ( ) ( )= +

If you prefilter the data first, and then estimate the model, you get the same estimate
for G but get a biased noise model H / L .

Thus, the WeightingFilter has the same effect as prefiltering the estimation data for
estimation of G. For estimation of H, the effect of WeightingFilter depends upon the
choice of Focus. A prediction focus estimates a biased version of the noise model H / L ,
while a simulation focus estimates H. Prefiltering the estimation data, and then
estimating the model always gives H / L  as the noise model.

Model Quality Metrics
After you estimate a model, use model quality metrics to assess the quality of identified
models, compare different models, and pick the best one. The Report.Fit property of an
identified model stores various metrics such as FitPercent, LossFcn, FPE, MSE, AIC,
nAIC, AICc, and BIC values.

• FitPercent, LossFcn, and MSE are measures of the actual quantity that is minimized
during the estimation. For example, if Focus is 'simulation', these quantities are
computed for the simulation error es (t). Similarly, if you specify the
WeightingFilter option, then LossFcn, FPE, and MSE are computed using filtered
residuals ef (t).

• FPE, AIC, nAIC, AICc, and BIC measures are computed as properties of the output
disturbance according to the relationship:

y t G q u t H q e t( ) = ( ) ( ) + ( ) ( )

G(q) and H(q) represent the measured and noise components of the estimated model.

Regardless of how the loss function is configured, the error vector e(t) is computed as
1-step ahead prediction error using a given model and a given dataset. This implies
that even when the model is obtained by minimizing the simulation error es (t), the
FPE and various AIC values are still computed using the prediction error ep (t). The
actual value of ep (t) is determined using the pe command with prediction horizon of 1
and using the initial conditions specified for the estimation.
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These metrics contain two terms — one for describing the model accuracy and another

to describe its complexity. For example, in FPE, det
N

E E
T1

 
Ê
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ˆ
¯̃
 describes the model

accuracy and 
1

1

+

-

np

N
np

N

 describes the model complexity.

By comparing models using these criteria, you can pick a model that gives the best
(smallest criterion value) trade-off between accuracy and complexity.

Quality Metric Description
FitPercent Normalized Root Mean Squared Error (NRMSE) expressed as a

percentage, defined as:

FitPercent
y y

y y

measured model

measured measured

= -
-

-
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¯
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where:

• ymeasured is the measured output data.
•

ymeasured  is its (channel-wise) mean.
• ymodel is the simulated or predicted response of the model, governed

by the Focus.
• ||.|| indicates the 2-norm of a vector.

FitPercent varies between -Inf (bad fit) to 100 (perfect fit). If the
value is equal to zero, then the model is no better at fitting the measured
data than a straight line equal to the mean of the data.

LossFcn Value of the loss function when the estimation completes. It contains
effects of error thresholds, output weight, and regularization used for
estimation.
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Quality Metric Description
MSE Mean Squared Error measure, defined as:

MSE
N

e t e t

t

N
T= ( ) ( )

=

Â   
1

1

where:

• e(t) is the signal whose norm is minimized for estimation.
• N is the number of data samples in the estimation dataset.

FPE Akaike’s Final Prediction Error (FPE), defined as:
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where:

• np is the number of free parameters in the model. np includes the
number of estimated initial states.

• N is the number of samples in the estimation dataset.
• E is the N-by-ny matrix of prediction errors, where ny is the number of

output channels.
AIC A raw measure of Akaike's Information Criterion, defined as:

AIC N log det
N

E E n N nT
p y= * Ê

ËÁ
ˆ
¯̃

Ê
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2 2 1  log p
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Quality Metric Description
AICc Small sample-size corrected Akaike's Information Criterion, defined as:

AICc AIC n
n

N n
p

p

p

= + * *

+

- -

2
1

1

( )

( )

This metric is often more reliable for picking a model of optimal
complexity from a list of candidate models when the data size N is small.

nAIC Normalized measure of Akaike's Information Criterion, defined as:

nAIC log det
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BIC Bayesian Information Criterion, defined as:

BIC N log det
N

E E N n n NT
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See Also
aic | fpe | goodnessofFit | nparams | pe | predict | sim

More About
• “System Identification Overview”
• “Why Simulate or Predict Model Output?” on page 17-9
• “Assigning Estimation Weightings” on page 6-21
• “Modeling Multiple-Output Systems” on page 1-45
• “Regularized Estimates of Model Parameters” on page 1-48
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Regularized Identification of Dynamic Systems
This example shows the benefits of regularization for identification of linear and nonlinear
models.

What is Regularization

When a dynamic system is identified using measured data, the parameter estimates are
determined as:

where the criterion typically is a weighted quadratic norm of the prediction errors .
An  regularized criterion is modified as:

A common special case of this is when . This is called ridge regression in
statistics, e.g, see the ridge command in Statistics and Machine Learning Toolbox™.

A useful way of thinking about regularization is that  represents prior knowledge about
the unknown parameter vector and that  describes the confidence in this knowledge.
(The larger , the higher confidence). A formal interpretation in a Bayesian setting is
that  has a prior distribution that is Gaussian with mean  and covariance matrix

, where  is the variance of the innovations.

The use of regularization can therefore be linked to some prior information about the
system. This could be quite soft, like that the system is stable. The regularization
variables  and  can be seen as tools to find a good model complexity for best tradeoff
between bias and variance. The regularization constants  and  are represented by
options called Lambda and R respectively in System Identification Toolbox™. The choice
of  is controlled by the Nominal regularization option.

Bias - Variance Tradeoff in FIR modeling

Consider the problem of estimating the impulse response of a linear system as an FIR
model:
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These are estimated by the command: m = arx(z,[0 nb 0]). The choice of order nb is
a tradeoff between bias (large nb is required to capture slowly decaying impulse
responses without too much error) and variance (large nb gives many parameters to
estimate which gives large variance).

Let us illustrate it with a simulated example. We pick a simple second order butterworth
filter as system:

Its impulse response is shown in Figure 1:

trueSys = idtf([0.02008 0.04017 0.02008],[1 -1.561 0.6414],1);
[y0,t] = impulse(trueSys);
plot(t,y0)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
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Figure 1: The true impulse response.

The impulse response has decayed to zero after less than 50 samples. Let us estimate it
from data generated by the system. We simulate the system with low-pass filtered white
noise as input and add a small white noise output disturbance with variance 0.0025 to the
output. 1000 samples are collected. This data is saved in the
regularizationExampleData.mat file and shown in Figure 2.

load regularizationExampleData.mat eData
plot(eData)
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Figure 2: The data used for estimation.

To determine a good value for nb we basically have to try a few values and by some
validation procedure evaluate which is best. That can be done in several ways, but since
we know the true system in this case, we can determine the theoretically best possible
value, by trying out all models with nb=1,...,50 and find which one has the best fit to
the true impulse response. Such a test shows that nb = 13 gives the best error norm
(mse = 0.2522) to the impulse response. This estimated impulse response is shown
together with the true one in Figure 3.

nb = 13;
m13 = arx(eData,[0 nb 0]);
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[y13,~,~,y13sd] = impulse(m13,t);
plot(t,y0,t,y13)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','13:th order FIR model')

Figure 3: The true impulse response together with the estimate for order nb = 13.

Despite the 1000 data points with very good signal to noise ratio the estimate is not
impressive. The uncertainty in the response is also quite large as shown by the 1 standard
deviation values of response. The reason is that the low pass input has poor excitation.

plot(t,y0,t,y13,t,y13+y13sd,'r:',t,y13-y13sd,'r:')
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','13:th order FIR model','Bounds')
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Figure 4: Estimated response with confidence bounds corresponding to 1 s.d.

Let us therefore try to reach a good bias-variance trade-off by ridge regression for a FIR
model of order 50. Use arxOptions to configure the regularization constants. For this
exercise we apply a simple penalty of .

aopt = arxOptions;
aopt.Regularization.Lambda = 1;
m50r = arx(eData, [0 50 0], aopt);

The resulting estimate has an error norm of 0.1171 to the true impulse response and is
shown in Figure 5 along with the confidence bounds.

1 Choosing Your System Identification Approach

1-82



[y50r,~,~,y50rsd] = impulse(m50r,t);
plot(t,y0,t,y50r,t,y50r+y50rsd,'r:',t,y50r-y50rsd,'r:')
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','50:th order regularized estimate')

Figure 5: The true impulse response together with the ridge-regularized estimate for
order nb = 50.

Clearly even this simple choice of regularization gives a much better bias-variance
tradeoff, than selecting an optimal FIR order with no regularization.
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Automatic Determination of Regularization Constants for FIR Models

We can do even better. By using the insight that the true impulse response decays to zero
and is smooth, we can tailor the choice of  to the data. This is achieved by the
arxRegul function.

[L,R] = arxRegul(eData,[0 50 0],arxRegulOptions('RegularizationKernel','TC'));
aopt.Regularization.Lambda = L;
aopt.Regularization.R = R;
mrtc = arx(eData, [0 50 0], aopt);
[ytc,~,~,ytcsd] = impulse(mrtc,t);

arxRegul uses fmincon from Optimization Toolbox™ to compute the hyper-parameters
associated with the regularization kernel ("TC" here). If Optimization Toolbox is not
available, a simple Gauss-Newton search scheme is used instead; use the
"Advanced.SearchMethod" option of arxRegulOptions to choose the search method
explicitly. The estimated hyper-parameters are then used to derive the values of  and .

Using the estimated values of  and  in ARX leads to an error norm of 0.0461 and the
response is shown in Figure 6. This kind of tuned regularization is what is achieved also
by the impulseest command. As the figure shows, the fit to the impulse response as well
as the variance is greatly reduced as compared to the unregularized estimates. The price
is a bias in the response estimate, which seems to be insignificant for this example.

plot(t,y0,t,ytc,t,ytc+ytcsd,'r:',t,ytc-ytcsd,'r:')
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','50:th order tuned regularized estimate')
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Figure 6: The true impulse response together with the tuned regularized estimate for
order nb = 50.

Using Regularized ARX-models for Estimating State-Space Models

Consider a system m0, which is a 30:th order linear system with colored measurement
noise:

where G(q) is the input-to-output transfer function and H(q) is the disturbance transfer
function. This system is stored in the regularizationExampleData.mat data file. The
impulse responses of G(q) and H(q) are shown in Figure 7.
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load regularizationExampleData.mat m0
m0H = noise2meas(m0); % the extracted noise component of the model
[yG,t] = impulse(m0);
yH = impulse(m0H,t);

clf
subplot(211)
plot(t, yG)
title('Impulse Response of G(q)'), ylabel('Amplitude')

subplot(212)
plot(t, yH)
title('Impulse Response of H(q)'), ylabel('Amplitude')
xlabel('Time (seconds)')
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Figure 7: The impulse responses of G(q) (top) and H(q) (bottom).

We have collected 210 data points by simulating m0 with a white noise input u with
variance 1, and a noise level e with variance 0.1. This data is saved in
regularizationExampleData.mat and is plotted below.

load regularizationExampleData.mat m0simdata
clf
plot(m0simdata)

Figure 8: The data to be used for estimation.

To estimate the impulse responses of m0 from these data, we can naturally employ state-
space models in the innovations form (or equivalently ARMAX models) and compute the
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impulse response using the impulse command as before. For computing the state-space
model, we can use a syntax such as:

mk = ssest(m0simdata, k, 'Ts', 1);

The catch is to determine a good order k. There are two commonly used methods:

• Cross validation CV: Estimate mk for k = 1,...,maxo using the first half of the data
ze = m0simdata(1:150) and evaluate the fit to the second half of the data zv =
m0simdata(151:end) using the compare command: [~,fitk] = compare(zv,
mk, compareOptions('InitialCondition', 'z')). Determine the order k that
maximizes the fit. Then reestimate the model using the whole data record.

• Use the Akaike criterion AIC: Estimate models for orders k = 1,...,maxo using the
whole data set, and then pick that model that minimizes aic(mk).

Applying these techniques to the data with a maximal order maxo = 30 shows that CV
picks k = 15 and AIC picks k = 3.

The "Oracle" test: In addition to the CV and AIC tests, one can also check for what order k
the fit between the true impulse response of G(q) (or H(q)) and the estimated model is
maximized. This of course requires knowledge of the true system m0 which is impractical.
However, if we do carry on this comparison for our example where m0 is known, we find
that k = 12 gives the best fit of estimated model's impulse response to that of m0 (=|
G(q)|). Similarly, we find that k = 3 gives the best fit of estimated model's noise
component's impulse response to that of the noise component of m0 (=|H(q)|). The Oracle
test sets a reference point for comparison of the quality of models generated by using
various orders and regularization parameters.

Let us compare the impulse responses computed for various order selection criteria:

m3 = ssest(m0simdata, 3, 'Ts', 1);
m12 = ssest(m0simdata, 12, 'Ts', 1);
m15 = ssest(m0simdata, 15, 'Ts', 1);

y3 = impulse(m3, t);
y12 = impulse(m12, t);
y15 = impulse(m15, t);

plot(t,yG, t,y12, t,y15, t,y3)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True G(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(y12,yG,'NRMSE')),...
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   sprintf('CV choice: %2.4g%%',100*goodnessOfFit(y15,yG,'NRMSE')),...
   sprintf('AIC choice: %2.4g%%',100*goodnessOfFit(y3,yG,'NRMSE')))

Figure 9: The true impulse response of G(q) compared to estimated models of various
orders.

yH3 = impulse(noise2meas(m3), t);
yH15 = impulse(noise2meas(m15), t);

plot(t,yH, t,yH3, t,yH15, t,yH3)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True H(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(yH3,yH,'NRMSE')),...
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   sprintf('CV choice: %2.4g%%',100*goodnessOfFit(yH15,yH,'NRMSE')),...
   sprintf('AIC choice: %2.4g%%',100*goodnessOfFit(yH3,yH,'NRMSE')))

Figure 10: The true impulse response of H(q) compared to estimated noise models of
various orders.

We see that a fit as good as 83% is possible to achieve for G(q) among the state-space
models, but the order selection procedure may not find that best order.

We then turn to what can be obtained with regularization. We estimate a rather high
order, regularized ARX-model by doing:

aopt = arxOptions;
[Lambda, R] = arxRegul(m0simdata, [5 60 0], arxRegulOptions('RegularizationKernel','TC'));
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aopt.Regularization.R = R;
aopt.Regularization.Lambda = Lambda;
mr = arx(m0simdata, [5 60 0], aopt);
nmr = noise2meas(mr);
ymr = impulse(mr, t);
yHmr = impulse(nmr, t);
fprintf('Goodness of fit for ARX model is: %2.4g%%\n',100*goodnessOfFit(ymr,yG,'NRMSE'))
fprintf('Goodness of fit for noise component of ARX model is: %2.4g%%\n',100*goodnessOfFit(yHmr,yH,'NRMSE'))

Goodness of fit for ARX model is: 83.12%
Goodness of fit for noise component of ARX model is: 78.71%

It turns out that this regularized ARX model shows a fit to the true G(q) that is even
better than the Oracle choice. The fit to H(q) is more than 80% which also is better that
the Oracle choice of order for best noise model. It could be argued that mr is a high order
(60 states) model, and it is unfair to compare it with lower order state space models. But
this high order model can be reduced to, say, order 7 by using the balred command
(requires Control System Toolbox™):

mred7 = balred(idss(mr),7);
nmred7 = noise2meas(mred7);
y7mr = impulse(mred7, t);
y7Hmr = impulse(nmred7, t);

Figures 11 and 12 show how the regularized and reduced order regularized models
compare with the Oracle choice of state-space order for ssest without any loss of
accuracy.

plot(t,yG, t,y12, t,ymr, t,y7mr)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True G(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(y12,yG,'NRMSE')),...
   sprintf('High order regularized: %2.4g%%',100*goodnessOfFit(ymr,yG,'NRMSE')),...
   sprintf('Reduced order: %2.4g%%',100*goodnessOfFit(y7mr,yG,'NRMSE')))
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Figure 11: The regularized models compared to the Oracle choice for G(q).

plot(t,yH, t,yH3, t,yHmr, t,y7Hmr)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True H(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(yH3,yH,'NRMSE')),...
   sprintf('High order regularized: %2.4g%%',100*goodnessOfFit(yHmr,yH,'NRMSE')),...
   sprintf('Reduced order: %2.4g%%',100*goodnessOfFit(y7Hmr,yH,'NRMSE')))
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Figure 12: The regularized models compared to the Oracle choice for H(q).

A natural question to ask is whether the choice of orders in the ARX model is as sensitive
a decision as the state space model order in ssest. Simple test, using e.g. arx(z,[10
50 0], aopt), shows only minor changes in the fit of G(q).

State Space Model Estimation by Regularized Reduction Technique

The above steps of estimating a high-order ARX model, followed by a conversion to state-
space and reduction to the desired order can be automated using the ssregest
command. ssregest greatly simplifies this procedure while also facilitating other useful
options such as search for optimal order and fine tuning of model structure by
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specification of feedthrough and delay values. Here we simply reestimate the reduced
model similar to mred7 using ssregest:

opt = ssregestOptions('ARXOrder',[5 60 0]);
mred7_direct = ssregest(m0simdata, 7, 'Feedthrough', true, opt);
compare(m0simdata, mred7, mred7_direct)

Figure 13: Comparing responses of state space models to estimation data.

h = impulseplot(mred7, mred7_direct, 40);
showConfidence(h,1) %  1 s.d. "zero interval"
hold on
s = stem(t,yG,'r');
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s.DisplayName = 'True G(q)';
legend('show')

Figure 14: Comparing impulse responses of state space models.

In Figure 14, the confidence bound is only shown for the model mred7_direct since it
was not calculated for the model mred7. You can use the translatecov command for
generating confidence bounds for arbitrary transformations (here balred) of identified
models. Note also that the ssregest command does not require you to provide the
"ARXOrder" option value. It makes an automatic selection based on data length when no
value is explicitly set.
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Basic Bias - Variance Tradeoff in Grey Box Models

We shall discuss here grey box estimation which is a typical case where prior information
meets information in observed data. It will be good to obtain a well balanced tradeoff
between these information sources, and regularization is a prime tool for that.

Consider a DC motor (see e.g., iddemo7) with static gain G to angular velocity and time
constant :

In state-space form we have:

where  is the state vector composed of the angle  and the velocity . We
observe both states in noise as suggested by the output equation.

From prior knowledge and experience we think that  is about 4 and  is about 1. We
collect in motorData 400 data points from the system, with a substantial amount of noise
(standard deviation of e is 50 in each component. We also save noise-free simulation data
for the same model for comparison purposes. The data is shown in Figure 15.

load regularizationExampleData.mat motorData motorData_NoiseFree
t = motorData.SamplingInstants;
subplot(311)
plot(t,[motorData_NoiseFree.y(:,1),motorData.y(:,1)])
ylabel('Output 1')
subplot(312)
plot(t,[motorData_NoiseFree.y(:,2),motorData.y(:,2)])
ylabel('Output 2')
subplot(313)
plot(t,motorData_NoiseFree.u) % input is the same for both datasets
ylabel('Input')
xlabel('Time (seconds)')
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Figure 15: The noisy data to be used for grey box estimation superimposed over noise-
free simulation data to be used for qualifications. From top to bottom: Angle, Angular
Velocity, Input voltage.

The true parameter values in this simulation are G = 2.2 and  = 0.8. To estimate the
model we create an idgrey model file DCMotorODE.m.

type('DCMotorODE')

function [A,B,C,D] = DCMotorODE(G,Tau,Ts)
%DCMOTORODE ODE file representing the dynamics of a DC motor parameterized
%by gain G and time constant Tau.
%
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%   [A,B,C,D,K,X0] = DCMOTORODE(G,Tau,Ts) returns the state space matrices
%   of the DC-motor with time-constant Tau and static gain G. The sample
%   time is Ts.
%
%   This file returns continuous-time representation if input argument Ts
%   is zero. If Ts>0, a discrete-time representation is returned.
%
% See also IDGREY, GREYEST.

%   Copyright 2013 The MathWorks, Inc.

A = [0 1;0 -1/Tau];
B = [0; G/Tau];
C = eye(2);
D = [0;0];
if Ts>0 % Sample the model with sample time Ts
   s = expm([[A B]*Ts; zeros(1,3)]);
   A = s(1:2,1:2);
   B = s(1:2,3);
end

An idgrey object is then created as:

mi = idgrey(@DCMotorODE,{'G', 4; 'Tau', 1},'cd',{}, 0);

where we have inserted the guessed parameter value as initial values. This model is
adjusted to the information in observed data by using the greyest command:

m = greyest(motorData, mi)

m =
  Continuous-time linear grey box model defined by @DCMotorODE function:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2       0  -1.741
 
  B = 
          u1
   x1      0
   x2  3.721
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  C = 
       x1  x2
   y1   1   0
   y2   0   1
 
  D = 
       u1
   y1   0
   y2   0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
 
  Model parameters:
   G = 2.138
   Tau = 0.5745
 
Parameterization:
   ODE Function: @DCMotorODE
   (parameterizes both continuous- and discrete-time equations)
   Disturbance component: none
   Initial state: 'auto'
   Number of free coefficients: 2
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                 
Estimated using GREYEST on time domain data "motorData".
Fit to estimation data: [29.46;4.167]%                  
FPE: 6.074e+06, MSE: 4908                               

The model m has the parameters  = 0.57 and G = 2.14 and reproduces the data is shown
in Figure 16.

copt = compareOptions('InitialCondition', 'z');
[ymi, fiti] = compare(motorData, mi, copt);
[ym, fit] = compare(motorData, m, copt);
t = motorData.SamplingInstants;
subplot(211)
plot(t, [motorData.y(:,1), ymi.y(:,1), ym.y(:,1)])
axis tight
ylabel('Output 1')
legend({'Measured output',...
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   sprintf('Initial: %2.4g%%',fiti(1)),...
   sprintf('Estimated: %2.4g%%',fit(1))},...
   'Location','BestOutside')
subplot(212)
plot(t, [motorData.y(:,2), ymi.y(:,2), ym.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Measured output',...
   sprintf('Initial: %2.4g%%',fiti(2)),...
   sprintf('Estimated: %2.4g%%',fit(2))},...
   'Location','BestOutside')

Figure 16: Measured output and model outputs for initial and estimated models.
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In this simulated case we have also access to the noise-free data
(motorData_NoiseFree) and depict the fit to the noise-free data in Figure 17.

[ymi, fiti] = compare(motorData_NoiseFree, mi, copt);
[ym, fit] = compare(motorData_NoiseFree, m, copt);
subplot(211)
plot(t, [motorData_NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1)])
axis tight
ylabel('Output 1')
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(1)),...
   sprintf('Estimated: %2.4g%%',fit(1))},...
   'Location','BestOutside')
subplot(212)
plot(t, [motorData_NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(2)),...
   sprintf('Estimated: %2.4g%%',fit(2))},...
   'Location','BestOutside')
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Figure 17: Noise-free output and model outputs for initial and estimated models.

We can look at the parameter estimates and see that the noisy data themselves give
estimates that not quite agree with our prior physical information. To merge the data
information with the prior information we use regularization:

opt = greyestOptions;
opt.Regularization.Lambda = 100;
opt.Regularization.R = [1, 1000]; % second parameter better known than first
opt.Regularization.Nominal = 'model';
mr = greyest(motorData, mi, opt)

mr =
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  Continuous-time linear grey box model defined by @DCMotorODE function:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2       0  -1.119
 
  B = 
          u1
   x1      0
   x2  2.447
 
  C = 
       x1  x2
   y1   1   0
   y2   0   1
 
  D = 
       u1
   y1   0
   y2   0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
 
  Model parameters:
   G = 2.187
   Tau = 0.8938
 
Parameterization:
   ODE Function: @DCMotorODE
   (parameterizes both continuous- and discrete-time equations)
   Disturbance component: none
   Initial state: 'auto'
   Number of free coefficients: 2
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                 
Estimated using GREYEST on time domain data "motorData".
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Fit to estimation data: [29.34;3.848]%                  
FPE: 6.135e+06, MSE: 4933                               

We have here told the estimation process that we have some confidence in the initial
parameter values, and believe more in our guess of  than in our guess of G. The resulting
regularized estimate mr considers this information together with the information in
measured data. They are weighed together with the help of Lambda and R. In Figure 18 it
is shown how the resulting model can reproduce the output. Clearly, the regularized
model does a better job than both the initial model (to which the parameters are
"attracted") and the unregularized model.

[ymr, fitr] = compare(motorData_NoiseFree, mr, copt);
subplot(211)
plot(t, [motorData_NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1), ymr.y(:,1)])
axis tight
ylabel('Output 1')
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(1)),...
   sprintf('Estimated: %2.4g%%',fit(1)),...
   sprintf('Regularized: %2.4g%%',fitr(1))},...
   'Location','BestOutside')
subplot(212)
plot(t, [motorData_NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2), ymr.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(2)),...
   sprintf('Estimated: %2.4g%%',fit(2)),...
   sprintf('Regularized: %2.4g%%',fitr(2))},...
   'Location','BestOutside')

1 Choosing Your System Identification Approach

1-104



Figure 18: Noise-Free measured output and model outputs for initial, estimated and
regularized models.

The regularized estimation also has reduced parameter variance as compared to the
unregularized estimates. This is shown by tighter confidence bounds on the Bode plot of
mr compare to that of m:

clf
showConfidence(bodeplot(m,mr,logspace(-1,1.4,100)),3) % 3 s.d. region
legend('show')

 Regularized Identification of Dynamic Systems

1-105



Figure 19: Bode plot of m and mr with confidence bounds

This was an illustration of how the merging prior and measurement information works. In
practice we need a procedure to tune the size of Lambda to the existing information
sources. A commonly used method is to use cross validation. That is:

• Split the data into two parts - the estimation and the validation data
• Compute the regularized model using the estimation data for various values of Lambda
• Evaluate how well these models can reproduce the validation data: tabulate NRMSE
fit values delivered by the compare command or the goodnessOfFit command.

• Pick that Lambda which gives the model with the best fit to the validation data.
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Use of Regularization to Robustify Large Nonlinear Models

Another use of regularization is to numerically stabilize the estimation of large (often
nonlinear) models. We have given a data record nldata that has nonlinear dynamics. We
try nonlinear ARX-model of neural network character, with more and more neurons:

load regularizationExampleData.mat nldata
opt = nlarxOptions('SearchMethod','lm');
m10 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',10),opt);
m20 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',20),opt);
m30 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',30),opt);

compare(nldata, m10, m20) % compare responses of m10, m20 to measured response
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Figure 20: Comparison plot for models m10 and m20.

fprintf('Number of parameters (m10, m20, m30): %s\n',...
   mat2str([nparams(m10),nparams(m20),nparams(m30)]))
compare(nldata, m30, m10, m20) % compare all three models
axis([1 800 -57 45])

Number of parameters (m10, m20, m30): [54 104 154]

Figure 21: Comparison plot for models m10, m20 and m30.

The first two models show good and improving fits. But when estimating the 154
parameters of m30, numerical problems seem to occur. We can then apply a small amount
of regularization to get better conditioned matrices:
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opt.Regularization.Lambda = 1e-8;
m30r = nlarx(nldata, [1 2 1], sigmoidnet('num',30), opt);
compare(nldata, m30r, m10, m20)

Figure 22: Comparison plot for models m10, m20 and regularized model m30r.

The fit to estimation data has significantly improved for the model with 30 neurons. As
discussed before, a systematic search for the Lambda value to use would require cross
validation tests.

Conclusions

We discussed the benefit of regularization for estimation of FIR models, linear grey-box
models and Nonlinear ARX models. Regularization can have significant impact on the
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quality of the identified model provided the regularization constants Lambda and R are
chosen appropriately. For ARX models, this can be done very easily using the arxRegul
function. These automatic choices also feed into the dedicated state-space estimation
algorithm ssregest.

For other types of estimations, you must rely on cross validation based search to
determine Lambda. For structured models such as grey box models, R can be used to
indicate the reliability of the corresponding initial value of the parameter. Then, using the
Nominal regularization option, you can merge the prior knowledge of the parameter
values with the information in the data.

Regularization options are available for all linear and nonlinear models including transfer
functions and process models, state-space and polynomial models, Nonlinear ARX,
Hammerstein-Wiener and linear/nonlinear grey box models.
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• “Extract and Model Specific Data Segments” on page 2-109
• “Handling Offsets and Trends in Data” on page 2-112
• “How to Detrend Data Using the App” on page 2-115
• “How to Detrend Data at the Command Line” on page 2-116
• “Resampling Data” on page 2-118
• “Resampling Data Using the App” on page 2-123
• “Resampling Data at the Command Line” on page 2-125
• “Filtering Data” on page 2-127
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• “How to Filter Data at the Command Line” on page 2-132
• “Generate Data Using Simulation” on page 2-135
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Supported Data
System Identification Toolbox software supports estimation of linear models from both
time- and frequency-domain data. For nonlinear models, this toolbox supports only time-
domain data. For more information, see “Supported Models for Time- and Frequency-
Domain Data” on page 1-38.

The data can have single or multiple inputs and outputs, and can be either real or
complex.

Your time-domain data should be sampled at discrete and uniformly spaced time instants
to obtain an input sequence

u={u(T),u(2T),...,u(NT)}

and a corresponding output sequence

y={y(T),y(2T),...,y(NT)}

u(t) and y(t) are the values of the input and output signals at time t, respectively.

This toolbox supports modeling both single- or multiple-channel input-output data or time-
series data.

Supported Data Description
Time-domain I/O data One or more input variables u(t) and one or more

output variables y(t), sampled as a function of time.
Time-domain data can be either real or complex

Time-series data Contains one or more outputs y(t) and no measured
input. Can be time-domain or frequency-domain
data.

Frequency-domain data Fourier transform of the input and output time-
domain signals. The data is the set of input and
output signals in frequency domain; the frequency
grid need not be uniform.
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Supported Data Description
Frequency-response data Complex frequency-response values for a linear

system characterized by its transfer function G,
measurable directly using a spectrum analyzer. Also
called frequency function data. Represented by frd
or idfrd objects. The data sample time may be zero
or nonzero. The frequency vector need not be
uniformly spaced.

Note If your data is complex valued, see “Manipulating Complex-Valued Data” on page 2-
140 for information about supported operations for complex data.
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Ways to Obtain Identification Data
You can obtain identification data by:

• Measuring input and output signals from a physical system.

Your data must capture the important system dynamics, such as dominant time
constants. After measuring the signals, organize the data into variables, as described
in “Representing Data in MATLAB Workspace” on page 2-9. Then, import it in the
System Identification app or represent it as a data object for estimating models at the
command line.

• Generating an input signal with desired characteristics, such as a random Gaussian or
binary signal or a sinusoid, using idinput. Then, generate an output signal using this
input to simulate a model with known coefficients. For more information, see
“Generate Data Using Simulation” on page 2-135.

Using input/output data thus generated helps you study the impact of input signal
characteristics and noise on estimation.

• Logging signals from Simulink models.

This technique is useful when you want to replace complex components in your model
with identified models to speed up simulations or simplify control design tasks. For
more information on how to log signals, see “Export Signal Data Using Signal
Logging” (Simulink).
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Ways to Prepare Data for System Identification
Before you can perform any task in this toolbox, your data must be in the MATLAB
workspace. You can import the data from external data files or manually create data
arrays at the command line. For more information about importing data, see
“Representing Data in MATLAB Workspace” on page 2-9.

The following tasks help to prepare your data for identifying models from data:

Represent data for system identification

You can represent data in the format of this toolbox by doing one of the following:

• For working in the app, import data into the System Identification app.

See “Represent Data”.
• For working at the command line, create an iddata or idfrd object.

For time-domain or frequency-domain data, see “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50.

For frequency-response data, see “Representing Frequency-Response Data Using idfrd
Objects” on page 2-84.

• To simulate data with and without noise, see “Generate Data Using Simulation” on
page 2-135.

Analyze data quality

You can analyze your data by doing either of the following:

• Plotting data to examine both time- and frequency-domain behavior.

See “How to Plot Data in the App” on page 2-92 and “How to Plot Data at the
Command Line” on page 2-99.

• Using the advice command to analyze the data for the presence of constant offsets
and trends, delay, possible feedback, and signal excitation levels.

See “How to Analyze Data Using the advice Command” on page 2-101.
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Preprocess data

Review the data characteristics for any of the following features to determine if there is a
need for preprocessing:

• Missing or faulty values (also known as outliers). For example, you might see gaps that
indicate missing data, values that do not fit with the rest of the data, or noninformative
values.

See “Handling Missing Data and Outliers” on page 2-106.
• Offsets and drifts in signal levels (low-frequency disturbances).

See “Handling Offsets and Trends in Data” on page 2-112 for information about
subtracting means and linear trends, and “Filtering Data” on page 2-127 for
information about filtering.

• High-frequency disturbances above the frequency interval of interest for the system
dynamics.

See “Resampling Data” on page 2-118 for information about decimating and
interpolating values, and “Filtering Data” on page 2-127 for information about
filtering.

Select a subset of your data

You can use data selection as a way to clean the data and exclude parts with noisy or
missing information. You can also use data selection to create independent data sets for
estimation and validation.

To learn more about selecting data, see “Select Subsets of Data” on page 2-103.

Combine data from multiple experiments

You can combine data from several experiments into a single data set. The model you
estimate from a data set containing several experiments describes the average system
that represents these experiments.

To learn more about creating multiple-experiment data sets, see “Create Multiexperiment
Data Sets in the App” on page 2-35 or “Create Multiexperiment Data at the Command
Line” on page 2-60.
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Requirements on Data Sampling
A sample time is the time between successive data samples. It is sometimes also referred
to as sampling time or sample interval.

The System Identification app only supports uniformly sampled data.

The System Identification Toolbox product provides limited support for nonuniformly
sampled data. For more information about specifying uniform and nonuniform time
vectors, see “Constructing an iddata Object for Time-Domain Data” on page 2-50.
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Representing Data in MATLAB Workspace

Time-Domain Data Representation
Time-domain data consists of one or more input variables u(t) and one or more output
variables y(t), sampled as a function of time. If there is no input variable, see “Time-Series
Data Representation” on page 2-10.

You must organize time-domain input/output data in the following format:

• For single-input/single-output (SISO) data, the sampled data values must be double
column vectors.

• For multi-input/multi-output (MIMO) data with Nu inputs and Ny outputs, and Ns
number of data samples (measurements):

• The input data must be an Ns-by-Nu matrix
• The output data must be an Ns-by-Ny matrix

To use time-domain data for identification, you must know the sample time. If you are
working with uniformly sampled data, use the actual sample time from your experiment.
Each data value is assigned a time instant, which is calculated from the start time and
sample time. You can work with nonuniformly sampled data only at the command line by
specifying a vector of time instants using the SamplingInstants property of iddata, as
described in “Constructing an iddata Object for Time-Domain Data” on page 2-50.

For continuous-time models, you must also know the input intersample behavior, such as
zero-order hold and first-order-hold.

For more information about importing data into MATLAB, see “Data Import and Export”
(MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Import Time-Domain Data into the App” on page 2-16 and
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-50.
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Time-Series Data Representation
Time-series data is time-domain or frequency-domain data that consist of one or more
outputs y(t) with no corresponding input. For more information on how to obtain
identification data, see “Ways to Obtain Identification Data” on page 2-5.

You must organize time-series data in the following format:

• For single-input/single-output (SISO) data, the output data values must be a column
vector.

• For data with Ny outputs, the output is an Ns-by-Ny matrix, where Ns is the number of
output data samples (measurements).

To use time-series data for identification, you also need the sample time. If you are
working with uniformly sampled data, use the actual sample time from your experiment.
Each data value is assigned a sample time, which is calculated from the start time and the
sample time. If you are working with nonuniformly sampled data at the command line,
you can specify a vector of time instants using the iddata SamplingInstants property,
as described in “Constructing an iddata Object for Time-Domain Data” on page 2-50.
Note that model estimation cannot be performed using non-uniformly sampled data.

For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Import Time-Domain Data into the App” on page 2-16 and
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-50.

For information about estimating time-series model parameters, see “Time Series
Analysis”.

Frequency-Domain Data Representation
Frequency-domain data consists of either transformed input and output time-domain
signals on page 2-11 or system frequency response on page 2-13 sampled as a function
of the independent variable frequency.
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Frequency-Domain Input/Output Signal Representation

What Is Frequency-Domain Input/Output Signal?

Frequency-domain data is the Fourier transform of the input and output time-domain
signals. For continuous-time signals, the Fourier transform over the entire time axis is
defined as follows:
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In the context of numerical computations, continuous equations are replaced by their
discretized equivalents to handle discrete data values. For a discrete-time system with a
sample time T, the frequency-domain output Y(eiw) and input U(eiw) is the time-discrete
Fourier transform (TDFT):
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In this example, k = 1,2,...,N, where N is the number of samples in the sequence.

Note This form only discretizes the time. The frequency is continuous.

In practice, the Fourier transform cannot be handled for all continuous frequencies and
you must specify a finite number of frequencies. The discrete Fourier transform (DFT) of
time-domain data for N equally spaced frequencies between 0 and the sampling
frequency 2π/N is:
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The DFT is useful because it can be calculated very efficiently using the fast Fourier
transform (FFT) method. Fourier transforms of the input and output data are complex
numbers.

For more information on how to obtain identification data, see “Ways to Obtain
Identification Data” on page 2-5.

How to Represent Frequency-Domain Data in MATLAB

You must organize frequency-domain data in the following format:

• Input and output

• For single-input/single-output (SISO) data:

•
The input data must be a column vector containing the values u e

i kTw( )
•

The output data must be a column vector containing the values y ei kTw( )

k=1, 2, ..., Nf, where Nf is the number of frequencies.
• For multi-input/multi-output data with Nu inputs, Ny outputs and Nf frequency

measurements:

• The input data must be an Nf-by-Nu matrix
• The output data must be an Nf-by-Ny matrix

• Frequencies

• Must be a column vector.

For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Importing Frequency-Domain Input/Output Signals into the App” on
page 2-19 and “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-50.
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Frequency-Response Data Representation
What Is Frequency-Response Data?

Frequency-response data, also called frequency-function data, consists of complex
frequency-response values for a linear system characterized by its transfer function G.
Frequency-response data tells you how the system handles sinusoidal inputs. You can
measure frequency-response data values directly using a spectrum analyzer, for example,
which provides a compact representation of the input-output relationship (compared to
storing input and output independently).

The transfer function G is an operator that takes the input u of a linear system to the
output y:

y Gu=

For a continuous-time system, the transfer function relates the Laplace transforms of the
input U(s) and output Y(s):

Y s G s U s( ) ( ) ( )=

In this case, the frequency function G(iw) is the transfer function evaluated on the
imaginary axis s=iw.

For a discrete-time system sampled with a time interval T, the transfer function relates
the Z-transforms of the input U(z) and output Y(z):

Y z G z U z( ) ( ) ( )=

In this case, the frequency function G(eiwT) is the transfer function G(z) evaluated on the
unit circle. The argument of the frequency function G(eiwT) is scaled by the sample time T

to make the frequency function periodic with the sampling frequency 2p

T
.

When the input to the system is a sinusoid of a specific frequency, the output is also a

sinusoid with the same frequency. The amplitude of the output is G  times the amplitude

of the input. The phase of the shifted from the input by j = argG . G is evaluated at the
frequency of the input sinusoid.

Frequency-response data represents a (nonparametric) model of the relationship between
the input and the outputs as a function of frequency. You might use such a model, which
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consists of a table or plot of values, to study the system frequency response. However,
this model is not suitable for simulation and prediction. You should create parametric
model from the frequency-response data.

For more information on how to obtain identification data, see “Ways to Obtain
Identification Data” on page 2-5.

How to Represent Frequency-Response Data in MATLAB

You can represent frequency-response data in two ways:

• Complex-values G(eiω) , for given frequencies ω
•

Amplitude G  and phase shift j = argG  values

You can import both the formats directly in the System Identification app. At the
command line, you must represent complex data using an frd or idfrd object. If the
data is in amplitude and phase format, convert it to complex frequency-response vector
using h(ω) = A(ω)ejϕ(ω).

You must organize frequency-response data in the following format:

Frequency-
Response Data
Representation

For Single-Input Single-Output
(SISO) Data

For Multi-Input Multi-Output (MIMO)
Data

Complex Values • Frequency function must be a
column vector.

• Frequency values must be a
column vector.

• Frequency function must be an Ny-
by-Nu-by-Nf array, where Nu is the
number of inputs, Ny is the number
of outputs, and Nf is the number of
frequency measurements.

• Frequency values must be a column
vector.

Amplitude and phase
shift values

• Amplitude and phase must each
be a column vector.

• Frequency values must be a
column vector.

• Amplitude and phase must each be
an Ny-by-Nu-by-Nf array, where Nu is
the number of inputs, Ny is the
number of outputs, and Nf is the
number of frequency measurements.

• Frequency values must be a column
vector.
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For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information about importing data into the app, see “Importing Frequency-Response Data
into the App” on page 2-21. To learn more about creating a data object, see
“Representing Frequency-Response Data Using idfrd Objects” on page 2-84.
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Import Time-Domain Data into the App
Before you can import time-domain data into the System Identification app, you must
import the data into the MATLAB workspace, as described in “Time-Domain Data
Representation” on page 2-9.

Note Your time-domain data must be sampled at equal time intervals. The input and
output signals must have the same number of data samples.

To import data into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Time domain data.

This action opens the Import Data dialog box.

3 Specify the following options:

Note For time series, only import the output signal and enter [] for the input.

• Input — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the input data. The expression must evaluate
to a column vector or matrix.

• Output — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the output data. The expression must
evaluate to a column vector or matrix.

• Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.
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• Starting time — Enter the starting value of the time axis for time plots.
• Sample time — Enter the actual sample time in the experiment. For more

information about this setting, see “Specifying the Data Sample Time” on page 2-
28.

Tip The System Identification Toolbox product uses the sample time during model
estimation and to set the horizontal axis on time plots. If you transform a time-
domain signal to a frequency-domain signal, the Fourier transforms are computed
as discrete Fourier transforms (DFTs) using this sample time.

4 (Optional) In the Data Information area, click More to expand the dialog box and
enter the following settings:

Input Properties

• InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

• zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

• foh (first-order hold) indicates that the output was piecewise-linear during
data acquisition.

• bl (bandwidth-limited behavior) specifies that the continuous-time input signal
has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note See the d2c and c2d reference pages for more information about
transforming between discrete-time and continuous-time models.

• Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain
data was periodic over an integer number of periods, enter the period of the input
signal.

Note If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names
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• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input-
output signals, you can specify the names of individual Input and Output
channels, separated by commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

5 Click Import. This action adds a new data icon to the System Identification app
window.

6 Click Close to close the Import Data dialog box.
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Import Frequency-Domain Data into the App

Importing Frequency-Domain Input/Output Signals into the
App
Frequency-domain data consists of Fourier transforms of time-domain data (a function of
frequency).

Before you can import frequency-domain data into the System Identification app, you
must import the data into the MATLAB workspace, as described in “Frequency-Domain
Input/Output Signal Representation” on page 2-11.

Note The input and output signals must have the same number of data samples.

To import data into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Freq. domain data.

This action opens the Import Data dialog box.
3 Specify the following options:

• Input — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the input data. The expression must evaluate
to a column vector or matrix.

• Output — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the output data. The expression must
evaluate to a column vector or matrix.

• Frequency — Enter the MATLAB variable name of a vector or a MATLAB
expression that represents the frequencies. The expression must evaluate to a
column vector.

The frequency vector must have the same number of rows as the input and output
signals.

• Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.
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• Frequency unit — Enter Hz for Hertz or keep the rad/s default value.
• Sample time — Enter the actual sample time in the experiment. For continuous-

time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

4 (Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Input Properties

• InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

• zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

• foh (first-order hold) indicates that the output was piecewise-linear during
data acquisition.

• bl (bandwidth-limited behavior) specifies that the continuous-time input signal
has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

• Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain
data was periodic over an integer number of periods, enter the period of the input
signal.

Note If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.
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• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

5 Click Import. This action adds a new data icon to the System Identification app
window.

6 Click Close to close the Import Data dialog box.

Importing Frequency-Response Data into the App
Prerequisite

Before you can import frequency-response data into the System Identification app, you
must import the data into the MATLAB workspace, as described in “Frequency-Response
Data Representation” on page 2-13.

Importing Complex-Valued Frequency-Response Data

To import frequency-response data consisting of complex-valued frequency values at
specified frequencies:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Freq. domain data.

This action opens the Import Data dialog box.
3 In the Data Format for Signals list, select Freq. Function (Complex).
4 Specify the following options:
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• Response — Enter the MATLAB variable name or a MATLAB expression that
represents the complex frequency-response data G(eiw).

• Frequency — Enter the MATLAB variable name of a vector or a MATLAB
expression that represents the frequencies. The expression must evaluate to a
column vector.

• Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

• Frequency unit — Enter Hz for Hertz or keep the rad/s default value.
• Sample time — Enter the actual sample time in the experiment. For continuous-

time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

5 (Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

6 Click Import. This action adds a new data icon to the System Identification app
window.
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7 Click Close to close the Import Data dialog box.

Importing Amplitude and Phase Frequency-Response Data

To import frequency-response data consisting of amplitude and phase values at specified
frequencies:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Freq. domain data.

This action opens the Import Data dialog box.
3 In the Data Format for Signals list, select Freq. Function (Amp/Phase).
4 Specify the following options:

• Amplitude — Enter the MATLAB variable name or a MATLAB expression that

represents the amplitude G .
• Phase (deg) — Enter the MATLAB variable name or a MATLAB expression that

represents the phase j = argG .
• Frequency — Enter the MATLAB variable name of a vector or a MATLAB

expression that represents the frequencies. The expression must evaluate to a
column vector.

• Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

• Frequency unit — Enter Hz for Hertz or keep the rad/s default value.
• Sample time — Enter the actual sample time in the experiment. For continuous-

time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

5 (Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Channel Names

• Input — Enter the name of one or more input channels.
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Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

6 Click Import. This action adds a new data icon to the System Identification app
window.

7 Click Close to close the Import Data dialog box.
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Import Data Objects into the App
You can import the System Identification Toolbox iddata and idfrd data objects into the
System Identification app.

Before you can import a data object into the System Identification app, you must create
the data object in the MATLAB workspace, as described in “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-50 or “Representing
Frequency-Response Data Using idfrd Objects” on page 2-84.

Note You can also import a Control System Toolbox frd object. Importing an frd object
converts it to an idfrd object.

Select Import data > Data object to open the Import Data dialog box.

Import iddata, idfrd, or frd data object in the MATLAB workspace.

To import a data object into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Data object.

This action opens the Import Data dialog box. IDDATA or IDFRD/FRD is already
selected in the Data Format for Signals list.

3 Specify the following options:

• Object — Enter the name of the MATLAB variable that represents the data object
in the MATLAB workspace. Press Enter.
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• Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

• (Only for time-domain iddata object) Starting time — Enter the starting value
of the time axis for time plots.

• (Only for frequency domain iddata or idfrd object) Frequency unit — Enter
the frequency unit for response plots.

• Sample time — Enter the actual sample time in the experiment. For more
information about this setting, see “Specifying the Data Sample Time” on page 2-
28.

Tip The System Identification Toolbox product uses the sample time during model
estimation and to set the horizontal axis on time plots. If you transform a time-
domain signal to a frequency-domain signal, the Fourier transforms are computed
as discrete Fourier transforms (DFTs) using this sample time.

4 (Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

(Only for iddata object) Input Properties

• InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

• zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

• foh (first-order hold) indicates that the input was piecewise-linear during data
acquisition.

• bl (bandwidth-limited behavior) specifies that the continuous-time input signal
has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

• Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain
data was periodic over an integer number of periods, enter the period of the input
signal.
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Note If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

5 Click Import. This action adds a new data icon to the System Identification app
window.

6 Click Close to close the Import Data dialog box.

 Import Data Objects into the App

2-27



Specifying the Data Sample Time
When you import data into the app, you must specify the data sample time.

The sample time is the time between successive data samples in your experiment and
must be the numerical time interval at which your data is sampled in any units. For
example, enter 0.5 if your data was sampled every 0.5 s, and enter 1 if your data was
sampled every 1 s.

You can also use the sample time as a flag to specify continuous-time data. When
importing continuous-time frequency domain or frequency-response data, set the Sample
time to 0.

The sample time is used during model estimation. For time-domain data, the sample time
is used together with the start time to calculate the sampling time instants. When you
transform time-domain signals to frequency-domain signals (see the fft reference page),
the Fourier transforms are computed as discrete Fourier transforms (DFTs) for this
sample time. In addition, the sampling instants are used to set the horizontal axis on time
plots.
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Sample Time in the Import Data dialog box
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Specify Estimation and Validation Data in the App
You should use different data sets to estimate and validate your model for best validation
results.

In the System Identification app, Working Data refers to estimation data. Similarly,
Validation Data refers to the data set you use to validate a model. For example, when
you plot the model output, the input to the model is the input signal from the validation
data set. This plot compares model output to the measured output in the validation data
set. Selecting Model resids performs residual analysis using the validation data.

To specify Working Data, drag and drop the corresponding data icon into the Working
Data rectangle, as shown in the following figure. Similarly, to specify Validation Data,
drag and drop the corresponding data icon into the Validation Data rectangle.
Alternatively, right-click the icon to open the Data/model Info dialog box. Select the Use
as Working Data or Use as Validation Data and click Apply to specify estimation and
validation data, respectively.
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Drag and drop estimation data set

Drag and drop validation data set

See Also

More About
• “Select Subsets of Data” on page 2-103
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Preprocess Data Using Quick Start
As a preprocessing shortcut for time-domain data, select Preprocess > Quick start to
simultaneously perform the following four actions:

• Subtract the mean value from each channel.

Note For information about when to subtract mean values from the data, see
“Handling Offsets and Trends in Data” on page 2-112.

• Split data into two parts.
• Specify the first part as estimation data for models (or Working Data).
• Specify the second part as Validation Data.
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Create Data Sets from a Subset of Signal Channels
You can create a new data set in the System Identification app by extracting subsets of
input and output channels from an existing data set.

To create a new data set from selected channels:

1 In the System Identification app, drag the icon of the data from which you want to
select channels to the Working Data rectangle.

2 Select Preprocess > Select channels to open the Select Channels dialog box.

The Inputs list displays the input channels and the Outputs list displays the output
channels in the selected data set.

3 In the Inputs list, select one or more channels in any of following ways:

• Select one channel by clicking its name.
• Select adjacent channels by pressing the Shift key while clicking the first and last

channel names.
• Select nonadjacent channels by pressing the Ctrl key while clicking each channel

name.
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Tip To exclude input channels and create time-series data, clear all selections by
holding down the Ctrl key and clicking each selection. To reset selections, click
Revert.

4 In the Outputs list, select one or more channels in any of following ways:

• Select one channel by clicking its name.
• Select adjacent channels by pressing the Shift key while clicking the first and last

channel names.
• Select nonadjacent channels by pressing the Ctrl key while clicking each channel

name.

Tip To reset selections, click Revert.
5 In the Data name field, type the name of the new data set. Use a name that is unique

in the Data Board.
6 Click Insert to add the new data set to the Data Board in the System Identification

app.
7 Click Close.
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Create Multiexperiment Data Sets in the App

Why Create Multiexperiment Data?
You can create a time-domain or frequency-domain data set in the System Identification
app that includes several experiments. Identifying models for multiexperiment data
results in an average model.

Experiments can mean data that was collected during different sessions, or portions of
the data collected during a single session. In the latter situation, you can create
multiexperiment data by splitting a single data set into multiple segments that exclude
corrupt data, and then merge the good data segments.

Limitations on Data Sets
You can only merge data sets that have all of the following characteristics:

• Same number of input and output channels.
• Different names. The name of each data set becomes the experiment name in the

merged data set.
• Same input and output channel names.
• Same data domain (that is, time-domain data or frequency-domain data only).

Merging Data Sets
You can merge data sets using the System Identification app.

For example, suppose that you want to combine the data sets tdata, tdata2, tdata3,
tdata4 shown in the following figure.
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App Contains Four Data Sets to Merge

To merge data sets in the app:

1 In the Operations area, select <--Preprocess > Merge experiments from the
drop-down menu to open the Merge Experiments dialog box.
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2 In the System Identification app window, drag a data set icon to the Merge
Experiments dialog box, to the drop them here to be merged rectangle.

The name of the data set is added to the List of sets. Repeat for each data set you
want to merge.
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tdata and tdata2 to Be Merged

Tip To empty the list, click Revert.
3 In the Data name field, type the name of the new data set. This name must be

unique in the Data Board.
4 Click Insert to add the new data set to the Data Board in the System Identification

app window.
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Data Board Now Contains tdatam with Merged Experiments
5 Click Close to close the Merge Experiments dialog box.

Tip To get information about a data set in the System Identification app, right-click the
data icon to open the Data/model Info dialog box.

Extracting Specific Experiments from a Multiexperiment Data
Set into a New Data Set
When a data set already consists of several experiments, you can extract one or more of
these experiments into a new data set, using the System Identification app.

For example, suppose that tdatam consists of four experiments.

To create a new data set that includes only the first and third experiments in this data set:

1 In the System Identification app window, drag and drop the tdatam data icon to the
Working Data rectangle.
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tdatam Is Set to Working Data
2 In the Operations area, select Preprocess > Select experiments from the drop-

down menu to open the Select Experiment dialog box.
3 In the Experiments list, select one or more data sets in either of the following ways:

• Select one data set by clicking its name.
• Select adjacent data sets by pressing the Shift key while clicking the first and last

names.
• Select nonadjacent data sets by pressing the Ctrl key while clicking each name.
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4 In the Data name field, type the name of the new data set. This name must be
unique in the Data Board.

5 Click Insert to add the new data set to the Data Board in the System Identification
app.

6 Click Close to close the Select Experiment dialog box.

See Also

More About
• “Select Subsets of Data” on page 2-103
• “Create Multiexperiment Data at the Command Line” on page 2-60
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Managing Data in the App

Viewing Data Properties
You can get information about each data set in the System Identification app by right-
clicking the corresponding data icon.

The Data/model Info dialog box opens. This dialog box describes the contents and the
properties of the corresponding data set. It also displays any associated notes and the
command-line equivalent of the operations you used to create this data.

Tip To view or modify properties for several data sets, keep this window open and right-
click each data set in the System Identification app. The Data/model Info dialog box
updates as you select each data set.
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Data object
description

History of
syntax that
created this
object

To displays the data properties in the MATLAB Command Window, click Present.

Renaming Data and Changing Display Color
You can rename data and change its display color by double-clicking the data icon in the
System Identification app.

The Data/model Info dialog box opens. This dialog box describes both the contents and
the properties of the data. The object description area displays the syntax of the
operations you used to create the data in the app.

The Data/model Info dialog box also lets you rename the data by entering a new name in
the Data name field.
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You can also specify a new display color using three RGB values in the Color field. Each
value is between 0 to 1 and indicates the relative presence of red, green, and blue,
respectively. For more information about specifying default data color, see “Customizing
the System Identification App” on page 21-14.

Tip As an alternative to using three RGB values, you can enter any one of the following:

'y' 'r' 'b' 'c' 'g' 'm' 'k'

These represent yellow, red, blue, cyan, green, magenta, and black, respectively.
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used to display
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Information About the Data

You can enter comments about the origin and state of the data in the Diary And Notes
area. For example, you might want to include the experiment name, date, and the
description of experimental conditions. When you estimate models from this data, these
notes are associated with the models.

Clicking Present display portions of this information in the MATLAB Command Window.
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Distinguishing Data Types
The background color of a data icon is color-coded, as follows:

• White background represents time-domain data.
• Blue background represents frequency-domain data.
• Yellow background represents frequency-response data.

Time-domain data

Frequency-domain
data

Frequency-response
data

Colors Representing Type of Data

Organizing Data Icons
You can rearrange data icons in the System Identification app by dragging and dropping
the icons to empty Data Board rectangles in the app.

Note You cannot drag and drop a data icon into the model area on the right.

When you need additional space for organizing data or model icons, select Options >
Extra model/data board in the System Identification app. This action opens an extra
session window with blank rectangles for data and models. The new window is an
extension of the current session and does not represent a new session.
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Tip When you import or create data sets and there is insufficient space for the icons, an
additional session window opens automatically.

You can drag and drop data between the main System Identification app and any extra
session windows.

Type comments in the Notes field to describe the data sets. When you save a session, as
described in “Saving, Merging, and Closing Sessions” on page 21-6, all additional
windows and notes are also saved.

Deleting Data Sets
To delete data sets in the System Identification app, drag and drop the corresponding icon
into Trash. You can also use the Delete key on your keyboard to move items to the
Trash. Moving items to Trash does not permanently delete these items.

Note You cannot delete a data set that is currently designated as Working Data or
Validation Data. You must first specify a different data set in the System Identification
app to be Working Data or Validation Data, as described in “Specify Estimation and
Validation Data in the App” on page 2-30.

To restore a data set from Trash, drag its icon from Trash to the Data or Model Board in
the System Identification app window. You can view the Trash contents by double-clicking
the Trash icon.
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Note You must restore data to the Data Board; you cannot drag data icons to the Model
Board.

To permanently delete all items in Trash, select Options > Empty trash.

Exiting a session empties the Trash automatically.

Exporting Data to the MATLAB Workspace
The data you create in the System Identification app is not available in the MATLAB
workspace until you export the data set. Exporting to the MATLAB workspace is
necessary when you need to perform an operation on the data that is only available at the
command line.

To export a data set to the MATLAB workspace, do one of the following:

• Drag and drop the corresponding icon to the To Workspace rectangle.
• Right-click the icon to open the Data/model Info dialog box. Click Export.

When you export data to the MATLAB workspace, the resulting variables have the same
name as in the System Identification app. For example, the following figure shows how to
export the time-domain data object datad.
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Exporting Data to the MATLAB Workspace

In this example, the MATLAB workspace contains a variable named data after export.
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Representing Time- and Frequency-Domain Data Using
iddata Objects

iddata Constructor
Requirements for Constructing an iddata Object

To construct an iddata object, you must have already imported data into the MATLAB
workspace, as described in “Representing Data in MATLAB Workspace” on page 2-9.

Constructing an iddata Object for Time-Domain Data

Use the following syntax to create a time-domain iddata object data:

data = iddata(y,u,Ts)

You can also specify additional properties, as follows:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “Properties”.

In this example, Ts is the sample time, or the time interval, between successive data
samples. For uniformly sampled data, Ts is a scalar value equal to the sample time of
your experiment. The default time unit is seconds, but you can set it to a new value using
the TimeUnit property. For more information about iddata time properties, see
“Modifying Time and Frequency Vectors” on page 2-78.

For nonuniformly sampled data, specify Ts as [], and set the value of the
SamplingInstants property as a column vector containing individual time values. For
example:

data = iddata(y,u,[],'SamplingInstants',TimeVector)

Where TimeVector represents a vector of time values.

Note  You can modify the property SamplingInstants by setting it to a new vector
with the length equal to the number of data samples.

To represent time-series data, use the following syntax:
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ts_data = iddata(y,[],Ts)

where y is the output data, [] indicates empty input data, and Ts is the sample time.

The following example shows how to create an iddata object using single-input/single-
output (SISO) data from dryer2.mat. The input and output each contain 1000 samples
with the sample time of 0.08 second.

% Load input u2 and output y2 .
load dryer2                 
% Create iddata object.
data = iddata(y2,u2,0.08)

data =

Time domain data set with 1000 samples.
Sample time: 0.08 seconds               
                                        
Outputs      Unit (if specified)        
   y1                                   
                                        
Inputs       Unit (if specified)        
   u1                                   
                                        

The default channel name 'y1' is assigned to the first and only output channel. When y2
contains several channels, the channels are assigned default names
'y1','y2','y2',...,'yn'. Similarly, the default channel name 'u1' is assigned to
the first and only input channel. For more information about naming channels, see
“Naming, Adding, and Removing Data Channels” on page 2-81.

Constructing an iddata Object for Frequency-Domain Data

Frequency-domain data is the Fourier transform of the input and output signals at specific
frequency values. To represent frequency-domain data, use the following syntax to create
the iddata object:

data = iddata(y,u,Ts,'Frequency',w)

'Frequency' is an iddata property that specifies the frequency values w, where w is the
frequency column vector that defines the frequencies at which the Fourier transform
values of y and u are computed. Ts is the time interval between successive data samples
in seconds for the original time-domain data. w, y, and u have the same number of rows.
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Note You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see “Modifying Time
and Frequency Vectors” on page 2-78.

To specify a continuous-time system, set Ts to 0.

You can specify additional properties when you create the iddata object, as follows:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “Properties”.

iddata Properties
To view the properties of the iddata object, use the get command. For example, type the
following commands at the prompt:

% Load input u2 and output y2.
load dryer2                 
% Create iddata object.
data = iddata(y2,u2,0.08);  
% Get property values of data.
get(data)

ans = struct with fields:
              Domain: 'Time'
                Name: ''
          OutputData: [1000x1 double]
                   y: 'Same as OutputData'
          OutputName: {'y1'}
          OutputUnit: {''}
           InputData: [1000x1 double]
                   u: 'Same as InputData'
           InputName: {'u1'}
           InputUnit: {''}
              Period: Inf
         InterSample: 'zoh'
                  Ts: 0.0800
              Tstart: []
    SamplingInstants: [1000x0 double]
            TimeUnit: 'seconds'
      ExperimentName: 'Exp1'
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               Notes: {}
            UserData: []

For a complete description of all properties, see the iddata reference page.

You can specify properties when you create an iddata object using the constructor
syntax:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

To change property values for an existing iddata object, use the set command or dot
notation. For example, to change the sample time to 0.05, type the following at the
prompt:

set(data,'Ts',0.05)

or equivalently:

data.ts = 0.05

Property names are not case sensitive. You do not need to type the entire property name
if the first few letters uniquely identify the property.

Tip You can use data.y as an alternative to data.OutputData to access the output
values, or use data.u as an alternative to data.InputData to access the input values.

An iddata object containing frequency-domain data includes frequency-specific
properties, such as Frequency for the frequency vector and Units for frequency units
(instead of Tstart and SamplingInstants).

To view the property list, type the following command sequence at the prompt:

% Load input u2 and output y2.
  load dryer2;
% Create iddata object.
  data = iddata(y2,u2,0.08);
% Take the Fourier transform of the data
% transforming it to frequency domain.
  data = fft(data)           

data =
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Frequency domain data set with responses at 501 frequencies,
ranging from 0 to 39.27 rad/seconds                          
Sample time: 0.08 seconds                                    
                                                             
Outputs      Unit (if specified)                             
   y1                                                        
                                                             
Inputs       Unit (if specified)                             
   u1                                                        
                                                             

% Get property values of data.
  get(data)

ans = struct with fields:
            Domain: 'Frequency'
              Name: ''
        OutputData: [501x1 double]
                 y: 'Same as OutputData'
        OutputName: {'y1'}
        OutputUnit: {''}
         InputData: [501x1 double]
                 u: 'Same as InputData'
         InputName: {'u1'}
         InputUnit: {''}
            Period: Inf
       InterSample: 'zoh'
                Ts: 0.0800
     FrequencyUnit: 'rad/TimeUnit'
         Frequency: [501x1 double]
          TimeUnit: 'seconds'
    ExperimentName: 'Exp1'
             Notes: {}
          UserData: []

Select Data Channels, I/O Data and Experiments in iddata
Objects
Subreferencing Input and Output Data

Subreferencing data and its properties lets you select data values and assign new data
and property values.
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Use the following general syntax to subreference specific data values in iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels and
inputchannels specify channel indexes or channel names, and experimentname
specifies experiment indexes or names.

For example, to retrieve samples 5 through 30 in the iddata object data and store them
in a new iddata object data_sub, use the following syntax:

data_sub = data(5:30)

You can also use logical expressions to subreference data. For example, to retrieve all
data values from a single-experiment data set that fall between sample instants 1.27 and
9.3 in the iddata object data and assign them to data_sub, use the following syntax:

data_sub = data(data.sa>1.27&data.sa<9.3)

Note You do not need to type the entire property name. In this example, sa in data.sa
uniquely identifies the SamplingInstants property.

You can retrieve the input signal from an iddata object using the following commands:

u = get(data,'InputData')

or

data.InputData

or

data.u    % u is the abbreviation for InputData

Similarly, you can retrieve the output data using

data.OutputData 

or

data.y    % y is the abbreviation for OutputData
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Subreferencing Data Channels

Use the following general syntax to subreference specific data channels in iddata
objects:

data(samples,outputchannels,inputchannels,experiment)

In this syntax, samples specify one or more sample indexes, outputchannels and
inputchannels specify channel indexes or channel names, and experimentname
specifies experiment indexes or names.

To specify several channel names, you must use a cell array of character vectors of
names.

For example, suppose the iddata object data contains three output channels (named y1,
y2, and y3), and four input channels (named u1, u2, u3, and u4). To select all data
samples in y3, u1, and u4, type the following command at the prompt:

% Use a cell array to reference
% input channels 'u1' and 'u4'
data_sub = data(:,'y3',{'u1','u4'})

or equivalently

% Use channel indexes 1 and 4
% to reference the input channels
  data_sub = data(:,3,[1 4])

Tip Use a colon (:) to specify all samples or all channels, and the empty matrix ([]) to
specify no samples or no channels.

If you want to create a time-series object by extracting only the output data from an
iddata object, type the following command:

data_ts = data(:,:,[])

You can assign new values to subreferenced variables. For example, the following
command assigns the first 10 values of output channel 1 of data to values in samples 101
through 110 in the output channel 2 of data1. It also assigns the values in samples 101
through 110 in the input channel 3 of data1 to the first 10 values of input channel 1 of
data.
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data(1:10,1,1) = data1(101:110,2,3)

Subreferencing Experiments

Use the following general syntax to subreference specific experiments in iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels and
inputchannels specify channel indexes or channel names, and experimentname
specifies experiment indexes or names.

When specifying several experiment names, you must use a cell array of character vectors
of names. The iddata object stores experiments name in the ExperimentName property.

For example, suppose the iddata object data contains five experiments with default
names, Exp1, Exp2, Exp3, Exp4, and Exp5. Use the following syntax to subreference the
first and fifth experiment in data:

data_sub = data(:,:,:,{'Exp1','Exp5'}) % Using experiment name

or

data_sub = data(:,:,:,[1 5])           % Using experiment index

Tip Use a colon (:) to denote all samples and all channels, and the empty matrix ([]) to
specify no samples and no channels.

Alternatively, you can use the getexp command. The following example shows how to
subreference the first and fifth experiment in data:

data_sub = getexp(data,{'Exp1','Exp5'}) % Using experiment name

or

data_sub = getexp(data,[1 5])           % Using experiment index

The following example shows how to retrieve the first 100 samples of output channels 2
and 3 and input channels 4 to 8 of Experiment 3:

dat(1:100,[2,3],[4:8],3)
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Increasing Number of Channels or Data Points of iddata
Objects
iddata Properties Storing Input and Output Data

The InputData iddata property stores column-wise input data, and the OutputData
property stores column-wise output data. For more information about accessing iddata
properties, see “iddata Properties” on page 2-52.

Horizontal Concatenation

Horizontal concatenation of iddata objects creates a new iddata object that appends
all InputData information and all OutputData. This type of concatenation produces a
single object with more input and output channels. For example, the following syntax
performs horizontal concatenation on the iddata objects data1,data2,...,dataN:

data = [data1,data2,...,dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =
     [data1.InputData,data2.InputData,...,dataN.InputData]
data.OutputData =
     [data1.OutputData,data2.OutputData,...,dataN.OutputData]

For horizontal concatenation, data1,data2,...,dataN must have the same number of
samples and experiments , and the sameTs and Tstart values.

The channels in the concatenated iddata object are named according to the following
rules:

• Combining default channel names — If you concatenate iddata objects with default
channel names, such as u1 and y1, channels in the new iddata object are
automatically renamed to avoid name duplication.

• Combining duplicate input channels — If data1,data2,...,dataN have input
channels with duplicate user-defined names, such that dataK contains channel names
that are already present in dataJ with J < K, the dataK channels are ignored.

• Combining duplicate output channels — If data1,data2,...,dataN have input
channels with duplicate user-defined names, only the output channels with unique
names are added during the concatenation.
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Vertical Concatenation

Vertical concatenation of iddata objects creates a new iddata object that vertically
stacks the input and output data values in the corresponding data channels. The resulting
object has the same number of channels, but each channel contains more data points. For
example, the following syntax creates a data object such that its total number of samples
is the sum of the samples in data1,data2,...,dataN.

data = [data1;data2;... ;dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =
     [data1.InputData;data2.InputData;...;dataN.InputData]
data.OutputData =
     [data1.OutputData;data2.OutputData;...;dataN.OutputData]

For vertical concatenation, data1,data2,...,dataN must have the same number of
input channels, output channels, and experiments.

See Also
iddata

More About
• “Representing Data in MATLAB Workspace” on page 2-9
• “Managing iddata Objects” on page 2-78
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Create Multiexperiment Data at the Command Line
Why Create Multiexperiment Data Sets?
You can create iddata objects that contain several experiments. Identifying models for
an iddata object with multiple experiments results in an average model.

In the System Identification Toolbox product, experiments can either mean data collected
during different sessions, or portions of the data collected during a single session. In the
latter situation, you can create a multiexperiment iddata object by splitting the data
from a single session into multiple segments to exclude bad data, and merge the good
data portions.

Note The idfrd object does not support the iddata equivalent of multiexperiment data.

Limitations on Data Sets
You can only merge data sets that have all of the following characteristics:

• Same number of input and output channels.
• Same input and output channel names.
• Same data domain (that is, time-domain data or frequency-domain data).

Entering Multiexperiment Data Directly
To construct an iddata object that includes N data sets, you can use this syntax:

data = iddata(y,u,Ts)

where y, u, and Ts are 1-by-N cell arrays containing data from the different experiments.
Similarly, when you specify Tstart, Period, InterSample, and SamplingInstants
properties of the iddata object, you must assign their values as 1-by-N cell arrays.

Merging Data Sets
This example shows how to create a multiexperiment iddata object by merging iddata
objects, where each contains data from a single experiment or is a multiexperiment data
set.
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Load iddata objects z1 and z3.

load iddata1     
load iddata3

Merge experiments z1 and z3 into the iddata object z.

z = merge(z1,z3)

z =

Time domain data set containing 2 experiments.

Experiment   Samples      Sample Time           
   Exp1         300            0.1              
   Exp2         300            1                
                                                
Outputs      Unit (if specified)                
   y1                                           
                                                
Inputs       Unit (if specified)                
   u1                                           
                                                

These commands create an iddata object that contains two experiments, where the
experiments are assigned default names 'Exp1' and 'Exp2', respectively.

Adding Experiments to an Existing iddata Object
You can add experiments individually to an iddata object as an alternative approach to
merging data sets.

For example, to add the experiments in the iddata object dat4 to data, use the
following syntax:

data(:,:,:,'Run4') = dat4

This syntax explicitly assigns the experiment name 'Run4' to the new experiment. The
Experiment property of the iddata object stores experiment names.

For more information about subreferencing experiments in a multiexperiment data set,
see “Subreferencing Experiments” on page 2-57.
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See Also

More About
• “Select Subsets of Data” on page 2-103
• “Dealing with Multi-Experiment Data and Merging Models” on page 2-63
• “Create Multiexperiment Data Sets in the App” on page 2-35
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Dealing with Multi-Experiment Data and Merging Models
This example shows how to deal with multiple experiments and merging models when
working with System Identification Toolbox™ for estimating and refining models.

Introduction

The analysis and estimation functions in System Identification Toolbox let you work with
multiple batches of data. Essentially, if you have performed multiple experiments and
recorded several input-output datasets, you can group them up into a single IDDATA
object and use them with any estimation routine.

In some cases, you may want to "split up" your (single) measurement dataset to remove
portions where the data quality is not good. For example, portion of data may be unusable
due to external disturbance or a sensor failure. In those cases, each good portion of data
may be separated out and then combined into a single multi-experiment IDDATA object.

For example, let us look at the dataset iddemo8.mat:

load iddemo8

The name of the data object is dat, and let us view it.

dat

dat =

Time domain data set with 1000 samples.
Sample time: 1 seconds                  
                                        
Outputs      Unit (if specified)        
   y1                                   
                                        
Inputs       Unit (if specified)        
   u1                                   
                                        

plot(dat)

 Dealing with Multi-Experiment Data and Merging Models

2-63



We see that there are some problems with the output around sample 250-280 and around
samples 600 to 650. These might have been sensor failures.

Therefore split the data into three separate experiments and put then into a multi-
experiment data object:

d1 = dat(1:250);
d2 = dat(281:600);
d3 = dat(651:1000);
d = merge(d1,d2,d3) % merge lets you create multi-exp IDDATA object

d =

Time domain data set containing 3 experiments.
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Experiment   Samples      Sample Time           
   Exp1         250            1                
   Exp2         320            1                
   Exp3         350            1                
                                                
Outputs      Unit (if specified)                
   y1                                           
                                                
Inputs       Unit (if specified)                
   u1                                           
                                                

The different experiments can be given other names, for example:

d.exp = {'Period 1';'Day 2';'Phase 3'}

d =

Time domain data set containing 3 experiments.

Experiment     Samples      Sample Time         
   Period 1       250            1              
   Day 2          320            1              
   Phase 3        350            1              
                                                
Outputs        Unit (if specified)              
   y1                                           
                                                
Inputs         Unit (if specified)              
   u1                                           
                                                

To examine it, use plot, as in plot(d).

Performing Estimation Using Multi-Experiment Data

As mentioned before, all model estimation routines accept multi-experiment data and take
into account that they are recorded at different periods. Let us use the two first
experiments for estimation and the third one for validation:

de = getexp(d,[1,2]);      % subselection is done using  the command GETEXP 
dv = getexp(d,'Phase 3');  % using numbers or names.
m1 = arx(de,[2 2 1]);
m2 = n4sid(de,2);
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m3 = armax(de,[2 2 2 1]);
compare(dv,m1,m2,m3)

The compare command also accepts multiple experiments. Use the right click menu to
pick the experiment to use, one at a time.

compare(d,m1,m2,m3)
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Also, spa, etfe, resid, predict, sim operate in the same way for multi-experiment
data, as they do for single experiment data.

Merging Models After Estimation

There is another way to deal with separate data sets: a model can be computed for each
set, and then the models can be merged:

m4 = armax(getexp(de,1),[2 2 2 1]);
m5 = armax(getexp(de,2),[2 2 2 1]);
m6 = merge(m4,m5); % m4 and m5 are merged into m6

This is conceptually the same as computing m from the merged set de, but it is not
numerically the same. Working on de assumes that the signal-to-noise ratios are (about)
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the same in the different experiments, while merging separate models makes independent
estimates of the noise levels. If the conditions are about the same for the different
experiments, it is more efficient to estimate directly on the multi-experiment data.

We can check the models m3 and m6 that are both ARMAX models obtained on the same
data in two different ways:

[m3.a;m6.a]

ans = 2×3

    1.0000   -1.5034    0.7008
    1.0000   -1.5022    0.7000

[m3.b;m6.b]

ans = 2×3

         0    1.0023    0.5029
         0    1.0035    0.5028

[m3.c;m6.c]

ans = 2×3

    1.0000   -0.9744    0.1578
    1.0000   -0.9751    0.1584

compare(dv,m3,m6)
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Case Study: Concatenating Vs. Merging Independent Datasets

We now turn to another situation. Let us consider two data sets generated by the system
m0. The system is given by:

m0

m0 =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
             x1        x2        x3
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   x1    0.5296    -0.476    0.1238
   x2    -0.476  -0.09743    0.1354
   x3    0.1238    0.1354   -0.8233
 
  B = 
             u1        u2
   x1    -1.146  -0.03763
   x2     1.191    0.3273
   x3         0         0
 
  C = 
            x1       x2       x3
   y1  -0.1867  -0.5883  -0.1364
   y2   0.7258        0   0.1139
 
  D = 
          u1     u2
   y1  1.067      0
   y2      0      0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
   x3   0   0
 
Sample time: 1 seconds
  
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: on some input channels
   Disturbance component: none
   Number of free coefficients: 23
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The data sets that have been collected are z1 and z2, obtained from m0 with different
inputs, noise and initial conditions. These datasets are obtained from iddemo8.mat that
was loaded earlier.

pause off

First data set:
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plot(z1) %generates a separate plot for each I/O pair if pause is on; showing only the last one here

The second set:

plot(z2) %generates a separate plot for each I/O pair if pause is on; showing only the last one here
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If we just concatenate the data we obtained:

zzl = [z1;z2]

zzl =

Time domain data set with 400 samples.
Sample time: 1 seconds                 
                                       
Outputs      Unit (if specified)       
   y1                                  
   y2                                  
                                       
Inputs       Unit (if specified)       
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   u1                                  
   u2                                  
                                       

plot(zzl)

pause on

A discrete-time state-space model can be obtained by using ssest:

ml = ssest(zzl,3,'Ts',1, 'Feedthrough', [true, false]);

Compare the bode response for models m0 and ml:
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clf
bode(m0,ml)
legend('show')

This is not a very good model, as observed from the four Bode plots above.

Now, instead treat the two data sets as different experiments:

zzm = merge(z1,z2)

zzm =

Time domain data set containing 2 experiments.

Experiment   Samples      Sample Time           
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   Exp1         200            1                
   Exp2         200            1                
                                                
Outputs      Unit (if specified)                
   y1                                           
   y2                                           
                                                
Inputs       Unit (if specified)                
   u1                                           
   u2                                           
                                                

% The model for this data can be estimated as before (watching progress this time)
mm = ssest(zzm,3,'Ts',1,'Feedthrough',[true, false], ssestOptions('Display', 'on'));

Let us compare the Bode plots of the true system (blue)

the model from concatenated data (green) and the model from the

merged data set (red):

clf
bode(m0,'b',ml,'g',mm,'r')
legend('show')
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The merged data give a better model, as observed from the plot above.

Conclusions

In this example we analyzed how to use multiple data sets together for estimation of one
model. This technique is useful when you have multiple datasets from independent
experiment runs or when you segment data into multiple sets to remove bad segments.
Multiple experiments can be packaged into a single IDDATA object, which is then usable
for all estimation and analysis requirements. This technique works for both time and
frequency domain iddata.

It is also possible to merge models after estimation. This technique can be used to
"average out" independently estimated models. If the noise characteristics on multiple
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datasets are different, merging models after estimation works better than merging the
datasets themselves before estimation.

Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.

See Also

More About
• “Select Subsets of Data” on page 2-103
• “Create Multiexperiment Data Sets in the App” on page 2-35
• “Create Multiexperiment Data at the Command Line” on page 2-60
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Managing iddata Objects

Modifying Time and Frequency Vectors
The iddata object stores time-domain data or frequency-domain data and has several
properties that specify the time or frequency values. To modify the time or frequency
values, you must change the corresponding property values.

Note  You can modify the property SamplingInstants by setting it to a new vector
with the length equal to the number of data samples. For more information, see
“Constructing an iddata Object for Time-Domain Data” on page 2-50.

The following tables summarize time-vector and frequency-vector properties, respectively,
and provides usage examples. In each example, data is an iddata object.

Note Property names are not case sensitive. You do not need to type the entire property
name if the first few letters uniquely identify the property.
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iddata Time-Vector Properties

Property Description Syntax Example
Ts Sample time.

• For a single experiment, Ts
is a scalar value.

• For multiexperiment data
with Ne experiments, Ts is
a 1-by-Ne cell array, and
each cell contains the
sample time of the
corresponding experiment.

To set the sample time to
0.05:

set(data,'ts',0.05)

or

data.ts = 0.05

Tstart Starting time of the
experiment.

• For a single experiment, Ts
is a scalar value.

• For multiexperiment data
with Ne experiments, Ts is
a 1-by-Ne cell array, and
each cell contains the
sample time of the
corresponding experiment.

To change starting time of the
first data sample to 24:

data.Tstart = 24

Time units are set by the
property TimeUnit.

SamplingInstants Time values in the time vector,
computed from the properties
Tstart and Ts.

• For a single experiment,
SamplingInstants is an
N-by-1 vector.

• For multiexperiment data
with Ne experiments, this
property is a 1-by-Ne cell
array, and each cell
contains the sampling
instants of the
corresponding experiment.

To retrieve the time vector for
iddata object data, use:

get(data,'sa')

To plot the input data as a
function of time:

plot(data.sa,data.u)

Note sa is the first two letters
of the SamplingInstants
property that uniquely
identifies this property.
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Property Description Syntax Example
TimeUnit Unit of time. Specify as one of

the following:
'nanoseconds',
'microseconds',
'milliseconds',
'seconds', 'minutes',
'hours', 'days', 'weeks',
'months', and 'years'.

To change the unit of the time
vector to milliseconds:

data.ti = 'milliseconds'
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iddata Frequency-Vector Properties

Property Description Syntax Example
Frequency Frequency values at which the

Fourier transforms of the
signals are defined.

• For a single experiment,
Frequency is a scalar
value.

• For multiexperiment data
with Ne experiments,
Frequency is a 1-by-Ne
cell array, and each cell
contains the frequencies of
the corresponding
experiment.

To specify 100 frequency
values in log space, ranging
between 0.1 and 100, use the
following syntax:

data.freq =
 logspace(-1,2,100)

FrequencyUnit Unit of Frequency. Specify as
one of the following: be one of
the following: 'rad/
TimeUnit', 'cycles/
TimeUnit', 'rad/s', 'Hz',
'kHz', 'MHz', 'GHz', and,
'rpm'. Default: 'rad/
TimeUnit'

For multi-experiment data with
Ne experiments, Units is a 1-
by-Ne cell array, and each cell
contains the frequency unit for
each experiment.

Set the frequency unit to Hz:

data.FrequencyUnit = 'Hz'

Note that changing the
frequency unit does not scale
the frequency vector. For a
proper translation of units, use
chgFreqUnit.

Naming, Adding, and Removing Data Channels
What Are Input and Output Channels?

A multivariate system might contain several input variables or several output variables, or
both. When an input or output signal includes several measured variables, these variables
are called channels.
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Naming Channels

The iddata properties InputName and OutputName store the channel names for the
input and output signals. When you plot the data, you use channel names to select the
variable displayed on the plot. If you have multivariate data, it is helpful to assign a name
to each channel that describes the measured variable. For more information about
selecting channels on a plot, see “Selecting Measured and Noise Channels in Plots” on
page 21-13.

You can use the set command to specify the names of individual channels. For example,
suppose data contains two input channels (voltage and current) and one output channel
(temperature). To set these channel names, use the following syntax:

set(data,'InputName',{'Voltage','Current'},
         'OutputName','Temperature')

Tip You can also specify channel names as follows:

data.una = {'Voltage','Current')
data.yna = 'Temperature'

una is equivalent to the property InputName, and yna is equivalent to OutputName.

If you do not specify channel names when you create the iddata object, the toolbox
assigns default names. By default, the output channels are named
'y1','y2',...,'yn', and the input channels are named 'u1','u2',...,'un'.

Adding Channels

You can add data channels to an iddata object.

For example, consider an iddata object named data that contains an input signal with
four channels. To add a fifth input channel, stored as the vector Input5, use the following
syntax:

data.u(:,5) = Input5;

Input5 must have the same number of rows as the other input channels. In this example,
data.u(:,5) references all samples as (indicated by :) of the input signal u and sets the
values of the fifth channel. This channel is created when assigning its value to Input5.
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You can also combine input channels and output channels of several iddata objects into
one iddata object using concatenation. For more information, see “Increasing Number of
Channels or Data Points of iddata Objects” on page 2-58.

Modifying Channel Data

After you create an iddata object, you can modify or remove specific input and output
channels, if needed. You can accomplish this by subreferencing the input and output
matrices and assigning new values.

For example, suppose the iddata object data contains three output channels (named y1,
y2, and y3), and four input channels (named u1, u2, u3, and u4). To replace data such
that it only contains samples in y3, u1, and u4, type the following at the prompt:

data = data(:,3,[1 4])

The resulting data object contains one output channel and two input channels.

Subreferencing iddata Objects
See “Select Data Channels, I/O Data and Experiments in iddata Objects” on page 2-54.

Concatenating iddata Objects
See “Increasing Number of Channels or Data Points of iddata Objects” on page 2-58.
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Representing Frequency-Response Data Using idfrd
Objects

idfrd Constructor
The idfrd represents complex frequency-response data. Before you can create an idfrd
object, you must import your data as described in “Frequency-Response Data
Representation” on page 2-13.

Note The idfrd object can only encapsulate one frequency-response data set. It does
not support the iddata equivalent of multiexperiment data.

Use the following syntax to create the data object fr_data:

fr_data = idfrd(response,f,Ts)

Suppose that ny is the number of output channels, nu is the number of input channels,
and nf is a vector of frequency values. response is an ny-by-nu-by-nf 3-D array. f is the
frequency vector that contains the frequencies of the response.Ts is the sample time,
which is used when measuring or computing the frequency response. If you are working
with a continuous-time system, set Ts to 0.

response(ky,ku,kf), where ky, ku, and kf reference the kth output, input, and
frequency value, respectively, is interpreted as the complex-valued frequency response
from input ku to output ky at frequency f(kf).

Note When you work at the command line, you can only create idfrd objects from
complex values of G(eiw). For a SISO system, response can be a vector.

You can specify object properties when you create the idfrd object using the constructor
syntax:

fr_data = idfrd(response,f,Ts,
               'Property1',Value1,...,'PropertyN',ValueN)
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idfrd Properties
To view the properties of the idfrd object, you can use the get command. The following
example shows how to create an idfrd object that contains 100 frequency-response
values with a sample time of 0.1 s and get its properties:

f = logspace(-1,1,100);
[mag, phase] = bode(idtf([1 .2],[1 2 1 1]),f);
response = mag.*exp(1j*phase*pi/180);
fr_data = idfrd(response,f,0.1);
get(fr_data)

      FrequencyUnit: 'rad/TimeUnit'
             Report: [1x1 idresults.frdest]
       SpectrumData: []
     CovarianceData: []
    NoiseCovariance: []
        InterSample: {'zoh'}
       ResponseData: [1x1x100 double]
            IODelay: 0
         InputDelay: 0
        OutputDelay: 0
                 Ts: 0.1000
           TimeUnit: 'seconds'
          InputName: {''}
          InputUnit: {''}
         InputGroup: [1x1 struct]
         OutputName: {''}
         OutputUnit: {''}
        OutputGroup: [1x1 struct]
              Notes: [0x1 string]
           UserData: []
               Name: ''
       SamplingGrid: [1x1 struct]
          Frequency: [100x1 double]

For a complete description of all idfrd object properties, see the idfrd reference page.

To change property values for an existing idfrd object, use the set command or dot
notation. For example, to change the name of the idfrd object, type the following
command sequence at the prompt:

fr_data.Name = 'DC_Converter';
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Select I/O Channels and Data in idfrd Objects
You can reference specific data values in the idfrd object using the following syntax:

fr_data(outputchannels,inputchannels)

Reference specific channels by name or by channel index.

Tip Use a colon (:) to specify all channels, and use the empty matrix ([]) to specify no
channels.

For example, the following command references frequency-response data from input
channel 3 to output channel 2:

fr_data(2,3) 

You can also access the data in specific channels using channel names. To list multiple
channel names, use a cell array. For example, to retrieve the power output, and the
voltage and speed inputs, use the following syntax:

fr_data('power',{'voltage','speed'})

To retrieve only the responses corresponding to frequency values between 200 and 300,
use the following command:

fr_data_sub = fselect(fr_data,[200:300])

You can also use logical expressions to subreference data. For example, to retrieve all
frequency-response values between frequencies 1.27 and 9.3 in the idfrd object
fr_data, use the following syntax:

fr_data_sub = fselect(fr_data,fr_data.f>1.27&fr_data.f<9.3)

Tip Use end to reference the last sample number in the data. For example,
data(77:end).

Note You do not need to type the entire property name. In this example, f in fr_data.f
uniquely identifies the Frequency property of the idfrd object.
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Adding Input or Output Channels in idfrd Objects
About Concatenating idfrd Objects

The horizontal and vertical concatenation of idfrd objects combine information in the
ResponseData properties of these objects. ResponseData is an ny-by-nu-by-nf array
that stores the response of the system, where ny is the number of output channels, nu is
the number of input channels, and nf is a vector of frequency values (see “Properties”).

Horizontal Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the horizontal
concatenation of data1,data2,...,dataN:

data = [data1,data2,...,dataN]

data contains the frequency responses from all of the inputs in
data1,data2,...,dataN to the same outputs. The following diagram is a graphical
representation of horizontal concatenation of frequency-response data. The (j,i,:)
vector of the resulting response data represents the frequency response from the ith
input to the jth output at all frequencies.

    Data 2
2-by-1-by-nf

Horizonal Concatenation
   of Data 1 and Data 2
          2-by-3-by-nf

u1

u2
u3

u1

u2

u3

y1

y2

y1

y2

y2

y1
Same
outputs

Combined
inputs

    Data 1
2-by-2-by-nf

Note Horizontal concatenation of idfrd objects requires that they have the same
outputs and frequency vectors. If the output channel names are different and their
dimensions are the same, the concatenation operation resets the output names to their
default values.
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Vertical Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the vertical
concatenation of data1,data2,...,dataN:

data = [data1;data2;... ;dataN]

The resulting idfrd object data contains the frequency responses from the same inputs
in data1,data2,...,dataN to all the outputs. The following diagram is a graphical
representation of vertical concatenation of frequency-response data. The (j,i,:) vector
of the resulting response data represents the frequency response from the ith input to
the jth output at all frequencies.

     Data 1
2-by-2-by-nf

Vertical Concatenation
 of Data 1 and Data 2
         3-by-2-by-nf

u1

u2
y3

y1

y2

u1

u2

y2

y1
Combined
outputs

Same
inputs

y3

u1

u2

     Data 1
1-by-2-by-nf

Note Vertical concatenation of idfrd objects requires that they have the same inputs
and frequency vectors. If the input channel names are different and their dimensions are
the same, the concatenation operation resets the input names to their default values.

Concatenating Noise Spectrum Data of idfrd Objects

When the SpectrumData property of individual idfrd objects is not empty, horizontal
and vertical concatenation handle SpectrumData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the
SpectrumData of individual idfrd objects and the resulting SpectrumData property is
empty. An empty property results because each idfrd object has its own set of noise
channels, where the number of noise channels equals the number of outputs. When the
resulting idfrd object contains the same output channels as each of the individual idfrd
objects, it cannot accommodate the noise data from all the idfrd objects.
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In case of vertical concatenation, the toolbox concatenates individual noise models
diagonally. The following shows that data.SpectrumData is a block diagonal matrix of
the power spectra and cross spectra of the output noise in the system:

data s

data s

dataN s

.

.

.

=

Ê

Ë

Á
Á
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ˆ

¯

˜
˜
˜̃

1 0

0

O

s in data.s is the abbreviation for the SpectrumData property name.

Managing idfrd Objects
Subreferencing idfrd Objects

See “Select I/O Channels and Data in idfrd Objects” on page 2-86.

Concatenating idfrd Objects

See “Adding Input or Output Channels in idfrd Objects” on page 2-87.

Operations that Create idfrd Objects
The following operations create idfrd objects:

• Constructing idfrd objects.
• Estimating nonparametric models using etfe, spa, and spafdr. For more

information, see “Frequency-Response Models”.
• Converting the Control System Toolbox frd object. For more information, see “Using
Identified Models for Control Design Applications” on page 19-2.

• Converting any linear dynamic system using the idfrd command.

For example:

sys_idpoly = idpoly([1 2 1],[0 2],'Ts',1);
G = idfrd(sys_idpoly,linspace(0,pi,128))

G =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
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Response data and disturbance spectra are available at 128 frequency points, ranging from 0 rad/s to 3.142 rad/s.
 
Sample time: 1 seconds
Status:                                                         
Created by direct construction or transformation. Not estimated.
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Is Your Data Ready for Modeling?
Before you start estimating models from data, you should check your data for the
presence of any undesirable characteristics. For example, you might plot the data to
identify drifts and outliers. You plot analysis might lead you to preprocess your data
before model estimation.

The following data plots are available in the toolbox:

• Time plot — Shows data values as a function of time.

Tip You can infer time delays from time plots, which are required inputs to most
parametric models. A time delay is the time interval between the change in input and
the corresponding change in output.

• Spectral plot — Shows a periodogram that is computed by taking the absolute squares
of the Fourier transforms of the data, dividing by the number of data points, and
multiplying by the sample time.

• Frequency-response plot — For frequency-response data, shows the amplitude and
phase of the frequency-response function on a Bode plot. For time- and frequency-
domain data, shows the empirical transfer function estimate (see etfe) .

See Also

Related Examples
• “How to Analyze Data Using the advice Command” on page 2-101
• “How to Plot Data in the App” on page 2-92
• “How to Plot Data at the Command Line” on page 2-99

More About
• “Ways to Prepare Data for System Identification” on page 2-6
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How to Plot Data in the App

How to Plot Data in the App
After importing data into the System Identification app, as described in “Represent Data”,
you can plot the data.

To create one or more plots, select the corresponding check box in the Data Views area
of the System Identification app.

An active data icon has a thick line in the icon, while an inactive data set has a thin line.
Only active data sets appear on the selected plots. To toggle including and excluding data
on a plot, click the corresponding icon in the System Identification app. Clicking the data
icon updates any plots that are currently open.

When you have several data sets, you can view different input-output channel pair by
selecting that pair from the Channel menu. For more information about selecting
different input and output pairs, see “Selecting Measured and Noise Channels in Plots” on
page 21-13.
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Thick lines indicate
active data sets
included in plots.

All three available
data plots are
selected.

In this example, data and dataff are active and appear on the three selected plots.

To close a plot, clear the corresponding check box in the System Identification app.

Tip To get information about working with a specific plot, select a help topic from the
Help menu in the plot window.

The plots you create using the System Identification app provide options that are specific
to the System Identification Toolbox product, such as selecting specific channel pairs in a
multivariate signals or converting frequency units between Hertz and radians per second.

Manipulating a Time Plot
The Time plot only shows time-domain data. In this example, data1 is displayed on the
time plot because, of the three data sets, it is the only one that contains time-domain
input and output.
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Time Plot of data1

The following table summarizes options that are specific to time plots, which you can
select from the plot window menus. For general information about working with System
Identification Toolbox plots, see “Working with Plots” on page 21-11.

Time Plot Options

Action Command
Toggle input display between piece-wise
continuous (zero-order hold) and linear
interpolation (first-order hold) between
samples.

Note This option only affects the display
and not the intersample behavior specified
when importing the data.

Select Style > Staircase input for zero-
order hold or Style > Regular input for
first-order hold.
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Manipulating Data Spectra Plot
The Data spectra plot shows a periodogram or a spectral estimate of data1 and
data3fd.

The periodogram is computed by taking the absolute squares of the Fourier transforms of
the data, dividing by the number of data points, and multiplying by the sample time. The
spectral estimate for time-domain data is a smoothed spectrum calculated using spa. For
frequency-domain data, the Data spectra plot shows the square of the absolute value of
the actual data, normalized by the sample time.

The top axes show the input and the bottom axes show the output. The vertical axis of
each plot is labeled with the corresponding channel name.

Periodograms of data1 and data3fd
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Data Spectra Plot Options

Action Command
Toggle display between periodogram and
spectral estimate.

Select Options > Periodogram or
Options > Spectral analysis.

Change frequency units. Select Style > Frequency (rad/s) or Style
> Frequency (Hz).

Toggle frequency scale between linear and
logarithmic.

Select Style > Linear frequency scale or
Style > Log frequency scale.

Toggle amplitude scale between linear and
logarithmic.

Select Style > Linear amplitude scale or
Style > Log amplitude scale.

Manipulating a Frequency Function Plot
For time-domain data, the Frequency function plot shows the empirical transfer
function estimate (etfe). For frequency-domain data, the plot shows the ratio of output to
input data.

The frequency-response plot shows the amplitude and phase plots of the corresponding
frequency response. For more information about frequency-response data, see
“Frequency-Response Data Representation” on page 2-13.
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Frequency Functions of data1 and data3fd

Frequency Function Plot Options

Action Command
Change frequency units. Select Style > Frequency (rad/s) or Style

> Frequency (Hz).
Toggle frequency scale between linear and
logarithmic.

Select Style > Linear frequency scale or
Style > Log frequency scale.

Toggle amplitude scale between linear and
logarithmic.

Select Style > Linear amplitude scale or
Style > Log amplitude scale.
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See Also

Related Examples
• “How to Plot Data at the Command Line” on page 2-99
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How to Plot Data at the Command Line
The following table summarizes the commands available for plotting time-domain,
frequency-domain, and frequency-response data.

Commands for Plotting Data
Command Description Example
bode, bodeplot For frequency-response data only.

Shows the magnitude and phase
of the frequency response on a
logarithmic frequency scale of a
Bode plot.

To plot idfrd data:

bode(idfrd_data)

or:

bodeplot(idfrd_data)

plot The type of plot corresponds to
the type of data. For example,
plotting time-domain data
generates a time plot, and
plotting frequency-response data
generates a frequency-response
plot.

When plotting time- or frequency-
domain inputs and outputs, the
top axes show the output and the
bottom axes show the input.

To plot iddata or idfrd data:

plot(data)

All plot commands display the data in the standard MATLAB Figure window, which
provides options for formatting, saving, printing, and exporting plots to a variety of file
formats.

To plot portions of the data, you can subreference specific samples (see “Select Data
Channels, I/O Data and Experiments in iddata Objects” on page 2-54 and “Select I/O
Channels and Data in idfrd Objects” on page 2-86. For example:

plot(data(1:300))

For time-domain data, to plot only the input data as a function of time, use the following
syntax:

plot(data(:,[],:)
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When data.intersample = 'zoh', the input is piece-wise constant between sampling
points on the plot. For more information about properties, see the iddata reference
page.

You can generate plots of the input data in the time domain using:

plot(data.SamplingInstants,data.u)

To plot frequency-domain data, you can use the following syntax:

semilogx(data.Frequency,abs(data.u))

When you specify to plot a multivariable iddata object, each input-output combination is
displayed one at a time in the same MATLAB Figure window. You must press Enter to
update the Figure window and view the next channel combination. To cancel the plotting
operation, press Ctrl+C.

Tip To plot specific input and output channels, use plot(data(:,ky,ku)), where ky
and ku are specific output and input channel indexes or names. For more information
about subreferencing channels, see “Subreferencing Data Channels” on page 2-56.

To plot several iddata sets d1,...,dN, use plot(d1,...,dN). Input-output channels
with the same experiment name, input name, and output name are always plotted in the
same plot.

See Also

Related Examples
• “How to Plot Data in the App” on page 2-92
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How to Analyze Data Using the advice Command
You can use the advice command to analyze time- or frequency- domain data before
estimating a model. The resulting report informs you about the possible need to
preprocess the data and identifies potential restrictions on the model accuracy. You
should use these recommendations in combination with plotting the data and validating
the models estimated from this data.

Note advice does not support frequency-response data.

Before applying the advice command to your data, you must have represented your data
as an iddata object. For more information, see “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50.

If you are using the System Identification app, you must export your data to the MATLAB
workspace before you can use the advice command on this data. For more information
about exporting data, see “Exporting Models from the App to the MATLAB Workspace” on
page 21-10.

Use the following syntax to get advice about an iddata object data:

advice(data)

For more information about the advice syntax, see the advice reference page.

Advice provide guidance for these kinds of questions:

• Does it make sense to remove constant offsets and linear trends from the data?
• What are the excitation levels of the signals and how does this affects the model

orders?
• Is there an indication of output feedback in the data? When feedback is present in the

system, only prediction-error methods work well for estimating closed-loop data.
• Is there an indication of nonlinearity in the process that generated the data?

See Also
advice | delayest | detrend | feedback | pexcit
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Related Examples
• “How to Plot Data in the App” on page 2-92
• “How to Plot Data at the Command Line” on page 2-99
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Select Subsets of Data

Why Select Subsets of Data?
You can use data selection to create independent data sets for estimation and validation.

You can also use data selection as a way to clean the data and exclude parts with noisy or
missing information. For example, when your data contains missing values, outliers, level
changes, and disturbances, you can select one or more portions of the data that are
suitable for identification and exclude the rest.

If you only have one data set and you want to estimate linear models, you should split the
data into two portions to create two independent data sets for estimation and validation,
respectively. Splitting the data is selecting parts of the data set and saving each part
independently.

You can merge several data segments into a single multiexperiment data set and identify
an average model. For more information, see “Create Data Sets from a Subset of Signal
Channels” on page 2-33 or “Representing Time- and Frequency-Domain Data Using
iddata Objects” on page 2-50.

Note Subsets of the data set must contain enough samples to adequately represent the
system, and the inputs must provide suitable excitation to the system.

Selecting portions of frequency-domain data is equivalent to filtering the data. For more
information about filtering, see “Filtering Data” on page 2-127.

Extract Subsets of Data Using the App
Ways to Select Data in the App

You can use System Identification app to select ranges of data on a time-domain or
frequency-domain plot. Selecting data in the frequency domain is equivalent to passband-
filtering the data.

After you select portions of the data, you can specify to use one data segment for
estimating models and use the other data segment for validating models. For more
information, see “Specify Estimation and Validation Data in the App” on page 2-30.
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Note Selecting <--Preprocess > Quick start performs the following actions
simultaneously:

• Remove the mean value from each channel.
• Split the data into two parts.
• Specify the first part as estimation data (or Working Data).
• Specify the second part as Validation Data.

Selecting a Range for Time-Domain Data

You can select a range of data values on a time plot and save it as a new data set in the
System Identification app.

Note Selecting data does not extract experiments from a data set containing multiple
experiments. For more information about multiexperiment data, see “Create
Multiexperiment Data Sets in the App” on page 2-35.

To extract a subset of time-domain data and save it as a new data set:

1 Import time-domain data into the System Identification app, as described in “Create
Data Sets from a Subset of Signal Channels” on page 2-33.

2 Drag the data set you want to subset to the Working Data area.
3 If your data contains multiple I/O channels, in the Channel menu, select the channel

pair you want to view. The upper plot corresponds to the input signal, and the lower
plot corresponds to the output signal.

Although you view only one I/O channel pair at a time, your data selection is applied
to all channels in this data set.

4 Select the data of interest in either of the following ways:

• Graphically — Draw a rectangle on either the input-signal or the output-signal plot
with the mouse to select the desired time interval. Your selection appears on both
plots regardless of the plot on which you draw the rectangle. The Time span and
Samples fields are updated to match the selected region.

• By specifying the Time span — Edit the beginning and the end times in seconds.
The Samples field is updated to match the selected region. For example:
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28.5 56.8
• By specifying the Samples range — Edit the beginning and the end indices of the

sample range. The Time span field is updated to match the selected region. For
example:

342 654

Note To clear your selection, click Revert.
5 In the Data name field, enter the name of the data set containing the selected data.
6 Click Insert. This action saves the selection as a new data set and adds it to the Data

Board.
7 To select another range, repeat steps 4 to 6.

Selecting a Range of Frequency-Domain Data

Selecting a range of values in frequency domain is equivalent to filtering the data. For
more information about data filtering, see “Filtering Frequency-Domain or Frequency-
Response Data in the App” on page 2-130.

Extract Subsets of Data at the Command Line
Selecting ranges of data values is equivalent to subreferencing the data.

For more information about subreferencing time-domain and frequency-domain data, see
“Select Data Channels, I/O Data and Experiments in iddata Objects” on page 2-54.

For more information about subreferencing frequency-response data, see “Select I/O
Channels and Data in idfrd Objects” on page 2-86.

See Also

More About
• “Create Multiexperiment Data Sets in the App” on page 2-35
• “Create Multiexperiment Data at the Command Line” on page 2-60
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Handling Missing Data and Outliers
Handling Missing Data
Data acquisition failures sometimes result in missing measurements both in the input and
the output signals. When you import data that contains missing values using the MATLAB
Import Wizard, these values are automatically set to NaN. NaN serves as a flag for
nonexistent or undefined data. When you plot data on a time-plot that contains missing
values, gaps appear on the plot where missing data exists.

You can use misdata to estimate missing values. This command linearly interpolates
missing values to estimate the first model. Then, it uses this model to estimate the
missing data as parameters by minimizing the output prediction errors obtained from the
reconstructed data. You can specify the model structure you want to use in the misdata
argument or estimate a default-order model using the n4sid method. For more
information, see the misdata reference page.

Note You can only use misdata on time-domain data stored in an iddata object. For
more information about creating iddata objects, see “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-50.

For example, suppose y and u are output and input signals that contain NaNs. This data is
sampled at 0.2 s. The following syntax creates a new iddata object with these input and
output signals.

dat = iddata(y,u,0.2) % y and u contain NaNs 
                      % representing missing data

Apply the misdata command to the new data object. For example:

dat1 = misdata(dat);
plot(dat,dat1)        % Check how the missing data
                      % was estimated on a time plot

Handling Outliers
Malfunctions can produce errors in measured values, called outliers. Such outliers might
be caused by signal spikes or by measurement malfunctions. If you do not remove outliers
from your data, this can adversely affect the estimated models.
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To identify the presence of outliers, perform one of the following tasks:

• Before estimating a model, plot the data on a time plot and identify values that appear
out of range.

• After estimating a model, plot the residuals and identify unusually large values. For
more information about plotting residuals, see topics on the “Residual Analysis” page.
Evaluate the original data that is responsible for large residuals. For example, for the
model Model and validation data Data, you can use the following commands to plot
the residuals:

% Compute the residuals
  E = resid(Data,Model)
% Plot the residuals
  plot(E)

Next, try these techniques for removing or minimizing the effects of outliers:

• Extract the informative data portions into segments and merge them into one
multiexperiment data set (see “Extract and Model Specific Data Segments” on page 2-
109). For more information about selecting and extracting data segments, see “Select
Subsets of Data” on page 2-103.

Tip The inputs in each of the data segments must be consistently exciting the system.
Splitting data into meaningful segments for steady-state data results in minimum
information loss. Avoid making data segments too small.

• Manually replace outliers with NaNs and then use the misdata command to
reconstruct flagged data. This approach treats outliers as missing data and is
described in “Handling Missing Data” on page 2-106. Use this method when your data
contains several inputs and outputs, and when you have difficulty finding reliable data
segments in all variables.

• Remove outliers by prefiltering the data for high-frequency content because outliers
often result from abrupt changes. For more information about filtering, see “Filtering
Data” on page 2-127.

Note The estimation algorithm can handle outliers by assigning a smaller weight to
outlier data. A robust error criterion applies an error penalty that is quadratic for small
and moderate prediction errors, and is linear for large prediction errors. Because outliers
produce large prediction errors, this approach gives a smaller weight to the
corresponding data points during model estimation. Set the ErrorThreshold estimation
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option (see Advanced.ErrorThreshold in, for example, polyestOptions) to a
nonzero value to activate the correction for outliers in the estimation algorithm.

See Also
To learn more about the theory of handling missing data and outliers, see the chapter on
preprocessing data in System Identification: Theory for the User, Second Edition, by
Lennart Ljung, Prentice Hall PTR, 1999.
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Extract and Model Specific Data Segments
This example shows how to create a multi-experiment, time-domain data set by merging
only the accurate data segments and ignoring the rest.

Load and plot the data.

load iddemo8;
plot(dat);

The data has poor or no measurements from samples 251 to 280 and 601 to 650. You
cannot simply concatenate the good data segments because the transients at the
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connection points compromise the model. Instead, you must create a multiexperiment
iddata object, where each experiment corresponds to a good segment of data.

Create multiexperiment data set by merging data segments.

datam = merge(dat(1:250),dat(281:600),dat(651:1000));

Estimate a state-space model using the multiexperiment data set using experiments 1 and
2.

data_est = getexp(datam,[1,2]);
m = ssest(data_est,2);

Validate the model by comparing its output to the output data of experiment 3.

data_val = getexp(datam,3);
compare(data_val,m)
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Handling Offsets and Trends in Data

When to Detrend Data
Detrending is removing means, offsets, or linear trends from regularly sampled time-
domain input-output data signals. This data processing operation helps you estimate more
accurate linear models because linear models cannot capture arbitrary differences
between the input and output signal levels. The linear models you estimate from
detrended data describe the relationship between the change in input signals and the
change in output signals.

For steady-state data, you should remove mean values and linear trends from both input
and output signals.

For transient data, you should remove physical-equilibrium offsets measured prior to the
excitation input signal.

Remove one linear trend or several piecewise linear trends when the levels drift during
the experiment. Signal drift is considered a low-frequency disturbance and can result in
unstable models.

You should not detrend data before model estimation when you want:

• Linear models that capture offsets essential for describing important system dynamics.
For example, when a model contains integration behavior, you could estimate a low-
order transfer function (process model) from nondetrended data. For more
information, see “Process Models”.

• Nonlinear black-box models, such as nonlinear ARX or Hammerstein-Wiener models.
For more information, see “Nonlinear Model Identification”.

Tip When signals vary around a large signal level, you can improve computational
accuracy of nonlinear models by detrending the signal means.

• Nonlinear ODE parameters (nonlinear grey-box models). For more information, see
“Estimate Nonlinear Grey-Box Models” on page 13-34.

To simulate or predict the linear model response at the system operating conditions, you
can restore the removed trend to the simulated or predicted model output using the
retrend command.
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For more information about handling drifts in the data, see the chapter on preprocessing
data in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

Alternatives for Detrending Data in App or at the Command-
Line
You can detrend data using the System Identification app and at the command line using
the detrend command.

Both the app and the command line let you subtract the mean values and one linear trend
from steady-state time-domain signals.

However, the detrend command provides the following additional functionality (not
available in the app):

• Subtracting piecewise linear trends at specified breakpoints. A breakpoint is a time
value that defines the discontinuities between successive linear trends.

• Subtracting arbitrary offsets and linear trends from transient data signals.
• Saving trend information to a variable so that you can apply it to multiple data sets.

As an alternative to detrending data beforehand, you can specify the offsets levels as
estimation options and use them directly with the estimation command.

For example, suppose your data has an input offset, u0, and an output offset, y0. There
are two ways to perform a linear model estimation (say, a transfer function model
estimation) using this data:

• Using detrend:

T=getTrend(data)
T.InputOffset = u0;
T.OutputOffset = y0;
datad = detrend(data, T);

model = tfest(datad, np);
• Specify offsets as estimation options:

opt = tfestOptions('InputOffset',u0, 'OutputOffset', y0);

model = tfest(data, np, opt)
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The advantage of this approach is that there is a record of offset levels in the model in
model.Report.OptionsUsed. The limitation of this approach is that it cannot
handle linear trends, which can only be removed from the data by using detrend.

Next Steps After Detrending
After detrending your data, you might do the following:

• Perform other data preprocessing operations. See “Ways to Prepare Data for System
Identification” on page 2-6.

• Estimate a linear model. See “Linear Model Identification”.

See Also

Related Examples
• “How to Detrend Data Using the App” on page 2-115
• “How to Detrend Data at the Command Line” on page 2-116
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How to Detrend Data Using the App
Before you can perform this task, you must have regularly-sampled, steady-state time-
domain data imported into the System Identification app. See “Import Time-Domain Data
into the App” on page 2-16). For transient data, see “How to Detrend Data at the
Command Line” on page 2-116.

Tip You can use the shortcut Preprocess > Quick start to perform several operations:
remove the mean value from each signal, split data into two halves, specify the first half
as model estimation data (or Working Data), and specify the second half as model
Validation Data.

1 In the System Identification app, drag the data set you want to detrend to the
Working Data rectangle.

2 Detrend the data.

• To remove linear trends, select Preprocess > Remove trends.
• To remove mean values from each input and output data signal, select

Preprocess > Remove means.

See Also

More About
• “Handling Offsets and Trends in Data” on page 2-112
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How to Detrend Data at the Command Line

Detrending Steady-State Data
Before you can perform this task, you must have time-domain data as an iddata object.
See “Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-
50.

Note If you plan to estimate models from this data, your data must be regularly sampled.

Use the detrend command to remove the signal means or linear trends:

[data_d,T]=detrend(data,Type)

where data is the data to be detrended. The second input argument Type=0 removes
signal means or Type=1 removes linear trends. data_d is the detrended data. T is a
TrendInfo object that stores the values of the subtracted offsets and slopes of the
removed trends.

Detrending Transient Data
Before you can perform this task, you must have

• Time-domain data as an iddata object. See “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50.

Note If you plan to estimate models from this data, your data must be regularly
sampled.

• Values of the offsets you want to remove from the input and output data. If you do not
know these values, visually inspect a time plot of your data. For more information, see
“How to Plot Data at the Command Line” on page 2-99.

1 Create a default object for storing input-output offsets that you want to remove from
the data.

T = getTrend(data)

where T is a TrendInfo object.
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2 Assign offset values to T.

T.InputOffset=I_value;
T.OutputOffset=O_value;

where I_value is the input offset value, and O_value is the input offset value.
3 Remove the specified offsets from data.

data_d = detrend(data,T)

where the second input argument T stores the offset values as its properties.

See Also
TrendInfo | detrend

More About
• “Handling Offsets and Trends in Data” on page 2-112

 See Also

2-117



Resampling Data

What Is Resampling?
Resampling data signals in the System Identification Toolbox product applies an
antialiasing (lowpass) FIR filter to the data and changes the sampling rate of the signal by
decimation or interpolation.

If your data is sampled faster than needed during the experiment, you can decimate it
without information loss. If your data is sampled more slowly than needed, there is a
possibility that you miss important information about the dynamics at higher frequencies.
Although you can resample the data at a higher rate, the resampled values occurring
between measured samples do not represent new measured information about your
system. Instead of resampling, repeat the experiment using a higher sampling rate.

Tip You should decimate your data when it contains high-frequency noise outside the
frequency range of the system dynamics.

Resampling takes into account how the data behaves between samples, which you specify
when you import the data into the System Identification app (zero-order or first-order
hold). For more information about the data properties you specify before importing the
data, see “Represent Data”.

You can resample data using the System Identification app or the resample command.
You can only resample time-domain data at uniform time intervals.

For a detailed discussion about handling disturbances, see the chapter on preprocessing
data in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

Resampling Data Without Aliasing Effects
Typically, you decimate a signal to remove the high-frequency contributions that result
from noise from the total energy. Ideally, you want to remove the energy contribution due
to noise and preserve the energy density of the signal.

The command resample performs the decimation without aliasing effects. This command
includes a factor of T to normalize the spectrum and preserve the energy density after
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decimation. For more information about spectrum normalization, see “Spectrum
Normalization” on page 9-13.

If you use manual decimation instead of resample—by picking every fourth sample from
the signal, for example—the energy contributions from higher frequencies are folded back
into the lower frequencies("aliasing"). Because the total signal energy is preserved by this
operation and this energy must now be squeezed into a smaller frequency range, the
amplitude of the spectrum at each frequency increases. Thus, the energy density of the
decimated signal is not constant.

This example shows how resample avoids folding effects.

Construct a fourth-order moving-average process.

m0 = idpoly(1,[ ],[1 1 1 1]);

m0 is a time-series model with no inputs.

Generate error signal.

e = idinput(2000,'rgs');

Simulate the output using the error signal.

sim_opt = simOptions('AddNoise',true,'NoiseData',e);
y = sim(m0,zeros(2000,0),sim_opt);
y = iddata(y,[],1);

Estimate the signal spectrum.

g1 = spa(y);

Estimate the spectrum of the modified signal including every fourth sample of the original
signal. This command automatically sets Ts to 4.

g2 = spa(y(1:4:2000));

Plot the frequency response to view folding effects.

h = spectrumplot(g1,g2,g1.Frequency);
opt = getoptions(h);
opt.FreqScale = 'linear';
opt.FreqUnits = 'Hz';
setoptions(h,opt);
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Estimate the spectrum after prefiltering that does not introduce folding effects.

g3 = spa(resample(y,1,4));
figure
spectrumplot(g1,g3,g1.Frequency,opt)
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Use resample to decimate the signal before estimating the spectrum and plot the
frequency response.

g3 = spa(resample(y,1,4));
figure
spectrumplot(g1,g3,g1.Frequency,opt)
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The plot shows that the estimated spectrum of the resampled signal has the same
amplitude as the original spectrum. Thus, there is no indication of folding effects when
you use resample to eliminate aliasing.

See Also

Related Examples
• “Resampling Data Using the App” on page 2-123
• “Resampling Data at the Command Line” on page 2-125
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Resampling Data Using the App
Use the System Identification app to resample time-domain data. To specify additional
options, such as the prefilter order, see “Resampling Data at the Command Line” on page
2-125.

The System Identification app uses idresamp to interpolate or decimate the data. For
more information about this command, type help idresamp at the prompt.

To create a new data set by resampling the input and output signals:

1 Import time-domain data into the System Identification app, as described in “Create
Data Sets from a Subset of Signal Channels” on page 2-33.

2 Drag the data set you want to resample to the Working Data area.
3 In the Resampling factor field, enter the factor by which to multiply the current

sample time:

• For decimation (fewer samples), enter a factor greater than 1 to increase the
sample time by this factor.

• For interpolation (more samples), enter a factor less than 1 to decrease the
sample time by this factor.

Default = 1.
4 In the Data name field, type the name of the new data set. Choose a name that is

unique in the Data Board.
5 Click Insert to add the new data set to the Data Board in the System Identification

Toolbox window.
6 Click Close to close the Resample dialog box.

See Also

Related Examples
• “Resampling Data at the Command Line” on page 2-125
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More About
• “Resampling Data” on page 2-118
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Resampling Data at the Command Line
Use resample to decimate and interpolate time-domain iddata objects. You can specify
the order of the antialiasing filter as an argument.

Note resample uses the Signal Processing Toolbox™ command, when this toolbox is
installed on your computer. If this toolbox is not installed, use idresamp instead.
idresamp only lets you specify the filter order, whereas resample also lets you specify
filter coefficients and the design parameters of the Kaiser window.

To create a new iddata object datar by resampling data, use the following syntax:

datar = resample(data,P,Q,filter_order)

In this case, P and Q are integers that specify the new sample time: the new sample time
is Q/P times the original one. You can also specify the order of the resampling filter as a
fourth argument filter_order, which is an integer (default is 10). For detailed
information about resample, see the corresponding reference page.

For example, resample(data,1,Q) results in decimation with the sample time modified
by a factor Q.

The next example shows how you can increase the sampling rate by a factor of 1.5 and
compare the signals:

plot(u)
ur = resample(u,3,2);
plot(u,ur)

When the Signal Processing Toolbox product is not installed, using resample calls
idresamp instead.

idresamp uses the following syntax:

datar = idresamp(data,R,filter_order)

In this case, R=Q/P, which means that data is interpolated by a factor P and then
decimated by a factor Q. To learn more about idresamp, type help idresamp.
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The data.InterSample property of the iddata object is taken into account during
resampling (for example, first-order hold or zero-order hold). For more information, see
“iddata Properties” on page 2-52.

See Also

Related Examples
• “Resampling Data Using the App” on page 2-123

More About
• “Resampling Data” on page 2-118
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Filtering Data

Supported Filters
You can filter the input and output signals through a linear filter before estimating a
model in the System Identification app or at the command line. How you want to handle
the noise in the system determines whether it is appropriate to prefilter the data.

The filter available in the System Identification app is a fifth-order (passband)
Butterworth filter. If you need to specify a custom filter, use the idfilt command.

Choosing to Prefilter Your Data
Prefiltering data can help remove high-frequency noise or low-frequency disturbances
(drift). The latter application is an alternative to subtracting linear trends from the data,
as described in “Handling Offsets and Trends in Data” on page 2-112.

In addition to minimizing noise, prefiltering lets you focus your model on specific
frequency bands. The frequency range of interest often corresponds to a passband over
the breakpoints on a Bode plot. For example, if you are modeling a plant for control-
design applications, you might prefilter the data to specifically enhance frequencies
around the desired closed-loop bandwidth.

Prefiltering the input and output data through the same filter does not change the input-
output relationship for a linear system. However, prefiltering does change the noise
characteristics and affects the estimated noise model of the system.

To get a reliable noise model in the app, instead of prefiltering the data, set Focus to
Filter, and specify the filter. To get a reliable noise model at the command line, instead
of prefiltering the data, specify the filter in the WeightingFilter estimation option of
the estimation command. If the Focus option is available, specify it as 'simulation'.

For more information about prefiltering data, see the chapter on preprocessing data in
System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice
Hall PTR, 1999.

For practical examples of prefiltering data, see the section on posttreatment of data in
Modeling of Dynamic Systems, by Lennart Ljung and Torkel Glad, Prentice Hall PTR,
1994.
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See Also

Related Examples
• “How to Filter Data Using the App” on page 2-129
• “How to Filter Data at the Command Line” on page 2-132
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How to Filter Data Using the App

Filtering Time-Domain Data in the App
The System Identification app lets you filter time-domain data using a fifth-order
Butterworth filter by enhancing or selecting specific passbands.

To create a filtered data set:

1 Import time-domain data into the System Identification app, as described in
“Represent Data”.

2 Drag the data set you want to filter to the Working Data area.
3 Select <--Preprocess > Filter. By default, this selection shows a periodogram of the

input and output spectra (see the etfe reference page).

Note To display smoothed spectral estimates instead of the periodogram, select
Options > Spectral analysis. This spectral estimate is computed using spa and
your previous settings in the Spectral Model dialog box. To change these settings,
select <--Estimate > Spectral model in the System Identification app, and specify
new model settings.

4 If your data contains multiple input/output channels, in the Channel menu, select the
channel pair you want to view. Although you view only one channel pair at a time, the
filter applies to all input/output channels in this data set.

5 Select the data of interest using one of the following ways:

• Graphically — Draw a rectangle with the mouse on either the input-signal or the
output-signal plot to select the desired frequency interval. Your selection is
displayed on both plots regardless of the plot on which you draw the rectangle.
The Range field is updated to match the selected region. If you need to clear your
selection, right-click the plot.

• Specify the Range — Edit the beginning and the end frequency values.

For example:

8.5 20.0 (rad/s).
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Tip To change the frequency units from rad/s to Hz, select Style > Frequency
(Hz). To change the frequency units from Hz to rad/s, select Style > Frequency
(rad/s).

6 In the Range is list, select one of the following:

• Pass band — Allows data in the selected frequency range.
• Stop band — Excludes data in the selected frequency range.

7 Click Filter to preview the filtered results. If you are satisfied, go to step 8.
Otherwise, return to step 5.

8 In the Data name field, enter the name of the data set containing the selected data.
9 Click Insert to save the selection as a new data set and add it to the Data Board.
10 To select another range, repeat steps 5 to 9.

Filtering Frequency-Domain or Frequency-Response Data in
the App
For frequency-domain and frequency-response data, filtering is equivalent to selecting
specific data ranges.

To select a range of data in frequency-domain or frequency-response data:

1 Import data into the System Identification app, as described in “Represent Data”.
2 Drag the data set you want you want to filter to the Working Data area.
3 Select <--Preprocess > Select range. This selection displays one of the following

plots:

• Frequency-domain data — Plot shows the absolute of the squares of the input and
output spectra.

• Frequency-response data — Top axes show the frequency response magnitude
equivalent to the ratio of the output to the input, and the bottom axes show the
ratio of the input signal to itself, which has the value of 1 at all frequencies.

4 If your data contains multiple input/output channels, in the Channel menu, select the
channel pair you want to view. Although you view only one channel pair at a time, the
filter applies to all input/output channels in this data set.

5 Select the data of interest using one of the following ways:
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• Graphically — Draw a rectangle with the mouse on either the input-signal or the
output-signal plot to select the desired frequency interval. Your selection is
displayed on both plots regardless of the plot on which you draw the rectangle.
The Range field is updated to match the selected region.

If you need to clear your selection, right-click the plot.
• Specify the Range — Edit the beginning and the end frequency values.

For example:

8.5 20.0 (rad/s).

Tip If you need to change the frequency units from rad/s to Hz, select Style >
Frequency (Hz). To change the frequency units from Hz to rad/s, select Style >
Frequency (rad/s).

6 In the Range is list, select one of the following:

• Pass band — Allows data in the selected frequency range.
• Stop band — Excludes data in the selected frequency range.

7 In the Data name field, enter the name of the data set containing the selected data.
8 Click Insert. This action saves the selection as a new data set and adds it to the Data

Board.
9 To select another range, repeat steps 5 to 8.

See Also

Related Examples
• “How to Filter Data at the Command Line” on page 2-132

More About
• “Filtering Data” on page 2-127

 See Also

2-131



How to Filter Data at the Command Line

Simple Passband Filter
Use idfilt to apply passband and other custom filters to a time-domain or a frequency-
domain iddata object.

In general, you can specify any custom filter. Use this syntax to filter an iddata object
data using the filter called filter:

fdata = idfilt(data,filter)

In the simplest case, you can specify a passband filter for time-domain data using the
following syntax:

fdata = idfilt(data,[wl wh])

In this case, w1 and wh represent the low and high frequencies of the passband,
respectively.

You can specify several passbands, as follows:

filter=[[w1l,w1h];[ w2l,w2h]; ....;[wnl,wnh]]

The filter is an n-by-2 matrix, where each row defines a passband in radians per second.

To define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2 Nyqf]

where, Nyqf is the Nyquist frequency.

For time-domain data, the passband filtering is cascaded Butterworth filters of specified
order. The default filter order is 5. The Butterworth filter is the same as butter in the
Signal Processing Toolbox product. For frequency-domain data, select the indicated
portions of the data to perform passband filtering.

Defining a Custom Filter
Use idfilt to apply passband and other custom filters to a time-domain or a frequency-
domain iddata object.
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In general, you can specify any custom filter. Use this syntax to filter an iddata object
data using the filter called filter:

fdata = idfilt(data,filter)

You can define a general single-input/single-output (SISO) system for filtering time-
domain or frequency-domain data. For frequency-domain only, you can specify the
(nonparametric) frequency response of the filter.

You use this syntax to filter an iddata object data using a custom filter specified by
filter:

fdata = idfilt(data,filter)

filter can be also any of the following:

filter = idm
filter = {num,den}
filter = {A,B,C,D}

idm is a SISO identified linear model on page 1-13 or LTI object. For more information
about LTI objects, see the Control System Toolbox documentation.

{num,den} defines the filter as a transfer function as a cell array of numerator and
denominator filter coefficients.

{A,B,C,D} is a cell array of SISO state-space matrices.

Specifically for frequency-domain data, you specify the frequency response of the filter:

filter = Wf

Here, Wf is a vector of real or complex values that define the filter frequency response,
where the inputs and outputs of data at frequency data.Frequency(kf) are multiplied
by Wf(kf). Wf is a column vector with the length equal to the number of frequencies in
data.

When data contains several experiments, Wf is a cell array with the length equal to the
number of experiments in data.
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Causal and Noncausal Filters
For time-domain data, the filtering is causal by default. Causal filters typically introduce a
phase shift in the results. To use a noncausal zero-phase filter (corresponding to
filtfilt in the Signal Processing Toolbox product), specify a third argument in idfilt:

fdata = idfilt(data,filter,'noncausal')

For frequency-domain data, the signals are multiplied by the frequency response of the
filter. With the filters defined as passband filters, this calculation gives ideal, zero-phase
filtering (“brick wall filters”). Frequencies that have been assigned zero weight by the
filter (outside the passband or via frequency response) are removed.

When you apply idfilt to an idfrd data object, the data is first converted to a
frequency-domain iddata object (see “Transforming Between Frequency-Domain and
Frequency-Response Data” on page 3-13). The result is an iddata object.

See Also

More About
• “Filtering Data” on page 2-127
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Generate Data Using Simulation

Commands for Generating Data Using Simulation
You can generate input data and then use it with a model to create output data.

Simulating output data requires that you have a model with known coefficients. For more
information about commands for constructing models, see “Commands for Constructing
Linear Model Structures” on page 1-21.

To generate input data, use idinput to construct a signal with the desired
characteristics, such as a random Gaussian or binary signal or a sinusoid. idinput
returns a matrix of input values.

The following table lists the commands you can use to simulate output data. For more
information about these commands, see the corresponding reference pages.

Commands for Generating Data

Command Description Example
idinput Constructs a signal with

the desired
characteristics, such as a
random Gaussian or binary
signal or a sinusoid, and
returns a matrix of input
values.

u = iddata([],...
    idinput(400,'rbs',[0 0.3])); 

sim Simulates response data
based on existing linear or
nonlinear parametric
model in the MATLAB
workspace.

To simulate the model output y for a given
input, use the following command:

y = sim(m,data)

m is the model object name, and data is input
data matrix or iddata object.

Create Periodic Input Data
This example shows how to create a periodic random Gaussian input signal using
idinput.
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Create a periodic input for one input and consisting of five periods, where each period is
300 samples.

per_u = idinput([300 1 5]);

Create an iddata object using the periodic input and leaving the output empty.

u = iddata([],per_u,'Period',.300);

View the data characteristics in time- and frequency-domain.

% Plot data in time-domain.
plot(u)
% Plot the spectrum.
spectrum(spa(u))
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(Optional) Simulate model output using the data.

% Construct a polynomial model.
m0 = idpoly([1 -1.5 0.7],[0 1 0.5]);
% Simulate model output with Gaussian noise.
sim_opt = simOptions('AddNoise',true);
sim(m0,u,sim_opt)

Generate Output Data Using Simulation
This example shows how to generate output data by simulating a model using an input
signal created using idinput.
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You use the generated data to estimate a model of the same order as the model used to
generate the data. Then, you check how closely both models match to understand the
effects of input data characteristics and noise on the estimation.

Create an ARMAX model with known coefficients.

A = [1 -1.2 0.7];
B = {[0 1 0.5 0.1],[0 1.5 -0.5],[0 -0.1 0.5 -0.1]}; 
C = [1 0 0 0 0];
Ts = 1;   
m0 = idpoly(A,B,C,'Ts',1);

The leading zeros in the B matrix indicate the input delay (nk), which is 1 for each input
channel.

Construct a pseudorandom binary input data.

u = idinput([255,3],'prbs');

Simulate model output with noise using the input data.

y = sim(m0,u,simOptions('AddNoise',true));

Represent the simulation data as an iddata object.

iodata = iddata(y,u,m0.Ts);

(Optional) Estimate a model of the same order as m0 using iodata.

na = 2;
nb = [3 2 3];
nc = 4;
nk = [1 1 1];
me = armax(iodata,[na,nb,nc,nk]);

Use bode(m0,me) and compare(iodata,me) to check how closely me and m0 match.

compare(iodata,me);
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Simulating Data Using Other MathWorks Products
You can also simulate data using the Simulink and Signal Processing Toolbox software.
Data simulated outside the System Identification Toolbox product must be in the MATLAB
workspace as double matrices. For more information about simulating models using the
Simulink software, see “Simulating Identified Model Output in Simulink” on page 20-5.
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Manipulating Complex-Valued Data

Supported Operations for Complex Data
System Identification Toolbox estimation algorithms support complex data. For example,
the following estimation commands estimate complex models from complex data: ar,
armax, arx, bj, ivar, iv4, oe, pem, spa, tfest, ssest, and n4sid.

Model transformation routines, such as freqresp and zpkdata, work for complex-
valued models. However, they do not provide pole-zero confidence regions. For complex
models, the parameter variance-covariance information refers to the complex-valued
parameters and the accuracy of the real and imaginary is not computed separately.

The display commands compare and plot also work with complex-valued data and
models. To plot the real and imaginary parts of the data separately, use
plot(real(data)) and plot(imag(data)), respectively.

Processing Complex iddata Signals at the Command Line
If the iddata object data contains complex values, you can use the following commands
to process the complex data and create a new iddata object.

Command Description
abs(data) Absolute value of complex signals in iddata object.
angle(data) Phase angle (in radians) of each complex signals in iddata

object.
complex(data) For time-domain data, this command makes the iddata object

complex—even when the imaginary parts are zero. For frequency-
domain data that only stores the values for nonnegative
frequencies, such that realdata(data)=1, it adds signal values
for negative frequencies using complex conjugation.

imag(data) Selects the imaginary parts of each signal in iddata object.
isreal(data) 1 when data (time-domain or frequency-domain) contains only

real input and output signals, and returns 0 when data (time-
domain or frequency-domain) contains complex signals.

real(data) Real part of complex signals in iddata object.
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Command Description
realdata(data) Returns a value of 1 when data is a real-valued, time-domain

signal, and returns 0 otherwise.

For example, suppose that you create a frequency-domain iddata object Datf by
applying fft to a real-valued time-domain signal to take the Fourier transform of the
signal. The following is true for Datf:

isreal(Datf) = 0
realdata(Datf) = 1
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Transform Data

• “Supported Data Transformations” on page 3-2
• “Transform Time-Domain Data in the App” on page 3-4
• “Transform Frequency-Domain Data in the App” on page 3-6
• “Transform Frequency-Response Data in the App” on page 3-8
• “Transforming Between Time and Frequency-Domain Data” on page 3-11
• “Transforming Between Frequency-Domain and Frequency-Response Data”

on page 3-13
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Supported Data Transformations
The following table shows the different ways you can transform data from one data
domain to another. If the transformation is supported for a given row and column
combination in the table, the command used by the software is listed in the cell at their
intersection.

Original Data
Format

To Time-Domain
Data
(iddata object)

To Frequency-
Domain Data
(iddata object)

To Frequency-Response Data
(idfrd object)

Time-Domain
Data
(iddata object)

N/A Use fft • Use etfe, spa, or spafdr.
• Estimate a linear parametric

model from the iddata
object, and use idfrd to
compute frequency-response
data.

Frequency-
Domain Data
(iddata object)

Use ifft (works
only for evenly
spaced frequency-
domain data).

N/A • Use etfe, spa, or spafdr.
• Estimate a linear parametric

model from the iddata
object, and use idfrd to
compute frequency-response
data.

Frequency-
Response
Data
(idfrd object)

Not supported Use iddata. The
software creates a
frequency-domain
iddata object
that has the same
ratio between
output and input
as the original
idfrd object
frequency-
response data.

• Use spafdr. The software
calculates frequency-
response data with a
different resolution (number
and spacing of frequencies)
than the original data.

Transforming from time-domain or frequency-domain data to frequency-response data is
equivalent to creating a frequency-response model from the data. For more information,
see “Frequency-Response Models”.
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See Also

Related Examples
• “Transforming Between Time and Frequency-Domain Data” on page 3-11
• “Transform Time-Domain Data in the App” on page 3-4
• “Transform Frequency-Domain Data in the App” on page 3-6
• “Transform Frequency-Response Data in the App” on page 3-8

More About
• “Representing Data in MATLAB Workspace” on page 2-9

 See Also
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Transform Time-Domain Data in the App
In the System Identification app, time-domain data has an icon with a white background.
You can transform time-domain data to frequency-domain or frequency-response data.
The frequency values of the resulting frequency vector range from 0 to the Nyquist

frequency fS Ts= p , where Ts is the sample time.

Transforming from time-domain to frequency-response data is equivalent to estimating a
model from the data using the spafdr method.

1 In the System Identification app, drag the icon of the data you want to transform to
the Working Data rectangle.

2 In the Operations area, select <--Preprocess > Transform data in the drop-down
menu to open the Transform Data dialog box.

3 In the Transform to list, select one of the following:

• Frequency Function — Create a new idfrd object using the spafdr method.
Go to step 4.

• Frequency Domain Data — Create a new iddata object using the fft method.
Go to step 6.

4 In the Frequency Spacing list, select the spacing of the frequencies at which the
frequency function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.
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• logarithmic — Base-10 logarithmic spacing of frequency values between the
endpoints.

5 In the Number of Frequencies field, enter the number of frequency values.
6 In the Name of new data field, type the name of the new data set. This name must

be unique in the Data Board.
7 Click Transform to add the new data set to the Data Board in the System

Identification app.
8 Click Close to close the Transform Data dialog box.

See Also

Related Examples
• “Transforming Between Time and Frequency-Domain Data” on page 3-11
• “Transform Frequency-Domain Data in the App” on page 3-6
• “Transform Frequency-Response Data in the App” on page 3-8

More About
• “Representing Data in MATLAB Workspace” on page 2-9
• “Supported Data Transformations” on page 3-2

 See Also
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Transform Frequency-Domain Data in the App
In the System Identification app, frequency-domain data has an icon with a green
background. You can transform frequency-domain data to time-domain or frequency-
response (frequency-function) data.

Transforming from time-domain or frequency-domain data to frequency-response data is
equivalent to estimating a nonparametric model of the data using the spafdr method.

1 In the System Identification app, drag the icon of the data you want to transform to
the Working Data rectangle.

2 Select <--Preprocess > Transform data.
3 In the Transform to list, select one of the following:

• Frequency Function — Create a new idfrd object using the spafdr method.
Go to step 4.

• Time Domain Data — Create a new iddata object using the ifft (inverse fast
Fourier transform) method. Go to step 6.

4 In the Frequency Spacing list, select the spacing of the frequencies at which the
frequency function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.
• logarithmic — Base-10 logarithmic spacing of frequency values between the

endpoints.
5 In the Number of Frequencies field, enter the number of frequency values.
6 In the Name of new data field, type the name of the new data set. This name must

be unique in the Data Board.
7 Click Transform to add the new data set to the Data Board in the System

Identification app.
8 Click Close to close the Transform Data dialog box.

See Also

Related Examples
• “Transforming Between Time and Frequency-Domain Data” on page 3-11
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• “Transform Time-Domain Data in the App” on page 3-4
• “Transform Frequency-Response Data in the App” on page 3-8

More About
• “Representing Data in MATLAB Workspace” on page 2-9
• “Supported Data Transformations” on page 3-2

 See Also
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Transform Frequency-Response Data in the App
In the System Identification app, frequency-response data has an icon with a yellow
background. You can transform frequency-response data to frequency-domain data
(iddata object) or to frequency-response data with a different frequency resolution.

When you select to transform single-input/single-output (SISO) frequency-response data
to frequency-domain data, the toolbox creates outputs that equal the frequency
responses, and inputs equal to 1. Therefore, the ratio between the Fourier transform of
the output and the Fourier transform of the input is equal to the system frequency
response.

For the multiple-input case, the toolbox transforms the frequency-response data to
frequency-domain data as if each input contributes independently to the entire output of
the system and then combines information. For example, if a system has three inputs, u1,
u2, and u3 and two frequency samples, the input matrix is set to:

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1
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In general, for nu inputs and ns samples (the number of frequencies), the input matrix
has nu columns and (ns ◊  nu) rows.

Note To create a separate experiment for the response from each input, see
“Transforming Between Frequency-Domain and Frequency-Response Data” on page 3-
13.

When you transform frequency-response data by changing its frequency resolution, you
can modify the number of frequency values by changing between linear or logarithmic
spacing. You might specify variable frequency spacing to increase the number of data
points near the system resonance frequencies, and also make the frequency vector
coarser in the region outside the system dynamics. Typically, high-frequency noise
dominates away from frequencies where interesting system dynamics occur. The System
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Identification app lets you specify logarithmic frequency spacing, which results in a
variable frequency resolution.

Note The spafdr command lets you lets you specify any variable frequency resolution.

1 In the System Identification app, drag the icon of the data you want to transform to
the Working Data rectangle.

2 Select <--Preprocess > Transform data.
3 In the Transform to list, select one of the following:

• Frequency Domain Data — Create a new iddata object. Go to step 6.
• Frequency Function — Create a new idfrd object with different resolution

(number and spacing of frequencies) using the spafdr method. Go to step 4.
4 In the Frequency Spacing list, select the spacing of the frequencies at which the

frequency function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.
• logarithmic — Base-10 logarithmic spacing of frequency values between the

endpoints.
5 In the Number of Frequencies field, enter the number of frequency values.
6 In the Name of new data field, type the name of the new data set. This name must

be unique in the Data Board.
7 Click Transform to add the new data set to the Data Board in the System

Identification app.
8 Click Close to close the Transform Data dialog box.

See Also

Related Examples
• “Transforming Between Time and Frequency-Domain Data” on page 3-11
• “Transform Time-Domain Data in the App” on page 3-4
• “Transform Frequency-Domain Data in the App” on page 3-6
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More About
• “Representing Data in MATLAB Workspace” on page 2-9
• “Supported Data Transformations” on page 3-2
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Transforming Between Time and Frequency-Domain
Data

The iddata object stores time-domain or frequency-domain data. The following table
summarizes the commands for transforming data between time and frequency domains.

Command Description Syntax Example
fft Transforms time-domain data to

the frequency domain.

You can specify N, the number
of frequency values.

To transform time-domain
iddata object t_data to
frequency-domain iddata
object f_data with N frequency
points, use:

f_data = 
  fft(t_data,N)

ifft Transforms frequency-domain
data to the time domain.
Frequencies are linear and
equally spaced.

To transform frequency-
domainiddata object f_data
to time-domain iddata object
t_data, use:

t_data = 
  ifft(f_data)

See Also

Related Examples
• “Transforming Between Frequency-Domain and Frequency-Response Data” on page

3-13
• “Transform Time-Domain Data in the App” on page 3-4
• “Transform Frequency-Domain Data in the App” on page 3-6
• “Transform Frequency-Response Data in the App” on page 3-8

More About
• “Representing Data in MATLAB Workspace” on page 2-9
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• “Supported Data Transformations” on page 3-2
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Transforming Between Frequency-Domain and
Frequency-Response Data

You can transform frequency-response data to frequency-domain data (iddata object).
The idfrd object represents complex frequency-response of the system at different
frequencies. For a description of this type of data, see “Frequency-Response Data
Representation” on page 2-13.

When you select to transform single-input/single-output (SISO) frequency-response data
to frequency-domain data, the toolbox creates outputs that equal the frequency
responses, and inputs equal to 1. Therefore, the ratio between the Fourier transform of
the output and the Fourier transform of the input is equal to the system frequency
response.

For information about changing the frequency resolution of frequency-response data to a
new constant or variable (frequency-dependent) resolution, see the spafdr reference
page. You might use this feature to increase the number of data points near the system
resonance frequencies and make the frequency vector coarser in the region outside the
system dynamics. Typically, high-frequency noise dominates away from frequencies where
interesting system dynamics occur.

Note You cannot transform an idfrd object to a time-domain iddata object.

To transform an idfrd object with the name idfrdobj to a frequency-domain iddata
object, use the following syntax:

dataf = iddata(idfrdobj)

The resulting frequency-domain iddata object contains values at the same frequencies
as the original idfrd object.

For the multiple-input case, the toolbox represents frequency-response data as if each
input contributes independently to the entire output of the system and then combines
information. For example, if a system has three inputs, u1, u2, and u3 and two frequency
samples, the input matrix is set to:
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In general, for nu inputs and ns samples, the input matrix has nu columns and (ns ◊  nu)
rows.

If you have ny outputs, the transformation operation produces an output matrix has ny
columns and (ns ◊  nu) rows using the values in the complex frequency response G(iw)
matrix (ny-by-nu-by-ns). In this example, y1 is determined by unfolding G(1,1,:),
G(1,2,:), and G(1,3,:) into three column vectors and vertically concatenating these
vectors into a single column. Similarly, y2 is determined by unfolding G(2,1,:),
G(2,2,:), and G(2,3,:) into three column vectors and vertically concatenating these
vectors.

If you are working with multiple inputs, you also have the option of storing the
contribution by each input as an independent experiment in a multiexperiment data set.
To transform an idfrd object with the name idfrdobj to a multiexperiment data set
datf, where each experiment corresponds to each of the inputs in idfrdobj

datf = iddata(idfrdobj,'me')

In this example, the additional argument 'me' specifies that multiple experiments are
created.

By default, transformation from frequency-response to frequency-domain data strips away
frequencies where the response is inf or NaN. To preserve the entire frequency vector,
use datf = iddata(idfrdobj,'inf'). For more information, type help idfrd/
iddata.
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See Also

Related Examples
• “Transforming Between Time and Frequency-Domain Data” on page 3-11
• “Transform Time-Domain Data in the App” on page 3-4
• “Transform Frequency-Domain Data in the App” on page 3-6
• “Transform Frequency-Response Data in the App” on page 3-8

More About
• “Representing Data in MATLAB Workspace” on page 2-9
• “Supported Data Transformations” on page 3-2

 See Also
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Black-Box Modeling

Selecting Black-Box Model Structure and Order
Black-box modeling is useful when your primary interest is in fitting the data regardless
of a particular mathematical structure of the model. The toolbox provides several linear
and nonlinear black-box model structures, which have traditionally been useful for
representing dynamic systems. These model structures vary in complexity depending on
the flexibility you need to account for the dynamics and noise in your system. You can
choose one of these structures and compute its parameters to fit the measured response
data.

Black-box modeling is usually a trial-and-error process, where you estimate the
parameters of various structures and compare the results. Typically, you start with the
simple linear model structure and progress to more complex structures. You might also
choose a model structure because you are more familiar with this structure or because
you have specific application needs.

The simplest linear black-box structures require the fewest options to configure:

• Transfer function on page 8-2, with a given number of poles and zeros.
• Linear ARX model on page 6-3, which is the simplest input-output polynomial model.
• State-space model on page 7-2, which you can estimate by specifying the number of

model states

Estimation of some of these structures also uses noniterative estimation algorithms,
which further reduces complexity.

You can configure a model structure using the model order. The definition of model order
varies depending on the type of model you select. For example, if you choose a transfer
function representation, the model order is related to the number of poles and zeros. For
state-space representation, the model order corresponds to the number of states. In some
cases, such as for linear ARX and state-space model structures, you can estimate the
model order from the data.

If the simple model structures do not produce good models, you can select more complex
model structures by:
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• Specifying a higher model order for the same linear model structure. Higher model
order increases the model flexibility for capturing complex phenomena. However,
unnecessarily high orders can make the model less reliable.

• Explicitly modeling the noise:

y(t)=Gu(t)+He(t)

where H models the additive disturbance by treating the disturbance as the output of
a linear system driven by a white noise source e(t).

Using a model structure that explicitly models the additive disturbance can help to
improve the accuracy of the measured component G. Furthermore, such a model
structure is useful when your main interest is using the model for predicting future
response values.

• Using a different linear model structure.

See “Linear Model Structures” on page 1-20.
• Using a nonlinear model structure.

Nonlinear models have more flexibility in capturing complex phenomena than linear
models of similar orders. See “Nonlinear Model Structures” on page 11-7.

Ultimately, you choose the simplest model structure that provides the best fit to your
measured data. For more information, see “Estimating Linear Models Using Quick Start”.

Regardless of the structure you choose for estimation, you can simplify the model for your
application needs. For example, you can separate out the measured dynamics (G) from
the noise dynamics (H) to obtain a simpler model that represents just the relationship
between y and u. You can also linearize a nonlinear model about an operating point.

When to Use Nonlinear Model Structures?
A linear model is often sufficient to accurately describe the system dynamics and, in most
cases, you should first try to fit linear models. If the linear model output does not
adequately reproduce the measured output, you might need to use a nonlinear model.

You can assess the need to use a nonlinear model structure by plotting the response of
the system to an input. If you notice that the responses differ depending on the input level
or input sign, try using a nonlinear model. For example, if the output response to an input
step up is faster than the response to a step down, you might need a nonlinear model.

 Black-Box Modeling
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Before building a nonlinear model of a system that you know is nonlinear, try
transforming the input and output variables such that the relationship between the
transformed variables is linear. For example, consider a system that has current and
voltage as inputs to an immersion heater, and the temperature of the heated liquid as an
output. The output depends on the inputs via the power of the heater, which is equal to
the product of current and voltage. Instead of building a nonlinear model for this two-
input and one-output system, you can create a new input variable by taking the product of
current and voltage and then build a linear model that describes the relationship between
power and temperature.

If you cannot determine variable transformations that yield a linear relationship between
input and output variables, you can use nonlinear structures such as Nonlinear ARX or
Hammerstein-Wiener models. For a list of supported nonlinear model structures and when
to use them, see “Nonlinear Model Structures” on page 11-7.

Black-Box Estimation Example
You can use the System Identification app or commands to estimate linear and nonlinear
models of various structures. In most cases, you choose a model structure and estimate
the model parameters using a single command.

Consider the mass-spring-damper system, described in “About Dynamic Systems and
Models”. If you do not know the equation of motion of this system, you can use a black-
box modeling approach to build a model. For example, you can estimate transfer functions
or state-space models by specifying the orders of these model structures.

A transfer function is a ratio of polynomials:

G s
b b s b s

f s f s
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For the mass-spring damper system, this transfer function is:
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2

which is a system with no zeros and 2 poles.

In discrete-time, the transfer function of the mass-spring-damper system can be:
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where the model orders correspond to the number of coefficients of the numerator and
the denominator (nb = 1 and nf = 2) and the input-output delay equals the lowest order
exponent of z–1 in the numerator (nk = 1).

In continuous-time, you can build a linear transfer function model using the tfest
command:

m = tfest(data,2,0)

where data is your measured input-output data, represented as an iddata object and
the model order is the set of number of poles (2) and the number of zeros (0).

Similarly, you can build a discrete-time model Output Error structure using the following
command:

m = oe(data,[1 2 1])

The model order is [nb nf nk] = [1 2 1]. Usually, you do not know the model orders in
advance. You should try several model order values until you find the orders that produce
an acceptable model.

Alternatively, you can choose a state-space structure to represent the mass-spring-damper
system and estimate the model parameters using the ssest or the n4sid command:

m = ssest(data,2)

where order = 2 represents the number of states in the model.

In black-box modeling, you do not need the system’s equation of motion—only a guess of
the model orders.

For more information about building models, see “Steps for Using the System
Identification App” on page 21-2 and “Model Estimation Commands” on page 1-44.
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Refine Linear Parametric Models

When to Refine Models
There are two situations where you can refine estimates of linear parametric models.

In the first situation, you have already estimated a parametric model and wish to update
the values of its free parameters to improve the fit to the estimation data. This is useful if
your previous estimation terminated because of search algorithm constraints such as
maximum number of iterations or function evaluations allowed reached. However, if your
model captures the essential dynamics, it is usually not necessary to continue improving
the fit—especially when the improvement is a fraction of a percent.

In the second situation, you might have constructed a model using one of the model
constructors described in “Commands for Constructing Linear Model Structures” on page
1-21. In this case, you built initial parameter guesses into the model structure and wish to
refine these parameter values.

What You Specify to Refine a Model
When you refine a model, you must provide two inputs:

• Parametric model
• Data — You can either use the same data set for refining the model as the one you

originally used to estimate the model, or you can use a different data set.

Refine Linear Parametric Models Using System Identification
App
The following procedure assumes that the model you want to refine is already in the
System Identification app. You might have estimated this model in the current session or
imported the model from the MATLAB workspace. For information about importing
models into the app, see “Importing Models into the App” on page 21-7.

To refine your model:

1 In the System Identification app, verify that you have the correct data set in the
Working Data area for refining your model.
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If you are using a different data set than the one you used to estimate the model,
drag the correct data set into the Working Data area. For more information about
specifying estimation data, see “Specify Estimation and Validation Data in the App”
on page 2-30.

2 Select Estimate > Refine Existing Models to open the Linear Model Refinement
dialog box.

For more information on the options in the dialog box, click Help.
3 Select the model you want to refine in the Initial Model drop-down list or type

the model name.

The model name must be in the Model Board of the System Identification app or a
variable in the MATLAB workspace. The model can be a state-space, polynomial,
process, transfer function or linear grey-box model. The input-output dimensions of
the model must match that of the working data.

4 (Optional) Modify the Estimation Options.

When you enter the model name, the estimation options in the Linear Model
Refinement dialog box override the initial model settings.

 Refine Linear Parametric Models
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5 Click Regularization to obtain regularized estimates of model parameters. Specify
the regularization constants in the Regularization Options dialog box. To learn more,
see “Regularized Estimates of Model Parameters” on page 1-48.

6 Click Estimate to refine the model.
7 Validate the new model. See “Ways to Validate Models” on page 17-3.

Refine Linear Parametric Models at the Command Line
If you are working at the command line, you can use pem to refine parametric model
estimates. You can also use the various model-structure specific estimators — ssest for
idss models, polyest for idpoly models, tfest for idtf models, and greyest for
idgrey models.

The general syntax for refining initial models is as follows:

m = pem(data,init_model)

pem uses the properties of the initial model.

You can also specify the estimation options configuring the objective function and search
algorithm settings. For more information, see the reference page of the estimating
function.

4 Linear Model Identification
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Refine ARMAX Model with Initial Parameter Guesses at
Command Line

This example shows how to refine models for which you have initial parameter guesses.

Estimate an ARMAX model for the data by initializing the A , B , and C polynomials. You
must first create a model object and set the initial parameter values in the model
properties. Next, you provide this initial model as input to armax , polyest , or pem ,
which refine the initial parameter guesses using the data.

Load estimation data.

load iddata8

Define model parameters.

Leading zeros in B indicate input delay (nk), which is 1 for each input channel.

A = [1 -1.2 0.7];
B{1} = [0 1 0.5 0.1]; % first input
B{2} = [0 1.5 -0.5]; % second input
B{3} = [0 -0.1 0.5 -0.1]; % third input
C = [1 0 0 0 0];
Ts = 1;

Create model object.

init_model = idpoly(A,B,C,'Ts',1);

Use polyest to update the parameters of the initial model.

model = polyest(z8,init_model);

Compare the two models.

compare(z8,init_model,model)

 Refine ARMAX Model with Initial Parameter Guesses at Command Line
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See Also
“Input-Output Polynomial Models”
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Refine Initial ARMAX Model at Command Line
This example shows how to estimate an initial model and refine it using pem.

Load measured data.

load iddata8

Split the data into an initial estimation data set and a refinement data set.

init_data = z8(1:100);
refine_data = z8(101:end);

init_data is an iddata object containing the first 100 samples from z8 and
refine_data is an iddata object representing the remaining data in z8.

Estimate an ARMAX model.

na = 4;
nb = [3 2 3];
nc = 2;
nk = [0 0 0];

sys = armax(init_data,[na nb nc nk]);

armax uses the default algorithm properties to estimate sys.

Refine the estimated model by specifying the estimation algorithm options. Specify
stricter tolerance and increase the maximum iterations.

opt = armaxOptions;
opt.SearchOptions.Tolerance = 1e-5;
opt.SearchOptions.MaxIterations = 50;

refine_sys = pem(refine_data,sys,opt);

Compare the fit of the initial and refined models.

compare(refine_data,sys,refine_sys)
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refine_sys provides a closer fit to the data than sys.

You can similarly use polyest or armax to refine the estimated model.

See Also
Functions
armax | pem | polyest
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Extracting Numerical Model Data
You can extract the following numerical data from linear model objects:

• Coefficients and uncertainty

For example, extract state-space matrices (A, B, C, D and K) for state-space models, or
polynomials (A, B, C, D and F) for polynomial models.

If you estimated model uncertainty data, this information is stored in the model in the
form of the parameter covariance matrix. You can fetch the covariance matrix (in its
raw or factored form) using the getcov command. The covariance matrix represents
uncertainties in parameter estimates and is used to compute:

• Confidence bounds on model output plots, Bode plots, residual plots, and pole-zero
plots

• Standard deviation in individual parameter values. For example, one standard
deviation in the estimated value of the A polynomial in an ARX model, returned by
the polydata command and displayed by the present command.

The following table summarizes the commands for extracting model coefficients and
uncertainty.

 Extracting Numerical Model Data
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Commands for Extracting Model Coefficients and Uncertainty Data

Command Description Syntax
freqresp Extracts frequency-

response data (H) and
corresponding
covariance (CovH) from
any linear identified
model.

[H,w,CovH] = freqresp(m)

polydata Extracts polynomials
(such as A) from any
linear identified model.
The polynomial
uncertainties (such as
dA) are returned only for
idpoly models.

[A,B,C,D,F,dA,dB,dC,dD,dF] = ...
       polydata(m)

idssdata Extracts state-space
matrices (such as A)
from any linear
identified model. The
matrix uncertainties
(such as dA) are
returned only for idss
models.

[A,B,C,D,K,X0,...
 dA,dB,dC,dD,dK,dX0] = ...
       idssdata(m)

tfdata Extracts numerator and
denominator polynomials
(Num, Den) and their
uncertainties (dnum,
dden) from any linear
identified model.

[Num,Den,Ts,dNum,dDen] = ...
     tfdata(m)

zpkdata Extracts zeros, poles,
and gains (Z, P, K) and
their covariances (covZ,
covP, covK) from any
linear identified model.

[Z,P,K,Ts,covZ,covP,covK] = ...
     zpkdata(m)
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Command Description Syntax
getpvec Obtain a list of model

parameters and their
uncertainties.
To access parameter
attributes such as
values, free status,
bounds or labels, use
getpar.

pvec = getpvec(m)                                                            

getcov Obtain parameter
covariance information

cov_data = getcov(m)                                                            

You can also extract numerical model data by using dot notation to access model
properties. For example, m.A displays the A polynomial coefficients from model m.
Alternatively, you can use the get command, as follows: get(m,'A').

Tip To view a list of model properties, type get(model).
• Dynamic and noise models

For linear models, the general symbolic model description is given by:

y Gu He= +

G is an operator that takes the measured inputs u to the outputs and captures the
system dynamics, also called the measured model. H is an operator that describes the
properties of the additive output disturbance and takes the hypothetical (unmeasured)
noise source inputs e to the outputs, also called the noise model. When you estimate a
noise model, the toolbox includes one noise channel e for each output in your system.

You can operate on extracted model data as you would on any other MATLAB vectors,
matrices and cell arrays. You can also pass these numerical values to Control System
Toolbox commands, for example, or Simulink blocks.
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Transforming Between Discrete-Time and Continuous-
Time Representations

Why Transform Between Continuous and Discrete Time?
Transforming between continuous-time and discrete-time representations is useful, for
example, if you have estimated a discrete-time linear model and require a continuous-time
model instead for your application.

You can use c2d and d2c to transform any linear identified model between continuous-
time and discrete-time representations. d2d is useful is you want to change the sample
time of a discrete-time model. All of these operations change the sample time, which is
called resampling the model.

These commands do not transform the estimated model uncertainty. If you want to
translate the estimated parameter covariance during the conversion, use translatecov.

Note c2d and d2d correctly approximate the transformation of the noise model only
when the sample time T is small compared to the bandwidth of the noise.

Using the c2d, d2c, and d2d Commands
The following table summarizes the commands for transforming between continuous-time
and discrete-time model representations.

Command Description Usage Example
c2d Converts continuous-time

models to discrete-time
models.

You cannot use c2d for
idproc models and for
idgrey models whose
FunctionType is not 'cd'.
Convert these models into
idpoly, idtf, or idss
models before calling c2d.

To transform a continuous-time model
mod_c to a discrete-time form, use the
following command:

 mod_d = c2d(mod_c,T)

where T is the sample time of the
discrete-time model.
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Command Description Usage Example
d2c Converts parametric

discrete-time models to
continuous-time models.

You cannot use d2c for
idgrey models whose
FunctionType is not 'cd'.
Convert these models into
idpoly, idtf, or idss
models before calling d2c.

To transform a discrete-time model
mod_d to a continuous-time form, use
the following command:

 mod_c = d2c(mod_d)

d2d Resample a linear discrete-
time model and produce an
equivalent discrete-time
model with a new sample
time.

You can use the resampled
model to simulate or predict
output with a specified time
interval.

To resample a discrete-time model
mod_d1 to a discrete-time form with a
new sample time Ts, use the following
command:

 mod_d2 = d2d(mod_d1,Ts)

The following commands compare estimated model m and its continuous-time counterpart
mc on a Bode plot:

% Estimate discrete-time ARMAX model
% from the data
m = armax(data,[2 3 1 2]);
% Convert to continuous-time form
mc = d2c(m);
% Plot bode plot for both models
bode(m,mc)

Specifying Intersample Behavior
A sampled signal is characterized only by its values at the sampling instants. However,
when you apply a continuous-time input to a continuous-time system, the output values at
the sampling instants depend on the inputs at the sampling instants and on the inputs
between these points. Thus, the InterSample data property describes how the
algorithms should handle the input between samples. For example, you can specify the

 Transforming Between Discrete-Time and Continuous-Time Representations
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behavior between the samples to be piece-wise constant (zero-order hold, zoh) or linearly
interpolated between the samples (first order hold, foh). The transformation formulas for
c2d and d2c are affected by the intersample behavior of the input.

By default, c2d and d2c use the intersample behavior you assigned to the estimation
data. To override this setting during transformation, add an extra argument in the syntax.
For example:

% Set first-order hold intersample behavior
mod_d = c2d(mod_c,T,'foh')

Effects on the Noise Model
c2d, d2c, and d2d change the sample time of both the dynamic model and the noise
model. Resampling a model affects the variance of its noise model.

A parametric noise model is a time-series model with the following mathematical
description:

y t H q e t

Ee

( ) ( ) ( )=

=
2

l

The noise spectrum is computed by the following discrete-time equation:

Fv
i T

T H e( )w l w= ( )
2

where l  is the variance of the white noise e(t), and lT  represents the spectral density of
e(t). Resampling the noise model preserves the spectral density l T . The spectral density
l T is invariant up to the Nyquist frequency. For more information about spectrum
normalization, see “Spectrum Normalization” on page 9-13.

d2d resampling of the noise model affects simulations with noise using sim. If you
resample a model to a faster sampling rate, simulating this model results in higher noise
level. This higher noise level results from the underlying continuous-time model being
subject to continuous-time white noise disturbances, which have infinite, instantaneous
variance. In this case, the underlying continuous-time model is the unique representation
for discrete-time models. To maintain the same level of noise after interpolating the noise

4 Linear Model Identification

4-18



signal, scale the noise spectrum by T

T
New

Old

, where Tnew is the new sample time and Told
is the original sample time. before applying sim.

See Also

More About
• “Continuous-Discrete Conversion Methods” on page 4-20
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Continuous-Discrete Conversion Methods

Choosing a Conversion Method
The c2d command discretizes continuous-time models. Conversely, d2c converts discrete-
time models to continuous time. Both commands support several discretization and
interpolation methods, as shown in the following table.

Discretization Method Use When
“Zero-Order Hold” on page 4-21 You want an exact discretization in the time

domain for staircase inputs.
“First-Order Hold” on page 4-22 You want an exact discretization in the time

domain for piecewise linear inputs.
“Impulse-Invariant Mapping” on page 4-23
(c2d only)

You want an exact discretization in the time
domain for impulse train inputs.

“Tustin Approximation” on page 4-24 • You want good matching in the
frequency domain between the
continuous- and discrete-time models.

• Your model has important dynamics at
some particular frequency.

“Zero-Pole Matching Equivalents” on page
4-28

• You have a SISO model.
• You want good matching in the

frequency domain between the
continuous- and discrete-time models.

“Least Squares” (Control System Toolbox)
(c2d only)

• You have a SISO model.
• You want good matching in the

frequency domain between the
continuous- and discrete-time models.

• You want to capture fast system
dynamics but must use a larger sample
time.
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Zero-Order Hold
The Zero-Order Hold (ZOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for staircase inputs.

The following block diagram illustrates the zero-order-hold discretization Hd(z) of a
continuous-time linear model H(s).

The ZOH block generates the continuous-time input signal u(t) by holding each sample
value u(k) constant over one sample period:

u t u k kT t k Ts s( ) = [ ] £ £ +( ), 1

The signal u(t) is the input to the continuous system H(s). The output y[k] results from
sampling y(t) every Ts seconds.

Conversely, given a discrete system Hd(z), d2c produces a continuous system H(s). The
ZOH discretization of H(s) coincides with Hd(z).

The ZOH discrete-to-continuous conversion has the following limitations:

• d2c cannot convert LTI models with poles at z = 0.
• For discrete-time LTI models having negative real poles, ZOH d2c conversion

produces a continuous system with higher order. The model order increases because a
negative real pole in the z domain maps to a pure imaginary value in the s domain.
Such mapping results in a continuous-time model with complex data. To avoid this
issue, the software instead introduces a conjugate pair of complex poles in the s
domain.
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ZOH Method for Systems with Time Delays

You can use the ZOH method to discretize SISO or MIMO continuous-time models with
time delays. The ZOH method yields an exact discretization for systems with input delays,
output delays, or transfer delays.

For systems with internal delays (delays in feedback loops), the ZOH method results in
approximate discretizations. The following figure illustrates a system with an internal
delay.

H(s)

e-ts

For such systems, c2d performs the following actions to compute an approximate ZOH
discretization:

1
Decomposes the delay τ as t r= +kTs  with 0 £ <r T

s .
2 Absorbs the fractional delay r  into H(s).
3 Discretizes H(s) to H(z).
4 Represents the integer portion of the delay kTs as an internal discrete-time delay z–k.

The final discretized model appears in the following figure:

H(s) e-s

H(z)

z-k

r

First-Order Hold
The First-Order Hold (FOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for piecewise linear inputs.
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FOH differs from ZOH by the underlying hold mechanism. To turn the input samples u[k]
into a continuous input u(t), FOH uses linear interpolation between samples:

u t u k
t kT

T
u k u k kT t k T

s

s

s s( ) = [ ] +
-

+[ ]- [ ]( ) £ £ +( )1 1,

In general, this method is more accurate than ZOH for systems driven by smooth inputs.

This FOH method differs from standard causal FOH and is more appropriately called
triangle approximation (see [2], p. 228). The method is also known as ramp-invariant
approximation.

FOH Method for Systems with Time Delays

You can use the FOH method to discretize SISO or MIMO continuous-time models with
time delays. The FOH method handles time delays in the same way as the ZOH method.
See “ZOH Method for Systems with Time Delays” on page 4-22.

Impulse-Invariant Mapping
The impulse-invariant mapping produces a discrete-time model with the same impulse
response as the continuous time system. For example, compare the impulse response of a
first-order continuous system with the impulse-invariant discretization:

G = tf(1,[1,1]);
Gd1 = c2d(G,0.01,'impulse');
impulse(G,Gd1)
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The impulse response plot shows that the impulse responses of the continuous and
discretized systems match.

Impulse-Invariant Mapping for Systems with Time Delays

You can use impulse-invariant mapping to discretize SISO or MIMO continuous-time
models with time delays, except that the method does not support ss models with
internal delays. For supported models, impulse-invariant mapping yields an exact
discretization of the time delay.

Tustin Approximation
The Tustin or bilinear approximation yields the best frequency-domain match between the
continuous-time and discretized systems. This method relates the s-domain and z-domain
transfer functions using the approximation:
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In c2d conversions, the discretization Hd(z) of a continuous transfer function H(s) is:
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Similarly, the d2c conversion relies on the inverse correspondence
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When you convert a state-space model using the Tustin method, the states are not
preserved. The state transformation depends upon the state-space matrices and whether
the system has time delays. For example, for an explicit (E = I) continuous-time model
with no time delays, the state vector w[k] of the discretized model is related to the
continuous-time state vector x(t) by:
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Ts is the sample time of the discrete-time model. A and B are state-space matrices of the
continuous-time model.

Tustin Approximation with Frequency Prewarping

If your system has important dynamics at a particular frequency that you want the
transformation to preserve, you can use the Tustin method with frequency prewarping.
This method ensures a match between the continuous- and discrete-time responses at the
prewarp frequency.

The Tustin approximation with frequency prewarping uses the following transformation of
variables:
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This change of variable ensures the matching of the continuous- and discrete-time
frequency responses at the prewarp frequency ω, because of the following
correspondence:

H j H ed
j Tsw
w( ) = ( )

Tustin Approximation for Systems with Time Delays

You can use the Tustin approximation to discretize SISO or MIMO continuous-time models
with time delays.

By default, the Tustin method rounds any time delay to the nearest multiple of the sample
time. Therefore, for any time delay tau, the integer portion of the delay, k*Ts, maps to a
delay of k sampling periods in the discretized model. This approach ignores the residual
fractional delay, tau - k*Ts.

You can to approximate the fractional portion of the delay by a discrete all-pass filter
(Thiran filter) of specified order. To do so, use the FractDelayApproxOrder option of
c2dOptions.

To understand how the Tustin method handles systems with time delays, consider the
following SISO state-space model G(s). The model has input delay τi, output delay τo, and
internal delay τ.

e-tis
H(s)

e-tos

e-ts

G(s)

The following figure shows the general result of discretizing G(s) using the Tustin
method.
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Hd(z)

Gd(z)

z-moFo(z)Fi(z)z-mi

z-m F(z)

By default, c2d converts the time delays to pure integer time delays. The c2d command
computes the integer delays by rounding each time delay to the nearest multiple of the
sample time Ts. Thus, in the default case, mi = round(τi/Ts), mo = round(τo/Ts), and m =
round(τ/Ts).. Also in this case, Fi(z) = Fo(z) = F(z) = 1.

If you set FractDelayApproxOrder to a non-zero value, c2d approximates the
fractional portion of the time delays by Thiran filters Fi(z), Fo(z), and F(z).

The Thiran filters add additional states to the model. The maximum number of additional
states for each delay is FractDelayApproxOrder.

For example, for the input delay τi, the order of the Thiran filter Fi(z) is:

order(Fi(z)) = max(ceil(τi/Ts), FractDelayApproxOrder).

If ceil(τi/Ts) < FractDelayApproxOrder, the Thiran filter Fi(z) approximates the entire
input delay τi. If ceil(τi/Ts) > FractDelayApproxOrder, the Thiran filter only
approximates a portion of the input delay. In that case, c2d represents the remainder of
the input delay as a chain of unit delays z–mi, where

mi = ceil(τi/Ts) – FractDelayApproxOrder

c2d uses Thiran filters and FractDelayApproxOrder in a similar way to approximate
the output delay τo and the internal delay τ.

When you discretizetf and zpk models using the Tustin method, c2d first aggregates all
input, output, and transfer delays into a single transfer delay τTOT for each channel. c2d
then approximates τTOT as a Thiran filter and a chain of unit delays in the same way as
described for each of the time delays in ss models.
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For more information about Thiran filters, see the thiran reference page and [4].

Zero-Pole Matching Equivalents
This method of conversion, which computes zero-pole matching equivalents, applies only
to SISO systems. The continuous and discretized systems have matching DC gains. Their
poles and zeros are related by the transformation:

z e
i

s T
i s

=

where:

• zi is the ith pole or zero of the discrete-time system.
• si is the ith pole or zero of the continuous-time system.
• Ts is the sample time.

See [2] for more information.

Zero-Pole Matching for Systems with Time Delays

You can use zero-pole matching to discretize SISO continuous-time models with time
delay, except that the method does not support ss models with internal delays. The zero-
pole matching method handles time delays in the same way as the Tustin approximation.
See “Tustin Approximation for Systems with Time Delays” on page 4-26.

Least Squares
The least squares method minimizes the error between the frequency responses of the
continuous-time and discrete-time systems up to the Nyquist frequency using a vector-
fitting optimization approach. This method is useful when you want to capture fast system
dynamics but must use a larger sample time, for example, when computational resources
are limited.

This method is supported only by the c2d function and only for SISO systems.

As with Tustin approximation and zero-pole matching, the least squares method provides
a good match between the frequency responses of the original continuous-time system
and the converted discrete-time system. However, when using the least squares method
with:
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• The same sample time as Tustin approximation or zero-pole matching, you get a
smaller difference between the continuous-time and discrete-time frequency
responses.

• A lower sample time than what you would use with Tustin approximation or zero-pole
matching, you can still get a result that meets your requirements. Doing so is useful if
computational resources are limited, since the slower sample time means that the
processor must do less work.
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Effect of Input Intersample Behavior on Continuous-Time
Models

The intersample behavior of the input signals influences the estimation, simulation and
prediction of continuous-time models. A sampled signal is characterized only by its values
at the sampling instants. However, when you apply a continuous-time input to a
continuous-time system, the output values at the sampling instants depend on the inputs
at the sampling instants and on the inputs between these points.

The iddata and idfrd objects have an InterSample property which stores how the
input behaves between the sampling instants. You can specify the behavior between the
samples to be piecewise constant (zero-order hold), linearly interpolated between the
samples (first-order hold) or band-limited. A band-limited intersample behavior of the
input signal means:

• A filtered input signal (an input of finite bandwidth) was used to excite the system
dynamics.

• The input was measured using a sampling device (A/D converter with antialiasing) that
reported it to be band-limited even though the true input entering the system was
piecewise constant or linear. In this case, the sampling devices can be assumed to be a
part of the system being modeled.

When the input signal is a band-limited discrete-time frequency-domain data (iddata
with domain = 'frequency' or idfrd with sample time Ts≠0), the model estimation is
performed by treating the data as continuous-time data (Ts = 0). For more information,
see Pintelon, R. and J. Schoukens, System Identification. A Frequency Domain Approach,
section 10.2, pp-352-356,Wiley-IEEE Press, New York, 2001.

The intersample behavior of the input data also affects the results of simulation and
prediction of continuous-time models. sim and predict commands use the
InterSample property to choose the right algorithm for computing model response.

The following example simulates a system using first-order hold ( foh ) intersample
behavior for input signal.

sys = idtf([-1 -2],[1 2 1 0.5]);
rng('default')
u = idinput([100 1 5],'sine',[],[],[5 10 1]);
Ts = 2;
y = lsim(sys,u,(0:Ts:999)','foh');
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Create an iddata object for the simulated input-output data.

data = iddata(y,u,Ts);

The default intersample behavior is zero-order hold ( zoh ).

data.InterSample

ans = 
'zoh'

Estimate a transfer function using this data.

np = 3; % number of poles
nz = 1; % number of zeros
opt = tfestOptions('InitializeMethod','all','Display','on');
opt.SearchOptions.MaxIterations = 100;    
modelZOH = tfest(data,np,nz,opt)

modelZOH =
 
  From input "u1" to output "y1":
          -217.2 s - 391.6
  ---------------------------------
  s^3 + 354.4 s^2 + 140.2 s + 112.4
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 3   Number of zeros: 1
   Number of free coefficients: 5
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using TFEST on time domain data "data".
Fit to estimation data: 81.38%                   
FPE: 0.1146, MSE: 0.111                          

The model gives about 80% fit to data. The sample time of the data is large enough that
intersample inaccuracy (using zoh rather than foh ) leads to significant modeling errors.

Re-estimate the model using foh intersample behavior.

data.InterSample = 'foh';
modelFOH = tfest(data,np,nz,opt)
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modelFOH =
 
  From input "u1" to output "y1":
           -1.197 s - 0.06843
  -------------------------------------
  s^3 + 0.4824 s^2 + 0.3258 s + 0.01723
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 3   Number of zeros: 1
   Number of free coefficients: 5
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using TFEST on time domain data "data".
Fit to estimation data: 97.7%                    
FPE: 0.001748, MSE: 0.001693                     

modelFOH is able to retrieve the original system correctly.

Compare the model outputs with data.

compare(data,modelZOH,modelFOH)
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modelZOH is compared to data whose intersample behavior is foh. Therefore, its fit
decreases to around 70%.

See Also
iddata | idfrd

More About
• “Frequency Domain Identification: Estimating Models Using Frequency Domain

Data” on page 4-64
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Transforming Between Linear Model Representations
You can transform linear models between state-space and polynomial forms. You can also
transform between frequency-response, state-space, and polynomial forms.

If you used the System Identification app to estimate models, you must export the models
to the MATLAB workspace before converting models.

For detailed information about each command in the following table, see the
corresponding reference page.
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Commands for Transforming Model Representations

Command Model Type to Convert Usage Example
idfrd Converts any linear model to an

idfrd model.

If you have the Control System
Toolbox product, this command
converts any numeric LTI model
too.

To get frequency response of m at default
frequencies, use the following command:

m_f = idfrd(m)

To get frequency response at specific
frequencies, use the following command:

m_f = idfrd(m,f)

To get frequency response for a submodel
from input 2 to output 3, use the following
command:

m_f = idfrd(m(2,3))

idpoly Converts any linear identified
model, except idfrd, to
ARMAX representation if the
original model has a nontrivial
noise component, or OE if the
noise model is trivial (H = 1).

If you have the Control System
Toolbox product, this command
converts any numeric LTI
model, except frd.

To get an ARMAX model from state-space
model m_ss, use the following command:

m_p = idpoly(m_ss)

idss Converts any linear identified
model, except idfrd, to state-
space representation.

If you have the Control System
Toolbox product, this command
converts any numeric LTI
model, except frd.

To get a state-space model from an ARX
model m_arx, use the following command:

m_ss = idss(m_arx)
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Command Model Type to Convert Usage Example
idtf Converts any linear identified

model, except idfrd, to
transfer function
representation. The noise
component of the original
model is lost since an idtf
object has no elements to model
noise dynamics.

If you have the Control System
Toolbox product, this command
converts any numeric LTI
model, except frd.

To get a transfer function from a state-
space model m_ss, use the following
command:

m_tf = idtf(m_ss)

Note Most transformations among identified models (among idss, idtf, idpoly)
causes the parameter covariance information to be lost, with few exceptions:

• Conversion of an idtf model to an idpoly model.
• Conversion of an idgrey model to an idss model.

If you want to translate the estimated parameter covariance during conversion, use
translatecov.
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Subreferencing Models

What Is Subreferencing?
You can use subreferencing to create models with subsets of inputs and outputs from
existing multivariable models. Subreferencing is also useful when you want to generate
model plots for only certain channels, such as when you are exploring multiple-output
models for input channels that have minimal effect on the output.

The toolbox supports subreferencing operations for idtf, idpoly, idproc, idss, and
idfrd model objects.

Subreferencing is not supported for idgrey models. If you want to analyze the sub-
model, convert it into an idss model first, and then subreference the I/Os of the idss
model. If you want a grey-box representation of a subset of I/Os, create a new idgrey
model that uses an ODE function returning the desired I/O dynamics.

In addition to subreferencing the model for specific combinations of measured inputs and
output, you can subreference dynamic and noise models individually.

Limitation on Supported Models
Subreferencing nonlinear models is not supported.

Subreferencing Specific Measured Channels
Use the following general syntax to subreference specific input and output channels in
models:

model(outputs,inputs)

In this syntax, outputs and inputs specify channel indexes or channel names.

To select all output or all input channels, use a colon (:). To select no channels, specify an
empty matrix ([]). If you need to reference several channel names, use a cell array of
character vectors.

For example, to create a new model m2 from m from inputs 1 ('power') and 4 ('speed')
to output number 3 ('position'), use either of the following equivalent commands:
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m2 = m('position',{'power','speed'})

or

m2 = m(3,[1 4])

For a single-output model, you can use the following syntax to subreference specific input
channels without ambiguity:

m3 = m(inputs)

Similarly, for a single-input model, you can use the following syntax to subreference
specific output channels:

m4 = m(outputs)

Separation of Measured and Noise Components of Models
For linear models, the general symbolic model description is given by:

y Gu He= +

G is an operator that takes the measured inputs u to the outputs and captures the system
dynamics.

H is an operator that describes the properties of the additive output disturbance and
takes the hypothetical (unmeasured) noise source inputs to the outputs. H represents the
noise model. When you specify to estimate a noise model, the resulting model include one
noise channel e at the input for each output in your system.

Thus, linear, parametric models represent input-output relationships for two kinds of
input channels: measured inputs and (unmeasured) noise inputs. For example, consider
the ARX model given by one of the following equations:

A q y t B q u t nk e t( ) ( ) ( ) ( )= -( ) +

or

y t
B q

A q
u t

A q
e t( )

( )

( ) ( )
( )= ( ) +

1
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In this case, the dynamic model is the relationship between the measured input u and

output y, G B q
A q=

( )
( )

. The noise model is the contribution of the input noise e to the

output y, given by H A q=
1

( )
.

Suppose that the model m contains both a dynamic model G and a noise model H. To
create a new model that only has G and no noise contribution, simply set its
NoiseVariance property value to zero value.

To create a new model by subreferencing H due to unmeasured inputs, use the following
syntax:

m_H = m(:,[])

This operation creates a time-series model from m by ignoring the measured input.

The covariance matrix of e is given by the model property NoiseVariance, which is the
matrix L :

L = LL
T

The covariance matrix of e is related to v, as follows:

e Lv=

where v is white noise with an identity covariance matrix representing independent noise
sources with unit variances.

See Also

More About
• “Treating Noise Channels as Measured Inputs” on page 4-40
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Treating Noise Channels as Measured Inputs
A linear models is given by:

y Gu He= +

Where G is an operator that takes the measured inputs u to the outputs and captures the
system dynamics. H is an operator that describes the properties of the additive output
disturbance and takes the hypothetical (unmeasured) noise source inputs to the outputs.
H represents the noise model. When you specify to estimate a noise model, the resulting
model include one noise channel e at the input for each output in your system.

To study noise contributions in more detail, it might be useful to convert the noise
channels to measured channels using noisecnv:

m_GH = noisecnv(m)

This operation creates a model m_GH that represents both measured inputs u and noise
inputs e, treating both sources as measured signals. m_GH is a model from u and e to y,
describing the transfer functions G and H.

Converting noise channels to measured inputs loses information about the variance of the
innovations e. For example, step response due to the noise channels does not take into
consideration the magnitude of the noise contributions. To include this variance
information, normalize e such that v becomes white noise with an identity covariance
matrix, where

e Lv=

To normalize e, use the following command:

m_GH = noisecnv(m,'Norm')

This command creates a model where u and v are treated as measured signals, as follows:

y t Gu t HLv G HL
u

v
( ) ( )= + = [ ] È

Î
Í

˘

˚
˙

For example, the scaling by L causes the step responses from v to y to reflect the size of
the disturbance influence.
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The converted noise sources are named in a way that relates the noise channel to the
corresponding output. Unnormalized noise sources e are assigned names such as
'e@y1', 'e@y2', ..., 'e@yn', where 'e@yn' refers to the noise input associated with the
output yn. Similarly, normalized noise sources v, are named 'v@y1', 'v@y2', ...,
'v@yn'.

If you want to create a model that has only the noise channels of an identified model as its
measured inputs, use the noise2meas command. It results in a model with y(t) = He or
y(t) = HLv, where e or v is treated as a measured input.

Note When you plot models in the app that include noise sources, you can select to view
the response of the noise model corresponding to specific outputs. For more information,
see “Selecting Measured and Noise Channels in Plots” on page 21-13.

See Also
noise2meas | noisecnv

More About
• “Subreferencing Models” on page 4-37
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Concatenating Models

About Concatenating Models
You can perform horizontal and vertical concatenation of linear model objects to grow the
number of inputs or outputs in the model.

When you concatenate identified models, such as idtf, idpoly, idproc, and idss
model objects, the resulting model combines the parameters of the individual models.
However, the estimated parameter covariance is lost. If you want to translate the
covariance information during concatenation, use translatecov.

Concatenation is not supported for idgrey models; convert them to idss models first if
you want to perform concatenation.

You can also concatenate nonparametric models, which contain the estimated impulse-
response (idtf object) and frequency-response (idfrd object) of a system.

In case of idfrd models, concatenation combines information in the ResponseData
properties of the individual model objects. ResponseData is an ny-by-nu-by-nf array
that stores the response of the system, where ny is the number of output channels, nu is
the number of input channels, and nf is the number of frequency values. The (j,i,:)
vector of the resulting response data represents the frequency response from the ith
input to the jth output at all frequencies.

Limitation on Supported Models
Concatenation is supported for linear models only.

Horizontal Concatenation of Model Objects
Horizontal concatenation of model objects requires that they have the same outputs. If
the output channel names are different and their dimensions are the same, the
concatenation operation resets the output names to their default values.

The following syntax creates a new model object m that contains the horizontal
concatenation of m1,m2,...,mN:

m = [m1,m2,...,mN]
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m takes all of the inputs of m1,m2,...,mN to the same outputs as in the original models.
The following diagram is a graphical representation of horizontal concatenation of the
models.

Model 1 Model 2

Horizonal Concatenation
of Model 1 and Model 2

u1

u2
u3

u1

u2

u3

y1

y2

y1

y2

y2

y1
Same
Outputs

Combined
Inputs

Vertical Concatenation of Model Objects
Vertical concatenation combines output channels of specified models. Vertical
concatenation of model objects requires that they have the same inputs. If the input
channel names are different and their dimensions are the same, the concatenation
operation resets the input channel names to their default ('') values.

The following syntax creates a new model object m that contains the vertical
concatenation of m1,m2,...,mN:

m = [m1;m2;... ;mN]

m takes the same inputs in the original models to all of the output of m1,m2,...,mN. The
following diagram is a graphical representation of vertical concatenation of frequency-
response data.
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Model 1 Model 2

Vertical Concatenation
of Model 1 and Model 2

u1

u2
y3

y1

y2

u1

u2

y2

y1
Combined
Outputs

Same
Inputs

y3

u1

u2

Concatenating Noise Spectrum Data of idfrd Objects
When idfrd models are obtained as a result of estimation (such as using spa), the
SpectrumData property is not empty and contains the power spectra and cross spectra
of the output noise in the system. For each output channel, this toolbox estimates one
noise channel to explain the difference between the output of the model and the
measured output.

When the SpectrumData property of individual idfrd objects is not empty, horizontal
and vertical concatenation handle SpectrumData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the
SpectrumData of individual idfrd objects, and the resulting SpectrumData property is
empty. An empty property results because each idfrd object has its own set of noise
channels, where the number of noise channels equals the number of outputs. When the
resulting idfrd object contains the same output channels as each of the individual idfrd
objects, it cannot accommodate the noise data from all the idfrd objects.

In case of vertical concatenation, this toolbox concatenates individual noise models
diagonally. The following shows that m.SpectrumData is a block diagonal matrix of the
power spectra and cross spectra of the output noise in the system:

m s

m s

mN s

.

.

.

=

Ê

Ë

Á
Á
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ˆ

¯

˜
˜
˜̃

1 0

0

O

s in m.s is the abbreviation for the SpectrumData property name.

4 Linear Model Identification

4-44



See Also
If you have the Control System Toolbox product, see “Combining Model Objects” on page
19-5 about additional functionality for combining models.
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Merging Models
You can merge models of the same structure to obtain a single model with parameters
that are statistically weighed means of the parameters of the individual models. When
computing the merged model, the covariance matrices of the individual models determine
the weights of the parameters.

You can perform the merge operation for the idtf, idgrey, idpoly, idproc, and idss
model objects.

Note Each merge operation merges the same type of model object.

Merging models is an alternative to merging data sets into a single multiexperiment data
set, and then estimating a model for the merged data. Whereas merging data sets
assumes that the signal-to-noise ratios are about the same in the two experiments,
merging models allows greater variations in model uncertainty, which might result from
greater disturbances in an experiment.

When the experimental conditions are about the same, merge the data instead of models.
This approach is more efficient and typically involves better-conditioned calculations. For
more information about merging data sets into a multiexperiment data set, see “Create
Multiexperiment Data at the Command Line” on page 2-60.

For more information about merging models, see the merge reference page.
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Determining Model Order and Delay
Estimation requires you to specify the model order and delay. Many times, these values
are not known. You can determine the model order and delay in one of the following ways:

• Guess their values by visually inspecting the data or based on the prior knowledge of
the system.

• Estimate delay as a part of idproc or idtf model estimation. These models treat
delay as an estimable parameter and you can determine their values by the estimation
commands procest and tfest, respectively. However automatic estimation of delays
can cause errors. Therefore, it is recommended that you analyze the data for delays in
advance.

• To estimate delays, you can also use one of the following tools:

• Estimate delay using delayest. The choice of the order of the underlying ARX
model and the lower/upper bound on the value of the delay to be estimated
influence the value returned by delayest.

• Compute impulse response using impulseest. Plot the impulse response with a
confidence interval of sufficient standard deviations (usually 3). The delay is
indicated by the number of response samples that are inside the statistically zero
region (marked by the confidence bound) before the response goes outside that
region.

• Select the model order in n4sid by specifying the model order as a vector.
• Choose the model order of an ARX model using arxstruc or ivstruc and

selstruc. These command select the number of poles, zeros and delay.

See “Model Structure Selection: Determining Model Order and Input Delay” on page
4-48 for an example of using these tools.
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Model Structure Selection: Determining Model Order
and Input Delay

This example shows some methods for choosing and configuring the model structure.
Estimation of a model using measurement data requires selection of a model structure
(such as state-space or transfer function) and its order (e.g., number of poles and zeros)
in advance. This choice is influenced by prior knowledge about the system being modeled,
but can also be motivated by an analysis of data itself. This example describes some
options for determining model orders and input delay.

Introduction

Choosing a model structure is usually the first step towards its estimation. There are
various possibilities for structure - state-space, transfer functions and polynomial forms
such as ARX, ARMAX, OE, BJ etc. If you do not have detailed prior knowledge of your
system, such as its noise characteristics and indication of feedback, the choice of a
reasonable structure may not be obvious. Also for a given choice of structure, the order of
the model needs to be specified before the corresponding parameters are estimated.
System Identification Toolbox™ offers some tools to assist in the task of model order
selection.

The choice of a model order is also influenced by the amount of delay. A good idea of the
input delay simplifies the task of figuring out the orders of other model coefficients.
Discussed below are some options for input delay determination and model structure and
order selection.

Choosing and Preparing Example Data for Analysis

This example uses the hair dryer data, also used by iddemo1 ("Estimating Simple Models
from Real Laboratory Process Data"). The process consists of air being fanned through a
tube. The air is heated at the inlet of the tube, and the input is the voltage applied to the
heater. The output is the temperature at the outlet of the tube.

Let us begin by loading the measurement data and doing some basic preprocessing:

load dry2

Form a data set for estimation of the first half, and a reference set for validation purposes
of the second half:

ze = dry2(1:500);
zr = dry2(501:1000);
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Detrend each of the sets:

ze = detrend(ze);
zr = detrend(zr);

Let us look at a portion of the estimation data:

plot(ze(200:350))

Estimating Input Delay

There are various options available for determining the time delay from input to output.
These are:
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• Using the DELAYEST utility.
• Using a non-parametric estimate of the impulse response, using IMPULSEEST.
• Using the state-space model estimator N4SID with a number of different orders and
finding the delay of the 'best' one.

Using delayest:

Let us discuss the above options in detail. Function delayest returns an estimate of the
delay for a given choice of orders of numerator and denominator polynomials. This
function evaluates an ARX structure:

y(t) + a1*y(t-1) + ... + ana*y(t-na) = b1*u(t-nk) + ...+bnb*u(t-nb-
nk+1)

with various delays and chooses the delay value that seems to return the best fit. In this
process, chosen values of na and nb are used.

delay = delayest(ze) % na = nb = 2 is used, by default

delay =

     3

A value of 3 is returned by default. But this value may change a bit if the assumed orders
of numerator and denominator polynomials (2 here) is changed. For example:

delay = delayest(ze,5,4)

delay =

     2

returns a value of 2. To gain insight into how delayest works, let us evaluate the loss
function for various choices of delays explicitly. We select a second order model
(na=nb=2), which is the default for delayest, and try out every time delay between 1
and 10. The loss function for the different models are computed using the validation data
set:

V = arxstruc(ze,zr,struc(2,2,1:10));
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We now select that delay that gives the best fit for the validation data:

[nn,Vm] = selstruc(V,0); % nn is given as [na nb nk]

The chosen structure was:

nn

nn =

     2     2     3

which show the best model has a delay of nn(3) = 3.

We can also check how the fit depends on the delay. This information is returned in the
second output Vm. The logarithms of a quadratic loss function are given as the first row,
while the indexes na, nb and nk are given as a column below the corresponding loss
function.

Vm

Vm =

  Columns 1 through 7

   -0.1480   -1.3275   -1.8747   -0.2403   -0.0056    0.0736    0.1763
    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000
    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000
    1.0000    2.0000    3.0000    4.0000    5.0000    6.0000    7.0000

  Columns 8 through 10

    0.1906    0.1573    0.1474
    2.0000    2.0000    2.0000
    2.0000    2.0000    2.0000
    8.0000    9.0000   10.0000

The choice of 3 delays is thus rather clear, since the corresponding
loss is minimum.

Using impulse
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To gain a better insight into the dynamics, let us compute the impulse response of the
system. We will use the function impulseest to compute a non-parametric impulse
response model. We plot this response with a confidence interval represented by 3
standard deviations.

FIRModel = impulseest(ze);
clf
h = impulseplot(FIRModel);
showConfidence(h,3)

The filled light-blue region shows the confidence interval for the insignificant response in
this estimation. There is a clear indication that the impulse response "takes off" (leaves
the uncertainty region) after 3 samples. This points to a delay of three intervals.
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Using n4sid based state-space evaluation

We may also estimate a family of parametric models to find the delay corresponding to the
"best" model. In case of state-space models, a range of orders may be evaluated
simultaneously and the best order picked from a Hankel Singular Value plot. Execute the
following command to invoke n4sid in an interactive mode:

m = n4sid(ze,1:15); % All orders between 1 and 15.

The plot indicates an order of 3 as the best value. For this choice, let us compute the
impulse response of the model m:
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m = n4sid(ze, 3);
showConfidence(impulseplot(m),3)

As with non-parametric impulse response, there is a clear indication that the delay from
input to output is of three samples.

Choosing a Reasonable Model Structure

In lack of any prior knowledge, it is advisable to try out various available choices and use
the one that seems to work the best. State-space models may be a good starting point
since only the number of states needs to be specified in order to estimate a model. Also, a
range of orders may be evaluated quickly, using n4sid, for determining the best order, as
described in the next section. For polynomial models, a similar advantage is realized
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using the arx estimator. Output-error (OE) models may also be good choice for a starting
polynomial model because of their simplicity.

Determining Model Order

Once you have decided upon a model structure to use, the next task is to determine the
order(s). In general, the aim should be to not use a model order higher than necessary.
This can be determined by analyzing the improvement in %fit as a function of model
order. When doing this, it is advisable to use a separate, independent dataset for
validation. Choosing an independent validation data set (zr in our example) would
improve the detection of over-fitting.

In addition to a progressive analysis of multiple model orders, explicit determination of
optimum orders can be performed for some model structures. Functions arxstruc and
selstruc may be used for choosing the best order for ARX models. For our example, let
us check the fit for all 100 combinations of up to 10 b-parameters and up to 10 a-
parameters, all with a delay value of 3:

V = arxstruc(ze,zr,struc(1:10,1:10,3));

The best fit for the validation data set is obtained for:

nn = selstruc(V,0)

nn =

    10     4     3

Let us check how much the fit is improved for the higher order models. For this, we use
the function selstruc with only one input. In this case, a plot showing the fit as a
function of the number of parameters used is generated. The user is also prompted to
enter the number of parameters. The routine then selects a structure with these many
parameters that gives the best fit. Note that several different model structures use the
same number of parameters. Execute the following command to choose a model order
interactively:

nns = selstruc(V) %invoke selstruc in an interactive mode
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The best fit is thus obtained for nn = [4 4 3], while we see that the improved fit compared
to nn = [2 2 3] is rather marginal.

We may also approach this problem from the direction of reducing a higher order model.
If the order is higher than necessary, then the extra parameters are basically used to
"model" the measurement noise. These "extra" poles are estimated with a lower level of
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accuracy (large confidence interval). If their are cancelled by a zero located nearby, then
it is an indication that this pole-zero pair may not be required to capture the essential
dynamics of the system.

For our example, let us compute a 4th order model:

th4 = arx(ze,[4 4 3]);

Let us check the pole-zero configuration for this model. We can also include confidence
regions for the poles and zeros corresponding to 3 standard deviations, in order to
determine how accurately they are estimated and also how close the poles and zeros are
to each other.

h = iopzplot(th4);
showConfidence(h,3)
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The confidence intervals for the two complex-conjugate poles and zeros overlap,
indicating they are likely to cancel each other. Hence, a second order model might be
adequate. Based on this evidence, let us compute a 2nd order ARX model:

th2 = arx(ze,[2 2 3]);

We can test how well this model (th2) is capable of reproducing the validation data set.
To compare the simulated output from the two models with the actual output (plotting the
mid 200 data points) we use the compare utility:

compare(zr(150:350),th2,th4)
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The plot indicates that there was no significant loss of accuracy in reducing the order
from 4 to 2. We can also check the residuals ("leftovers") of this model, i.e., what is left
unexplained by the model.

e = resid(ze,th2);
plot(e(:,1,[])), title('The residuals')
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We see that the residuals are quite small compared to the signal level of the output, that
they are reasonably well (although not perfectly) uncorrelated with the input and among
themselves. We can thus be (provisionally) satisfied with the model th2.

Let us now check if we can determine the model order for a state-space structure. As
before, we know the delay is 3 samples. We can try all orders from 1 to 15 with a total lag
of 3 samples in n4sid. Execute the following command to try various orders and choose
one interactively.

ms = n4sid(ze,[1:15],'InputDelay',2); %n4sid estimation with variable orders
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The "InputDelay" was set to 2 because by default n4sid estimates a model with no
feedthrough (which accounts for one sample lag between input and output). The default
order, indicated in the figure above, is 3, that is in good agreement with our earlier
findings. Finally, we compare how the state-space model ms and the ARX model th2
compare in reproducing the measured output of the validation data:

ms = n4sid(ze,3,'InputDelay',2);
compare(zr,ms,th2)
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The comparison plot indicates that the two models are practically identical.

Conclusions

This example described some options for choosing a reasonable model order. Determining
delay in advance can simplify the task of choosing orders. With ARX and state-space
structures, we have some special tools (arx and n4sid estimators) for automatically
evaluating a whole set of model orders, and choosing the best one among them. The
information revealed by this exercise (using utilities such as arxstruc, selstruc,
n4sid and delayest) could be used as a starting point when estimating models of other
structures, such as BJ and ARMAX.
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Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.
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Frequency Domain Identification: Estimating Models
Using Frequency Domain Data

This example shows how to estimate models using frequency domain data. The estimation
and validation of models using frequency domain data work the same way as they do with
time domain data. This provides a great amount of flexibility in estimation and analysis of
models using time and frequency domain as well as spectral (FRF) data. You may
simultaneously estimate models using data in both domains, compare and combine these
models. A model estimated using time domain data may be validated using spectral data
or vice-versa.

Frequency domain data cannot be used for estimation or validation of nonlinear models.

Introduction

Frequency domain experimental data are common in many applications. It could be that
the data was collected as frequency response data (frequency functions: FRF) from the
process using a frequency analyzer. It could also be that it is more practical to work with
the input's and output's Fourier transforms (FFT of time-domain data), for example to
handle periodic or band-limited data. (A band-limited continuous time signal has no
frequency components above the Nyquist frequency). In System Identification Toolbox,
frequency domain I/O data are represented the same way as time-domain data, i.e., using
iddata objects. The 'Domain' property of the object must be set to 'Frequency'.
Frequency response data are represented as complex vectors or as magnitude/phase
vectors as a function of frequency. IDFRD objects in the toolbox are used to encapsulate
FRFs, where a user specifies the complex response data and a frequency vector. Such
IDDATA or IDFRD objects (and also FRD objects of Control System Toolbox) may be used
seamlessly with any estimation routine (such as procest, tfest etc).

Inspecting Frequency Domain Data

Let us begin by loading some frequency domain data:

load demofr

This MAT-file contains frequency response data at frequencies W, with the amplitude
response AMP and the phase response PHA. Let us first have a look at the data:

subplot(211), loglog(W,AMP),title('Amplitude Response')
subplot(212), semilogx(W,PHA),title('Phase Response')
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This experimental data will now be stored as an IDFRD object. First transform amplitude
and phase to a complex valued response:

zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
gfr = idfrd(zfr,W,Ts);

Ts is the sample time of the underlying data. If the data corresponds to continuous time,
for example since the input has been band-limited, use Ts = 0.

Note: If you have the Control System Toolbox™, you could use an FRD object instead of
the IDFRD object. IDFRD has options for more information, like disturbance spectra and
uncertainty measures which are not available in FRD objects.

 Frequency Domain Identification: Estimating Models Using Frequency Domain Data

4-65



The IDFRD object gfr now contains the data, and it can be plotted and analyzed in
different ways. To view the data, we may use plot or bode:

clf
bode(gfr), legend('gfr')

Estimating Models Using Frequency Response (FRF) Data

To estimate models, you can now use gfr as a data set with all the commands of the
toolbox in a transparent fashion. The only restriction is that noise models cannot be built.
This means that for polynomial models only OE (output-error models) apply, and for state-
space models, you have to fix K = 0.
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m1 = oe(gfr,[2 2 1]) % Discrete-time Output error (transfer function) model
ms = ssest(gfr) % Continuous-time state-space model with default choice of order
mproc = procest(gfr,'P2UDZ') % 2nd-order, continuous-time model with underdamped poles
compare(gfr,m1,ms,mproc)
L = findobj(gcf,'type','legend');
L.Location = 'southwest'; % move legend to non-overlapping location

m1 =
Discrete-time OE model:  y(t) = [B(z)/F(z)]u(t) + e(t)
  B(z) = 0.9986 z^-1 + 0.4968 z^-2                    
                                                      
  F(z) = 1 - 1.499 z^-1 + 0.6998 z^-2                 
                                                      
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   nb=2   nf=2   nk=1
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using OE on frequency response data "gfr".
Fit to estimation data: 88.04%                      
FPE: 0.2512, MSE: 0.2492                            

ms =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1  -1.785   6.193
   x2  -3.417  -1.785
 
  B = 
          u1
   x1   -8.3
   x2  27.17
 
  C = 
           x1      x2
   y1  0.9848  0.3948
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  D = 
       u1
   y1   0
 
  K = 
       y1
   x1   0
   x2   0
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 8
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                
Estimated using SSEST on frequency response data "gfr".
Fit to estimation data: 88.04%                         
FPE: 0.2512, MSE: 0.2492                               

mproc =
Process model with transfer function:            
                     1+Tz*s                      
  G(s) = Kp * ---------------------- * exp(-Td*s)
              1+2*Zeta*Tw*s+(Tw*s)^2             
                                                 
         Kp = 7.4619                             
         Tw = 0.20245                            
       Zeta = 0.36242                            
         Td = 0                                  
         Tz = 0.013617                           
                                                 
Parameterization:
    'P2DUZ'
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using PROCEST on frequency response data "gfr".
Fit to estimation data: 88.03%                           
FPE: 0.2517, MSE: 0.2492                                 
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As shown above a variety of linear model types may be estimated in both continuous and
discrete time domains, using spectral data. These models may be validated using, time-
domain data. The time-domain I/O data set ztime, for example, is collected from the
same system, and can be used for validation of m1, ms and mproc:

compare(ztime,m1,ms,mproc) %validation in a different domain
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We may also look at the residuals to affirm the quality of the model using the validation
data ztime. As observed, the residuals are almost white:

resid(ztime,mproc) % Residuals plot
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Condensing Data Using SPAFDR

An important reason to work with frequency response data is that it is easy to condense
the information with little loss. The command SPAFDR allows you to compute smoothed
response data over limited frequencies, for example with logarithmic spacing. Here is an
example where the gfr data is condensed to 100 logarithmically spaced frequency
values. With a similar technique, also the original time domain data can be condensed:

sgfr = spafdr(gfr) % spectral estimation with frequency-dependent resolution
sz = spafdr(ztime); % spectral estimation using time-domain data
clf
bode(gfr,sgfr,sz)
axis([pi/100 10*pi, -272 105])
legend('gfr (raw data)','sgfr','sz','location','southwest')
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sgfr =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
Response data and disturbance spectra are available at 100 frequency points, ranging from 0.03142 rad/s to 31.42 rad/s.
 
Sample time: 0.1 seconds
Output channels: 'y1'
Input channels: 'u1'
Status:                                                 
Estimated using SPAFDR on frequency response data "gfr".
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The Bode plots show that the information in the smoothed data has been taken well care
of. Now, these data records with 100 points can very well be used for model estimation.
For example:

msm = oe(sgfr,[2 2 1]);
compare(ztime,msm,m1) % msm has the same accuracy as M1 (based on 1000 points)

Estimation Using Frequency-Domain I/O Data

It may be that the measurements are available as Fourier transforms of inputs and output.
Such frequency domain data from the system are given as the signals Y and U. In loglog
plots they look like
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Wfd = (0:500)'*10*pi/500;
subplot(211),loglog(Wfd,abs(Y)),title('The amplitude of the output')
subplot(212),loglog(Wfd,abs(U)),title('The amplitude of the input')

The frequency response data is essentially the ratio between Y and U. To collect the
frequency domain data as an IDDATA object, do as follows:

ZFD = iddata(Y, U, 'Ts', 0.1, 'Frequency', Wfd)

ZFD =

Frequency domain data set with responses at 501 frequencies,
ranging from 0 to 31.416 rad/seconds                         
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Sample time: 0.1 seconds                                     
                                                             
Outputs      Unit (if specified)                             
   y1                                                        
                                                             
Inputs       Unit (if specified)                             
   u1                                                        
                                                             

Now, again the frequency domain data set ZFD can be used as data in all estimation
routines, just as time domain data and frequency response data:

mf = ssest(ZFD)   % SSEST picks best order in 1:10 range when called this way
mfr = ssregest(ZFD) % an alternative regularized reduction based state-space estimator
clf
compare(ztime,mf,mfr,m1)

mf =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1   -1.78   6.189
   x2  -3.406   -1.78
 
  B = 
          u1
   x1   1.32
   x2  14.31
 
  C = 
              x1         x2
   y1          2  1.522e-05
 
  D = 
       u1
   y1   0
 
  K = 
       y1
   x1   0
   x2   0
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Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 8
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                              
Estimated using SSEST on frequency domain data "ZFD".
Fit to estimation data: 97.21%                       
FPE: 0.04288, MSE: 0.04186                           

mfr =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
               x1         x2         x3         x4         x5         x6
   x1      0.7607     0.3671     0.3322   -0.08998    0.01548    0.09474
   x2      -0.227    -0.4068     0.3153      0.233    -0.1859     0.2795
   x3      -0.262     0.3038     0.6404    -0.1926    0.02235     0.2056
   x4     -0.0205    -0.1497   -0.03978    -0.1501     -0.353    -0.3459
   x5     0.03394    0.01352    -0.2328    -0.4938    -0.2778   -0.09414
   x6     0.01766     0.3918    -0.1908     0.2817    -0.0382      0.141
   x7    -0.03115    -0.3107    0.02915    -0.2754     0.3491     0.5479
   x8     0.01892    0.06892   -0.09164    -0.1246    -0.4316    0.01104
   x9   -0.003668    -0.1277     0.1057    0.03904     0.1206     -0.423
   x10     0.0174    0.04442    0.02417     0.1074    0.02164    -0.2264
 
               x7         x8         x9        x10
   x1     -0.1456   0.007799    0.05833    -0.1396
   x2      -0.336   0.009541     0.2668    -0.1218
   x3      -0.233     0.1177   -0.03473    0.06575
   x4     -0.1299      0.166     0.1195    -0.2518
   x5     -0.6382    -0.2387    0.04806    0.04836
   x6     -0.2343    -0.4258     0.6103    -0.1953
   x7     -0.2887    -0.6828      0.136    -0.4042
   x8      0.5226    -0.2932  -0.007668    0.09615
   x9     -0.1939    -0.3768   -0.09409      0.507
   x10   -0.02294    -0.6167    -0.4447    -0.5943
 
  B = 
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                u1
   x1       -1.588
   x2       0.1338
   x3     -0.09661
   x4      0.02391
   x5      0.02324
   x6     -0.03246
   x7   -0.0002968
   x8      0.03677
   x9     -0.06961
   x10    0.006027
 
  C = 
             x1        x2        x3        x4        x5        x6        x7
   y1   -0.7727    0.5047     2.644    -1.195    0.5607    -1.542      1.08
 
             x8        x9       x10
   y1  -0.06959    0.9512   -0.2948
 
  D = 
       u1
   y1   0
 
  K = 
               y1
   x1      0.0306
   x2     0.01498
   x3     0.08894
   x4     0.04447
   x5    -0.04233
   x6     0.01548
   x7    -0.01024
   x8   0.0004959
   x9    0.003125
   x10   0.001307
 
Sample time: 0.1 seconds
  
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: estimate
   Number of free coefficients: 130
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:                                                 
Estimated using SSREGEST on frequency domain data "ZFD".
Fit to estimation data: 76.61% (prediction focus)       
FPE: 3.448, MSE: 2.938                                  

Transformations Between Data Representations (Time - Frequency)

Time and frequency domain input-output data sets can be transformed to either domain
by using FFT and IFFT. These commands are adapted to IDDATA objects:

dataf = fft(ztime)
datat = ifft(dataf)
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dataf =

Frequency domain data set with responses at 501 frequencies,
ranging from 0 to 31.416 rad/seconds                         
Sample time: 0.1 seconds                                     
                                                             
Outputs      Unit (if specified)                             
   y1                                                        
                                                             
Inputs       Unit (if specified)                             
   u1                                                        
                                                             

datat =

Time domain data set with 1000 samples.
Sample time: 0.1 seconds                
                                        
Outputs      Unit (if specified)        
   y1                                   
                                        
Inputs       Unit (if specified)        
   u1                                   
                                        

Time and frequency domain input-output data can be transformed to frequency response
data by SPAFDR, SPA and ETFE:

g1 = spafdr(ztime)
g2 = spafdr(ZFD);
clf;
bode(g1,g2)

g1 =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
Response data and disturbance spectra are available at 100 frequency points, ranging from 0.06283 rad/s to 31.42 rad/s.
 
Sample time: 0.1 seconds
Output channels: 'y1'
Input channels: 'u1'
Status:                                            
Estimated using SPAFDR on time domain data "ztime".
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Frequency response data can also be transformed to more smoothed data (less resolution
and less data) by SPAFDR and SPA;

g3 = spafdr(gfr);

Frequency response data can be transformed to frequency domain input-output signals by
the command IDDATA:

gfd = iddata(g3)
plot(gfd)

gfd =
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Frequency domain data set with responses at 100 frequencies,
ranging from 0.031416 to 31.416 rad/seconds                  
Sample time: 0.1 seconds                                     
                                                             
Outputs      Unit (if specified)                             
   y1                                                        
                                                             
Inputs       Unit (if specified)                             
   u1                                                        
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Using Continuous-time Frequency-domain Data to Estimate Continuous-time
Models

Time domain data can naturally only be stored and dealt with as discrete-time, sampled
data. Frequency domain data have the advantage that continuous time data can be
represented correctly. Suppose that the underlying continuous time signals have no
frequency information above the Nyquist frequency, e.g. because they are sampled fast,
or the input has no frequency component above the Nyquist frequency and that the data
has been collected from a steady-state experiment. Then the Discrete Fourier transforms
(DFT) of the data also are the Fourier transforms of the continuous time signals, at the
chosen frequencies. They can therefore be used to directly fit continuous time models.

This will be illustrated by the following example.

Consider the continuous time system:

m0 = idpoly(1,1,1,1,[1 1 1],'ts',0)

m0 =
Continuous-time OE model:  y(t) = [B(s)/F(s)]u(t) + e(t)
  B(s) = 1                                              
                                                        
  F(s) = s^2 + s + 1                                    
                                                        
Parameterization:
   Polynomial orders:   nb=1   nf=2   nk=0
   Number of free coefficients: 3
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Load data that comes from steady-state simulation of this system using periodic inputs.
The collected data was converted into frequency domain and saved in CTFDData.mat file.

load CTFDData.mat dataf % load continuous-time frequency-domain data.

Look at the data:
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plot(dataf)
set(gca,'XLim',[0.1 10])

Using dataf for estimation will by default give continuous time models: State-space:

m4 = ssest(dataf,2); %Second order continuous-time model

For a polynomial model with nb = 2 numerator coefficient and nf = 2 estimated
denominator coefficients use:

nb = 2;
nf = 2;
m5 = oe(dataf,[nb nf])
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m5 =
Continuous-time OE model:  y(t) = [B(s)/F(s)]u(t) + e(t)
  B(s) = -0.01814 s + 1.008                             
                                                        
  F(s) = s^2 + 1.001 s + 0.9967                         
                                                        
Parameterization:
   Polynomial orders:   nb=2   nf=2   nk=0
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using OE on frequency domain data "dataf".
Fit to estimation data: 70.15%                      
FPE: 0.00491, MSE: 0.00468                          

Compare step responses with uncertainty of the true system m0 and the models m4 and
m5. The confidence intervals are shown with patches in the plot.

clf
h = stepplot(m0,m4,m5);
showConfidence(h,1)
legend('show','location','southeast')

4 Linear Model Identification

4-84



Although it was not necessary in this case, it is generally advised to focus the fit to a
limited frequency band (low pass filter the data) when estimating using continuous time
data. The system has a bandwidth of about 3 rad/s, and was excited by sinusoids up to 6.2
rad/s. A reasonable frequency range to focus the fit to is then [0 7] rad/s:

m6 = ssest(dataf,2,ssestOptions('WeightingFilter',[0 7])) % state space model

m6 =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
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            x1       x2
   x1  -0.5011    1.001
   x2  -0.7446  -0.5011
 
  B = 
             u1
   x1  -0.01706
   x2     1.016
 
  C = 
               x1          x2
   y1       1.001  -0.0005347
 
  D = 
       u1
   y1   0
 
  K = 
       y1
   x1   0
   x2   0
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 8
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                
Estimated using SSEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)      
FPE: 0.004832, MSE: 0.003631                           

m7 = oe(dataf,[1 2],oeOptions('WeightingFilter',[0 7])) % polynomial model of Output Error structure

m7 =
Continuous-time OE model:  y(t) = [B(s)/F(s)]u(t) + e(t)
  B(s) = 0.9861                                         
                                                        
  F(s) = s^2 + 0.9498 s + 0.9704                        
                                                        
Parameterization:
   Polynomial orders:   nb=1   nf=2   nk=0
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   Number of free coefficients: 3
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using OE on frequency domain data "dataf".
Fit to estimation data: 86.81% (data prefiltered)   
FPE: 0.004902, MSE: 0.003752                        

opt = procestOptions('SearchMethod','lsqnonlin',...
   'WeightingFilter',[0 7]); % Requires Optimization Toolbox(TM)
m8 = procest(dataf,'P2UZ',opt)  % process model with underdamped poles

m8 =
Process model with transfer function:
                     1+Tz*s          
  G(s) = Kp * ---------------------- 
              1+2*Zeta*Tw*s+(Tw*s)^2 
                                     
         Kp = 1.0124                 
         Tw = 1.0019                 
       Zeta = 0.5021                 
         Tz = -0.017474              
                                     
Parameterization:
    'P2UZ'
   Number of free coefficients: 4
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using PROCEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)        
FPE: 0.004832, MSE: 0.003631                             

opt = tfestOptions('SearchMethod','lsqnonlin',...
   'WeightingFilter',[0 7]); % Requires Optimization Toolbox
m9 = tfest(dataf,2,opt) % transfer function with 2 poles

m9 =
 
  From input "u1" to output "y1":
  -0.01662 s + 1.007
  ------------------
   s^2 + s + 0.995
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Continuous-time identified transfer function.

Parameterization:
   Number of poles: 2   Number of zeros: 1
   Number of free coefficients: 4
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                
Estimated using TFEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)      
FPE: 0.00491, MSE: 0.003629                            

h = stepplot(m0,m6,m7,m8,m9);
showConfidence(h,1)
legend('show')
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Conclusions

We saw how time, frequency and spectral data can seamlessly be used to estimate a
variety of linear models in both continuous and discrete time domains. The models may be
validated and compared in domains different from the ones they were estimated in. The
data formats (time, frequency and spectrum) are interconvertible, using methods such as
fft, ifft, spafdr and spa. Furthermore, direct, continuous-time estimation is
achievable by using tfest, ssest and procest estimation routines. The seamless use of
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data in any domain for estimation and analysis is an important feature of System
Identification Toolbox.

See Also
oe | procest | ssest | tfest

More About
• “Estimating Models Using Frequency-Domain Data”
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Building Structured and User-Defined Models Using
System Identification Toolbox™

This example shows how to estimate parameters in user-defined model structures. Such
structures are specified by IDGREY (linear state-space) or IDNLGREY (nonlinear state-
space) models. We shall investigate how to assign structure, fix parameters and create
dependencies among them.

Experiment Data

We shall investigate data produced by a (simulated) dc-motor. We first load the data:

load dcmdata
who

Your variables are:

text  u     y     

The matrix y contains the two outputs: y1 is the angular position of the motor shaft and
y2 is the angular velocity. There are 400 data samples and the sample time is 0.1 seconds.
The input is contained in the vector u. It is the input voltage to the motor.

z = iddata(y,u,0.1); % The IDDATA object
z.InputName = 'Voltage';
z.OutputName = {'Angle';'AngVel'};
plot(z(:,1,:))
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Figure: Measurement Data: Voltage to Angle

plot(z(:,2,:))
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Figure: Measurement Data: Voltage to Angle

Model Structure Selection

     d/dt x = A x + B u + K e
        y   = C x + D u + e

We shall build a model of the dc-motor. The dynamics of the motor is well known. If we
choose x1 as the angular position and x2 as the angular velocity it is easy to set up a
state-space model of the following character neglecting disturbances: (see Example 4.1 in
Ljung(1999):
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         | 0     1  |      | 0   |
d/dt x = |          | x  + |     | u
         | 0   -th1 |      | th2 |

        | 1  0 |
   y =  |      | x
        | 0  1 |

The parameter th1 is here the inverse time-constant of the motor and th2 is such that
th2/th1 is the static gain from input to the angular velocity. (See Ljung(1987) for how
th1 and th2 relate to the physical parameters of the motor). We shall estimate these two
parameters from the observed data. The model structure (parameterized state space)
described above can be represented in MATLAB® using IDSS and IDGREY models. These
models let you perform estimation of parameters using experimental data.

Specification of a Nominal (Initial) Model

If we guess that th1=1 and th2 = 0.28 we obtain the nominal or initial model

A = [0 1; 0 -1]; % initial guess for A(2,2) is -1
B = [0; 0.28]; % initial guess for B(2) is 0.28
C = eye(2);
D = zeros(2,1);

and we package this into an IDSS model object:

ms = idss(A,B,C,D);

The model is characterized by its matrices, their values, which elements are free (to be
estimated) and upper and lower limits of those:

ms.Structure.a

 
ans =
 
       Name: 'A'
      Value: [2x2 double]
    Minimum: [2x2 double]
    Maximum: [2x2 double]
       Free: [2x2 logical]
      Scale: [2x2 double]
       Info: [2x2 struct]
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1x1 param.Continuous
 

ms.Structure.a.Value
ms.Structure.a.Free

ans =

     0     1
     0    -1

ans =

  2x2 logical array

   1   1
   1   1

Specification of Free (Independent) Parameters Using IDSS Models

So we should now mark that it is only A(2,2) and B(2,1) that are free parameters to be
estimated.

ms.Structure.a.Free = [0 0; 0 1];
ms.Structure.b.Free = [0; 1];
ms.Structure.c.Free = 0; % scalar expansion used
ms.Structure.d.Free = 0;
ms.Ts = 0;  % This defines the model to be continuous

The Initial Model

ms % Initial model

ms =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
       x1  x2
   x1   0   1
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   x2   0  -1
 
  B = 
         u1
   x1     0
   x2  0.28
 
  C = 
       x1  x2
   y1   1   0
   y2   0   1
 
  D = 
       u1
   y1   0
   y2   0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Estimation of Free Parameters of the IDSS Model

The prediction error (maximum likelihood) estimate of the parameters is now computed
by:

dcmodel = ssest(z,ms,ssestOptions('Display','on'));
dcmodel

dcmodel =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
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  A = 
           x1      x2
   x1       0       1
   x2       0  -4.013
 
  B = 
       Voltage
   x1        0
   x2    1.002
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                       
Estimated using SSEST on time domain data "z".
Fit to estimation data: [98.35;84.42]%        
FPE: 0.001071, MSE: 0.1192                    

The estimated values of the parameters are quite close to those used when the data were
simulated (-4 and 1). To evaluate the model's quality we can simulate the model with the
actual input by and compare it with the actual output.

compare(z,dcmodel);
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We can now, for example plot zeros and poles and their uncertainty regions. We will draw
the regions corresponding to 3 standard deviations, since the model is quite accurate.
Note that the pole at the origin is absolutely certain, since it is part of the model
structure; the integrator from angular velocity to position.

clf
showConfidence(iopzplot(dcmodel),3)
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Now, we may make various modifications. The 1,2-element of the A-matrix (fixed to 1)
tells us that x2 is the derivative of x1. Suppose that the sensors are not calibrated, so
that there may be an unknown proportionality constant. To include the estimation of such
a constant we just "let loose" A(1,2) and re-estimate:

dcmodel2 = dcmodel;
dcmodel2.Structure.a.Free(1,2) = 1;
dcmodel2 = pem(z,dcmodel2,ssestOptions('Display','on'));

The resulting model is

dcmodel2

dcmodel2 =
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  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0  0.9975
   x2       0  -4.011
 
  B = 
       Voltage
   x1        0
   x2    1.004
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 3
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                     
Estimated using PEM on time domain data "z".
Fit to estimation data: [98.35;84.42]%      
FPE: 0.001077, MSE: 0.1192                  

We find that the estimated A(1,2) is close to 1. To compare the two model we use the
compare command:

compare(z,dcmodel,dcmodel2)
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Specification of Models with Coupled Parameters Using IDGREY Objects

Suppose that we accurately know the static gain of the dc-motor (from input voltage to
angular velocity, e.g. from a previous step-response experiment. If the static gain is G, and
the time constant of the motor is t, then the state-space model becomes

          |0     1|    |  0  |
d/dt x =  |       |x + |     | u
          |0  -1/t|    | G/t |

          |1   0|
   y   =  |     | x
          |0   1|
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With G known, there is a dependence between the entries in the different matrices. In
order to describe that, the earlier used way with "Free" parameters will not be sufficient.
We thus have to write a MATLAB file which produces the A, B, C, and D, and optionally
also the K and X0 matrices as outputs, for each given parameter vector as input. It also
takes auxiliary arguments as inputs, so that the user can change certain things in the
model structure, without having to edit the file. In this case we let the known static gain G
be entered as such an argument. The file that has been written has the name
'motorDynamics.m'.

type motorDynamics

function [A,B,C,D,K,X0] = motorDynamics(par,ts,aux)
%MOTORDYNAMICS ODE file representing the dynamics of a motor.
%
%   [A,B,C,D,K,X0] = motorDynamics(Tau,Ts,G)
%   returns the State Space matrices of the DC-motor with
%   time-constant Tau (Tau = par) and known static gain G. The sample
%   time is Ts.
%
%   This file returns continuous-time representation if input argument Ts
%   is zero. If Ts>0, a discrete-time representation is returned. To make
%   the IDGREY model that uses this file aware of this flexibility, set the
%   value of Structure.FcnType property to 'cd'. This flexibility is useful
%   for conversion between continuous and discrete domains required for
%   estimation and simulation.
%
%   See also IDGREY, IDDEMO7.

%   L. Ljung
%   Copyright 1986-2015 The MathWorks, Inc.

t = par(1);
G = aux(1);

A = [0 1;0 -1/t];
B = [0;G/t];
C = eye(2);
D = [0;0];
K = zeros(2);
X0 = [0;0];
if ts>0 % Sample the model with sample time Ts
   s = expm([[A B]*ts; zeros(1,3)]);
   A = s(1:2,1:2);

4 Linear Model Identification

4-102



   B = s(1:2,3);
end

We now create an IDGREY model object corresponding to this model structure: The
assumed time constant will be

par_guess = 1;

We also give the value 0.25 to the auxiliary variable G (gain) and sample time.

aux = 0.25;
dcmm = idgrey('motorDynamics',par_guess,'cd',aux,0);

The time constant is now estimated by

dcmm = greyest(z,dcmm,greyestOptions('Display','on'));

We have thus now estimated the time constant of the motor directly. Its value is in good
agreement with the previous estimate.

dcmm

dcmm =
  Continuous-time linear grey box model defined by "motorDynamics" function:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2       0  -4.006
 
  B = 
       Voltage
   x1        0
   x2    1.001
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
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   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
  Model parameters:
   Par1 = 0.2496
 
Parameterization:
   ODE Function: motorDynamics
   (parameterizes both continuous- and discrete-time equations)
   Disturbance component: parameterized by the ODE function
   Initial state: parameterized by the ODE function
   Number of free coefficients: 1
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                         
Estimated using GREYEST on time domain data "z".
Fit to estimation data: [98.35;84.42]%          
FPE: 0.00107, MSE: 0.1193                       

With this model we can now proceed to test various aspects as before. The syntax of all
the commands is identical to the previous case. For example, we can compare the idgrey
model with the other state-space model:

compare(z,dcmm,dcmodel)
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They are clearly very close.

Estimating Multivariate ARX Models

The state-space part of the toolbox also handles multivariate (several outputs) ARX
models. By a multivariate ARX-model we mean the following:

A(q) y(t) = B(q) u(t) + e(t)

Here A(q) is a ny | ny matrix whose entries are polynomials in the delay operator 1/q. The
k-l element is denoted by:
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where:

It is thus a polynomial in 1/q of degree nakl.

Similarly B(q) is a ny | nu matrix, whose kj-element is:

There is thus a delay of nkkj from input number j to output number k. The most common
way to create those would be to use the ARX-command. The orders are specified as: nn =
[na nb nk] with na being a ny-by-ny matrix whose kj-entry is nakj; nb and nk are
defined similarly.

Let's test some ARX-models on the dc-data. First we could simply build a general second
order model:

dcarx1 = arx(z,'na',[2,2;2,2],'nb',[2;2],'nk',[1;1])

dcarx1 =
Discrete-time ARX model:                                                   
  Model for output "Angle": A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + e_1(t)
    A(z) = 1 - 0.5545 z^-1 - 0.4454 z^-2                                   
                                                                           
    A_2(z) = -0.03548 z^-1 - 0.06405 z^-2                                  
                                                                           
    B(z) = 0.004243 z^-1 + 0.006589 z^-2                                   
                                                                           
  Model for output "AngVel": A(z)y_2(t) = - A_i(z)y_i(t) + B(z)u(t) + e_2(t)
    A(z) = 1 - 0.2005 z^-1 - 0.2924 z^-2                                    
                                                                            
    A_1(z) = 0.01849 z^-1 - 0.01937 z^-2                                    
                                                                            
    B(z) = 0.08642 z^-1 + 0.03877 z^-2                                      
                                                                            
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=[2 2;2 2]   nb=[2;2]   nk=[1;1]
   Number of free coefficients: 12
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:                                                  
Estimated using ARX on time domain data "z".             
Fit to estimation data: [97.87;83.44]% (prediction focus)
FPE: 0.002157, MSE: 0.1398                               

The result, dcarx1, is stored as an IDPOLY model, and all previous commands apply. We
could for example explicitly list the ARX-polynomials by:

dcarx1.a

ans =

  2x2 cell array

    {1x3 double}    {1x3 double}
    {1x3 double}    {1x3 double}

as cell arrays where e.g. the {1,2} element of dcarx1.a is the polynomial A(1,2) described
earlier, relating y2 to y1.

We could also test a structure, where we know that y1 is obtained by filtering y2 through
a first order filter. (The angle is the integral of the angular velocity). We could then also
postulate a first order dynamics from input to output number 2:

na = [1 1; 0 1];
nb = [0 ; 1];
nk = [1 ; 1];
dcarx2 = arx(z,[na nb nk])

dcarx2 =
Discrete-time ARX model:                                                   
  Model for output "Angle": A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + e_1(t)
    A(z) = 1 - 0.9992 z^-1                                                 
                                                                           
    A_2(z) = -0.09595 z^-1                                                 
                                                                           
    B(z) = 0                                                               
                                                                           
  Model for output "AngVel": A(z)y_2(t) = B(z)u(t) + e_2(t)
    A(z) = 1 - 0.6254 z^-1                                 
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    B(z) = 0.08973 z^-1                                    
                                                           
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=[1 1;0 1]   nb=[0;1]   nk=[1;1]
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using ARX on time domain data "z".             
Fit to estimation data: [97.52;81.46]% (prediction focus)
FPE: 0.003452, MSE: 0.177                                

To compare the different models obtained we use

compare(z,dcmodel,dcmm,dcarx2)
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Finally, we could compare the bodeplots obtained from the input to output one for the
different models by using bode: First output:

dcmm2 = idss(dcmm); % convert to IDSS for subreferencing
bode(dcmodel(1,1),'r',dcmm2(1,1),'b',dcarx2(1,1),'g')
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Second output:

bode(dcmodel(2,1),'r',dcmm2(2,1),'b',dcarx2(2,1),'g')
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The two first models are more or less in exact agreement. The ARX-models are not so
good, due to the bias caused by the non-white equation error noise. (We had white
measurement noise in the simulations).

Conclusions

Estimation of models with pre-selected structures can be performed using System
Identification toolbox. In state-space form, parameters may be fixed to their known values
or constrained to lie within a prescribed range. If relationship between parameters or
other constraints need to be specified, IDGREY objects may be used. IDGREY models
evaluate a user-specified MATLAB file for estimating state-space system parameters.
Multi-variate ARX models offer another option for quickly estimating multi-output models
with user-specified structure.
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Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.
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Identifying Process Models

• “What Is a Process Model?” on page 5-2
• “Data Supported by Process Models” on page 5-4
• “Estimate Process Models Using the App” on page 5-5
• “Estimate Process Models at the Command Line” on page 5-11
• “Building and Estimating Process Models Using System Identification Toolbox™”

on page 5-17
• “Process Model Structure Specification” on page 5-43
• “Estimating Multiple-Input, Multi-Output Process Models” on page 5-45
• “Disturbance Model Structure for Process Models” on page 5-46
• “Specifying Initial Conditions for Iterative Estimation Algorithms” on page 5-48
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What Is a Process Model?
The structure of a process model is a simple continuous-time transfer function that
describes linear system dynamics in terms of one or more of the following elements:

• Static gain Kp.
•

One or more time constants Tpk. For complex poles, the time constant is called T
w

—

equal to the inverse of the natural frequency—and the damping coefficient is z
(zeta).

• Process zero Tz.
• Possible time delay Td before the system output responds to the input (dead time).
• Possible enforced integration.

Process models are popular for describing system dynamics in many industries and apply
to various production environments. The advantages of these models are that they are
simple, support transport delay estimation, and the model coefficients have an easy
interpretation as poles and zeros.

You can create different model structures by varying the number of poles, adding an
integrator, or adding or removing a time delay or a zero. You can specify a first-, second-,
or third-order model, and the poles can be real or complex (underdamped modes). For
more information, see “Process Model Structure Specification” on page 5-43.

For example, the following model structure is a first-order continuous-time process model,
where K is the static gain, Tp1 is a time constant, and Td is the input-to-output delay:

G s
K

sT
e

p

p

sTd( ) =

+

-

1 1

Such that, Y s G s U s E s( ) ( ) ( ) ( )= + , where Y(s), U(s), and E(s) represent the Laplace
transforms of the output, input, and output error, respectively. The output error, e(t), is
white Gaussian noise with variance λ. You can account for colored noise at the output by

adding a disturbance model, H(s), such that Y s G s U s H s E s( ) ( ) ( ) ( ) ( )= + . For more
information, see the NoiseTF property of idproc.
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A multi-input multi-output (MIMO) process model contains a SISO process model
corresponding to each input-output pair in the system. For example, for a two-input, two-
output process model:

Y s G s U s G s U s E s

Y s G s U s G s

1 11 1 12 2 1

2 21 1 22

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

= + +

= + )) ( ) ( )U s E s2 2+

Where, Gij(s) is the SISO process model between the ith output and the jth input. E1(s) and
E2(s) are the Laplace transforms of the two output errors.

See Also

Related Examples
• “Estimate Process Models Using the App” on page 5-5
• “Estimate Process Models at the Command Line” on page 5-11
• “Data Supported by Process Models” on page 5-4
• “Process Model Structure Specification” on page 5-43
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Data Supported by Process Models
You can estimate low-order (up to third order), continuous-time transfer functions using
regularly sampled time- or frequency-domain iddata or idfrd data objects. The
frequency-domain data may have a zero sample time.

You must import your data into the MATLAB workspace, as described in “Data
Preparation”.

See Also

Related Examples
• “Estimate Process Models Using the App” on page 5-5
• “Estimate Process Models at the Command Line” on page 5-11

More About
• “What Is a Process Model?” on page 5-2
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Estimate Process Models Using the App
Before you can perform this task, you must have

• Imported data into the System Identification app. See “Import Time-Domain Data into
the App” on page 2-16. For supported data formats, see “Data Supported by Process
Models” on page 5-4.

• Performed any required data preprocessing operations. If you need to model nonzero
offsets, such as when model contains integration behavior, do not detrend your data.
In other cases, to improve the accuracy of your model, you should detrend your data.
See “Ways to Prepare Data for System Identification” on page 2-6.

1 In the System Identification app, select Estimate > Process models to open the
Process Models dialog box.

To learn more about the options in the dialog box, click Help.
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2 If your model contains multiple inputs or multiple outputs, you can specify whether to
estimate the same transfer function for all input-output pairs, or a different transfer
function for each. Select the input and output channels in the Input and Output
fields. The fields only appears when you have multiple inputs or outputs. For more
information, see “Estimating Multiple-Input, Multi-Output Process Models” on page
5-45.

3 In the Model Transfer Function area, specify the model structure using the
following options:

• Under Poles, select the number of poles, and then select All real or
Underdamped.

Note You need at least two poles to allow underdamped modes (complex-
conjugate pair).

• Select the Zero check box to include a zero, which is a numerator term other than
a constant, or clear the check box to exclude the zero.

• Select the Delay check box to include a delay, or clear the check box to exclude
the delay.

• Select the Integrator check box to include an integrator (self-regulating process),
or clear the check box to exclude the integrator.

The Parameter area shows as many active parameters as you included in the model
structure.

Note By default, the model Name is set to the acronym that reflects the model
structure, as described in “Process Model Structure Specification” on page 5-43.

4 In the Initial Guess area, select Auto-selected to calculate the initial parameter
values for the estimation. The Initial Guess column in the Parameter table displays
Auto. If you do not have a good guess for the parameter values, Auto works better
than entering an ad hoc value.
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5 (Optional) If you approximately know a parameter value, enter this value in the
Initial Guess column of the Parameter table, and press the Enter key. The
estimation algorithm uses this value as a starting point. If you know a parameter
value exactly, enter this value in the Initial Guess column, and press the Enter key.
Select the corresponding Known check box in the table to fix its value.

If you know the range of possible values for a parameter, enter these values into the
corresponding Bounds field to help the estimation algorithm. Press the Enter key
after you specify the values.

For example, the following figure shows that the delay value Td is fixed at 2 s and is
not estimated.
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6 In the Disturbance Model drop-down list, select one of the available options. For
more information about each option, see “Disturbance Model Structure for Process
Models” on page 5-46.

7 In the Focus drop-down list, select how to weigh the relative importance of the fit at
different frequencies. For more information about each option, see “Assigning
Estimation Weightings” on page 5-9.

8 In the Initial condition drop-down list, specify how you want the algorithm to treat
initial states. For more information about the available options, see “Specifying Initial
Conditions for Iterative Estimation Algorithms” on page 5-48.

Tip If you get a bad fit, you might try setting a specific method for handling initial
states, rather than choosing it automatically.

9 In the Covariance drop-down list, select Estimate if you want the algorithm to
compute parameter uncertainties. Effects of such uncertainties are displayed on plots
as model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty computation might
reduce computation time for complex models and large data sets.

10 In the Model Name field, edit the name of the model or keep the default. The name
of the model should be unique in the Model Board.
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11 To view the estimation progress, select the Display Progress check box. This opens
a progress viewer window in which the estimation progress is reported.

12 Click Regularization to obtain regularized estimates of model parameters. Specify
the regularization constants in the Regularization Options dialog box. To learn more,
see “Regularized Estimates of Model Parameters” on page 1-48.

13 Click Estimate to add this model to the Model Board in the System Identification
app.

14 To stop the search and save the results after the current iteration has been
completed, click Stop Iterations. To continue iterations from the current model,
click the Continue button to assign current parameter values as initial guesses for
the next search.

Assigning Estimation Weightings
You can specify how the estimation algorithm weighs the fit at various frequencies. In the
app, set Focus to one of the following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges. Corresponds to
minimizing one-step-ahead prediction, which typically favors the fit over a short time
interval. Optimized for output prediction applications.

• Simulation — Uses the input spectrum to weigh the relative importance of the fit in
a specific frequency range. Does not use the noise model to weigh the relative
importance of how closely to fit the data in various frequency ranges. Optimized for
output simulation applications.

• Stability — Behaves the same way as the Prediction option, but also forces the
model to be stable. For more information about model stability, see “Unstable Models”
on page 17-118.

• Filter — Specify a custom filter to open the Estimation Focus dialog box, where you
can enter a filter, as described in “Simple Passband Filter” on page 2-132 or “Defining
a Custom Filter” on page 2-132. This prefiltering applies only for estimating the
dynamics from input to output. The disturbance model is determined from the
estimation data.
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Next Steps
• Validate the model by selecting the appropriate check box in the Model Views area of

the System Identification app. For more information about validating models, see
“Validating Models After Estimation” on page 17-3.

• Refine the model by clicking the Value —> Initial Guess button to assign current
parameter values as initial guesses for the next search, edit the Name field, and click
Estimate.

• Export the model to the MATLAB workspace for further analysis by dragging it to the
To Workspace rectangle in the System Identification app.

See Also

Related Examples
• “Identify Low-Order Transfer Functions (Process Models) Using System

Identification App”
• “Estimate Process Models at the Command Line” on page 5-11
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Estimate Process Models at the Command Line

Prerequisites
Before you can perform this task, you must have

• Input-output data as an iddata object or frequency response data as frd or idfrd
objects. See “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-50. For supported data formats, see “Data Supported by Process Models” on
page 5-4.

• Performed any required data preprocessing operations. When working with time
domain data, if you need to model nonzero offsets, such as when model contains
integration behavior, do not detrend your data. In other cases, to improve the accuracy
of your model, you should detrend your data. See “Ways to Prepare Data for System
Identification” on page 2-6.

Using procest to Estimate Process Models
You can estimate process models using the iterative estimation method procest that
minimizes the prediction errors to obtain maximum likelihood estimates. The resulting
models are stored as idproc model objects.

You can use the following general syntax to both configure and estimate process models:

m = procest(data,mod_struc,opt)

data is the estimation data and mod_struc is one of the following:

• A character vector that represents the process model structure, as described in
“Process Model Structure Specification” on page 5-43.

• A template idproc model. opt is an option set for configuring the estimation of the
process model, such as handling of initial conditions, input offset and numerical search
method.

Tip You do not need to construct the model object using idproc before estimation unless
you want to specify initial parameter guesses, minimum/maximum bounds, or fixed
parameter values, as described in “Estimate Process Models with Fixed Parameters” on
page 5-14.
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For more information about validating a process model, see “Validating Models After
Estimation” on page 17-3.

You can use procest to refine parameter estimates of an existing process model, as
described in “Refine Linear Parametric Models” on page 4-6.

For detailed information, see procest and idproc.

Estimate Process Models with Free Parameters
This example shows how to estimate the parameters of a first-order process model:

This process has two inputs and the response from each input is estimated by a first-order
process model. All parameters are free to vary.

Load estimation data.

load co2data

Specify known sample time of 0.5 min.

Ts = 0.5;

Split data set into estimation data ze and validation data zv.

ze = iddata(Output_exp1,Input_exp1,Ts,...
                        'TimeUnit','min');
zv = iddata(Output_exp2,Input_exp2,Ts,...
                        'TimeUnit','min');

Estimate model with one pole, a delay, and a first-order disturbance component. The data
contains known offsets. Specify them using the InputOffset and OutputOffset
options.

opt = procestOptions;
opt.InputOffset = [170;50];
opt.OutputOffset = -45;
opt.Display = 'on';
opt.DisturbanceModel = 'arma1';
m = procest(ze,'p1d',opt)
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m =
Process model with 2 inputs: y = G11(s)u1 + G12(s)u2        
  From input "u1" to output "y1":                           
             Kp                                             
  G11(s) = ---------- * exp(-Td*s)                          
            1+Tp1*s                                         
                                                            
        Kp = 2.6553                                         
       Tp1 = 0.15515                                        
        Td = 2.3175                                         
                                                            
  From input "u2" to output "y1":                           
             Kp                                             
  G12(s) = ---------- * exp(-Td*s)                          
            1+Tp1*s                                         
                                                            
        Kp = 9.9756                                         
       Tp1 = 2.0653                                         
        Td = 4.9195                                         
                                                            
  An additive ARMA disturbance model exists for output "y1":
      y = G u + (C/D)e                                      
                                                            
      C(s) = s + 2.676                                      
      D(s) = s + 0.6228                                     
                                                            
Parameterization:
    'P1D'    'P1D'
   Number of free coefficients: 8
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using PROCEST on time domain data "ze".
Fit to estimation data: 91.07% (prediction focus)
FPE: 2.431, MSE: 2.412                           

Use dot notation to get the value of any model parameter. For example, get the value of
dc gain parameter Kp .

m.Kp

ans = 1×2

    2.6553    9.9756
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Estimate Process Models with Fixed Parameters
This example shows how to estimate a process model with fixed parameters.

When you know the values of certain parameters in the model and want to estimate only
the values you do not know, you must specify the fixed parameters after creating the
idproc model object. Use the following commands to prepare the data and construct a
process model with one pole and a delay:

Load estimation data.

load co2data

Specify known sample time is 0.5 minutes.

Ts = 0.5;

Split data set into estimation data ze and validation data zv.

ze = iddata(Output_exp1,Input_exp1,Ts,...
                        'TimeUnit','min');
zv = iddata(Output_exp2,Input_exp2,Ts,...
                        'TimeUnit','min');
mod = idproc({'p1d','p1d'},'TimeUnit','min')

mod =
Process model with 2 inputs: y = G11(s)u1 + G12(s)u2
  From input 1 to output 1:                         
             Kp                                     
  G11(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
                                                    
        Kp = NaN                                    
       Tp1 = NaN                                    
        Td = NaN                                    
                                                    
  From input 2 to output 1:                         
             Kp                                     
  G12(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
                                                    
        Kp = NaN                                    
       Tp1 = NaN                                    
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        Td = NaN                                    
                                                    
Parameterization:
    'P1D'    'P1D'
   Number of free coefficients: 6
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The model parameters Kp , Tp1 , and Td are assigned NaN values, which means that the
parameters have not yet been estimated from the data.

Use the Structure model property to specify the initial guesses for unknown
parameters, minimum/maximum parameter bounds and fix known parameters.

Set the value of Kp for the second transfer function to 10 and specify it as a fixed
parameter. Initialize the delay values for the two transfer functions to 2 and 5 minutes,
respectively. Specify them as free estimation parameters.

mod.Structure(2).Kp.Value = 10;
mod.Structure(2).Kp.Free = false;

mod.Structure(1).Tp1.Value = 2;
mod.Structure(2).Td.Value = 5;

Estimate Tp1 and Td only.

mod_proc = procest(ze,mod)

mod_proc =
Process model with 2 inputs: y = G11(s)u1 + G12(s)u2
  From input "u1" to output "y1":                   
             Kp                                     
  G11(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
                                                    
        Kp = -3.2213                                
       Tp1 = 2.1707                                 
        Td = 4.44                                   
                                                    
  From input "u2" to output "y1":                   
             Kp                                     
  G12(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
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        Kp = 10                                     
       Tp1 = 2.0764                                 
        Td = 4.5205                                 
                                                    
Parameterization:
    'P1D'    'P1D'
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using PROCEST on time domain data "ze".
Fit to estimation data: 77.44%                   
FPE: 15.5, MSE: 15.39                            

In this case, the value of Kp is fixed, but Tp1 and Td are estimated.

See Also
idproc | procest

Related Examples
• “Building and Estimating Process Models Using System Identification Toolbox™” on

page 5-17
• “Estimate Process Models Using the App” on page 5-5
• “Loss Function and Model Quality Metrics” on page 1-64
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Building and Estimating Process Models Using System
Identification Toolbox™

This example shows how to build simple process models using System Identification
Toolbox™. Techniques for creating these models and estimating their parameters using
experimental data is described. This example requires Simulink®.

Introduction

This example illustrates how to build simple process models often used in process
industry. Simple, low-order continuous-time transfer functions are usually employed to
describe process behavior. Such models are described by IDPROC objects which
represent the transfer function in a pole-zero-gain form.

Process models are of the basic type 'Static Gain + Time Constant + Time Delay'. They
may be represented as:

or as an integrating process:

where the user can determine the number of real poles (0, 1, 2 or 3), as well as the
presence of a zero in the numerator, the presence of an integrator term (1/s) and the
presence of a time delay (Td). In addition, an underdamped (complex) pair of poles may
replace the real poles.

Representation of Process Models using IDPROC Objects

IDPROC objects define process models by using the letters P (for process model), D (for
time delay), Z (for a zero) and I (for integrator). An integer will denote the number of
poles. The models are generated by calling idproc with a character vector created using
these letters.

For example:
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idproc('P1') % transfer function with only one pole (no zeros or delay)
idproc('P2DIZ') % model with 2 poles, delay integrator and delay
idproc('P0ID') % model with no poles, but an integrator and a delay

ans =
Process model with transfer function:
             Kp                      
  G(s) = ----------                  
          1+Tp1*s                    
                                     
        Kp = NaN                     
       Tp1 = NaN                     
                                     
Parameterization:
    'P1'
   Number of free coefficients: 2
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

ans =
Process model with transfer function:         
                   1+Tz*s                     
  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = NaN                             
        Tp1 = NaN                             
        Tp2 = NaN                             
         Td = NaN                             
         Tz = NaN                             
                                              
Parameterization:
    'P2DIZ'
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

ans =
Process model with transfer function:
          Kp                         
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  G(s) = --- * exp(-Td*s)            
          s                          
                                     
        Kp = NaN                     
        Td = NaN                     
                                     
Parameterization:
    'P0DI'
   Number of free coefficients: 2
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Creating an IDPROC Object (using a Simulink® Model as Example)

Consider the system described by the following SIMULINK model:

open_system('iddempr1')
set_param('iddempr1/Random Number','seed','0')

The red part is the system, the blue part is the controller and the reference signal is a
swept sinusoid (a chirp signal). The data sample time is set to 0.5 seconds. As observed,
the system is a continuous-time transfer function, and can hence be described using
model objects in System Identification Toolbox, such as idss, idpoly or idproc.

Let us describe the system using idpoly and idproc objects. Using idpoly object, the
system may be described as:
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m0 = idpoly(1,0.1,1,1,[1 0.5],'Ts',0,'InputDelay',1.57,'NoiseVariance',0.01);

The IDPOLY form used above is useful for describing transfer functions of arbitrary
orders. Since the system we are considering here is quite simple (one pole and no zeros),
and is continuous-time, we may use the simpler IDPROC object to capture its dynamics:

m0p = idproc('p1d','Kp',0.2,'Tp1',2,'Td',1.57) % one pole+delay, with initial values
                                               % for gain, pole and delay specified.

m0p =
Process model with transfer function:
             Kp                      
  G(s) = ---------- * exp(-Td*s)     
          1+Tp1*s                    
                                     
        Kp = 0.2                     
       Tp1 = 2                       
        Td = 1.57                    
                                     
Parameterization:
    'P1D'
   Number of free coefficients: 3
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Estimating Parameters of IDPROC Models

Once a system is described by a model object, such as IDPROC, it may be used for
estimation of its parameters using measurement data. As an example, we consider the
problem of estimation of parameters of the Simulink model's system (red portion) using
simulation data. We begin by acquiring data for estimation:

sim('iddempr1')
dat1e = iddata(y,u,0.5); % The IDDATA object for storing measurement data

Let us look at the data:

plot(dat1e)
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We can identify a process model using procest command, by providing the same
structure information specified to create IDPROC models. For example, the 1-pole+delay
model may be estimated by calling procest as follows:

m1 = procest(dat1e,'p1d'); % estimation of idproc model using data 'dat1e'.

% Check the result of estimation:
m1

m1 =
Process model with transfer function:
             Kp                      
  G(s) = ---------- * exp(-Td*s)     
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          1+Tp1*s                    
                                     
        Kp = 0.20045                 
       Tp1 = 2.0431                  
        Td = 1.499                   
                                     
Parameterization:
    'P1D'
   Number of free coefficients: 3
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat1e".
Fit to estimation data: 87.34%                      
FPE: 0.01069, MSE: 0.01062                          

To get information about uncertainties, use

present(m1)

                                                                  
m1 =                                                              
Process model with transfer function:                             
             Kp                                                   
  G(s) = ---------- * exp(-Td*s)                                  
          1+Tp1*s                                                 
                                                                  
        Kp = 0.20045 +/- 0.00077275                               
       Tp1 = 2.0431 +/- 0.061216                                  
        Td = 1.499 +/- 0.040854                                   
                                                                  
Parameterization:                                                 
    'P1D'                                                         
   Number of free coefficients: 3                                 
   Use "getpvec", "getcov" for parameters and their uncertainties.
                                                                  
Status:                                                           
Termination condition: Near (local) minimum, (norm(g) < tol).     
Number of iterations: 4, Number of function evaluations: 9        
                                                                  
Estimated using PROCEST on time domain data "dat1e".              
Fit to estimation data: 87.34%                                    
FPE: 0.01069, MSE: 0.01062                                        
More information in model's "Report" property.                    
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The model parameters, K, Tp1 and Td are now shown with one standard deviation
uncertainty range.

Computing Time and Frequency Response of IDPROC Models

The model m1 estimated above is an IDPROC model object to which all of the toolbox's
model commands can be applied:

step(m1,m0) %step response of models m1 (estimated) and m0 (actual)
legend('m1 (estimated parameters)','m0 (known parameters)','location','northwest')

Bode response with confidence region corresponding to 3 standard deviations may be
computed by doing:

 Building and Estimating Process Models Using System Identification Toolbox™

5-23



h = bodeplot(m1,m0);
showConfidence(h,3)

Similarly, the measurement data may be compared to the models outputs using compare
as follows:

compare(dat1e,m0,m1)
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Other operations such as sim, impulse, c2d are also available, just as they are for other
model objects.

bdclose('iddempr1')

Accommodating the Effect of Intersample Behavior in Estimation

It may be important (at least for slow sampling) to consider the intersample behavior of
the input data. To illustrate this, let us study the same system as before, but without the
sample-and-hold circuit:

open_system('iddempr5')
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Simulate this system with the same sample time:

sim('iddempr5')
dat1f = iddata(y,u,0.5); % The IDDATA object for the simulated data

We estimate an IDPROC model using data1f while also imposing an upper bound on the
allowable value delay. We will use 'lm' as search method and also choose to view the
estimation progress.

m2_init = idproc('P1D');
m2_init.Structure.Td.Maximum = 2;
opt = procestOptions('SearchMethod','lm','Display','on');
m2 = procest(dat1f,m2_init,opt);
m2

m2 =
Process model with transfer function:
             Kp                      
  G(s) = ---------- * exp(-Td*s)     
          1+Tp1*s                    
                                     
        Kp = 0.20038                 
       Tp1 = 2.01                    
        Td = 1.31                    
                                     
Parameterization:
    'P1D'
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   Number of free coefficients: 3
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat1f".
Fit to estimation data: 87.26%                      
FPE: 0.01067, MSE: 0.01061                          

This model has a slightly less precise estimate of the delay than the previous one, m1:

[m0p.Td, m1.Td, m2.Td]
step(m0,m1,m2)
legend('m0 (actual)','m1 (estimated with ZOH)','m2 (estimated without ZOH)','location','southeast')

ans =

    1.5700    1.4990    1.3100
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However, by telling the estimation process that the intersample behavior is first-order-
hold (an approximation to the true continuous) input, we do better:

dat1f.InterSample = 'foh';
m3 = procest(dat1f,m2_init,opt);

Compare the four models m0 (true) m1 (obtained from zoh input) m2 (obtained for
continuous input, with zoh assumption) and m3 (obtained for the same input, but with foh
assumption)

[m0p.Td, m1.Td, m2.Td, m3.Td]
compare(dat1e,m0,m1,m2,m3)

ans =

5 Identifying Process Models

5-28



    1.5700    1.4990    1.3100    1.5570

step(m0,m1,m2,m3)
legend('m0','m1','m2','m3')
bdclose('iddempr5')
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Modeling a System Operating in Closed Loop

Let us now consider a more complex process, with integration, that is operated in closed
loop:

open_system('iddempr2')
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The true system can be represented by:

m0 = idproc('P2ZDI','Kp',1,'Tp1',1,'Tp2',5,'Tz',3,'Td',2.2);

The process is controlled by a PD regulator with limited input amplitude and a zero order
hold device. The sample time is 1 second.

set_param('iddempr2/Random Number','seed','0')
sim('iddempr2')
dat2 = iddata(y,u,1); % IDDATA object for estimation

Two different simulations are made, the first for estimation and the second one for
validation purposes.

set_param('iddempr2/Random Number','seed','13')
sim('iddempr2')
dat2v = iddata(y,u,1); % IDDATA object for validation purpose

Let us look at the data (estimation and validation).

plot(dat2,dat2v)
legend('dat2 (estimation)','dat2v (validation)')
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Let us now perform estimation using dat2.

Warn = warning('off','Ident:estimation:underdampedIDPROC');
m2_init = idproc('P2ZDI');
m2_init.Structure.Td.Maximum = 5;
m2_init.Structure.Tp1.Maximum = 2;
opt = procestOptions('SearchMethod','lsqnonlin','Display','on');
opt.SearchOptions.MaxIterations  = 100;
m2 = procest(dat2, m2_init, opt)

m2 =
Process model with transfer function:         
                   1+Tz*s                     
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  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = 0.98412                         
        Tp1 = 2                               
        Tp2 = 1.4838                          
         Td = 1.713                           
         Tz = 0.027244                        
                                              
Parameterization:
    'P2DIZ'
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                            
Estimated using PROCEST on time domain data "dat2".
Fit to estimation data: 91.51%                     
FPE: 0.1128, MSE: 0.1092                           

compare(dat2v,m2,m0) % Gives very good agreement with data
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bode(m2,m0)
legend({'m2 (est)','m0 (actual)'},'location','west')
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impulse(m2,m0)
legend({'m2 (est)','m0 (actual)'})
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Compare also with the parameters of the true system:

present(m2)
[getpvec(m0), getpvec(m2)]

                                                                            
m2 =                                                                        
Process model with transfer function:                                       
                   1+Tz*s                                                   
  G(s) = Kp * ------------------- * exp(-Td*s)                              
              s(1+Tp1*s)(1+Tp2*s)                                           
                                                                            
         Kp = 0.98412 +/- 0.013672                                          
        Tp1 = 2 +/- 8.2231                                                  

5 Identifying Process Models

5-36



        Tp2 = 1.4838 +/- 10.193                                             
         Td = 1.713 +/- 63.703                                              
         Tz = 0.027244 +/- 65.516                                           
                                                                            
Parameterization:                                                           
    'P2DIZ'                                                                 
   Number of free coefficients: 5                                           
   Use "getpvec", "getcov" for parameters and their uncertainties.          
                                                                            
Status:                                                                     
Termination condition: Change in cost was less than the specified tolerance.
Number of iterations: 3, Number of function evaluations: 4                  
                                                                            
Estimated using PROCEST on time domain data "dat2".                         
Fit to estimation data: 91.51%                                              
FPE: 0.1128, MSE: 0.1092                                                    
More information in model's "Report" property.                              

ans =

    1.0000    0.9841
    1.0000    2.0000
    5.0000    1.4838
    2.2000    1.7130
    3.0000    0.0272

A word of caution. Identification of several real time constants may sometimes be an ill-
conditioned problem, especially if the data are collected in closed loop.

To illustrate this, let us estimate a model based on the validation data:

m2v = procest(dat2v, m2_init, opt)
[getpvec(m0), getpvec(m2), getpvec(m2v)]

m2v =
Process model with transfer function:         
                   1+Tz*s                     
  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = 0.95747                         
        Tp1 = 1.999                           
        Tp2 = 0.60819                         
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         Td = 2.314                           
         Tz = 0.0010561                       
                                              
Parameterization:
    'P2DIZ'
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: 90.65%                      
FPE: 0.1397, MSE: 0.1353                            

ans =

    1.0000    0.9841    0.9575
    1.0000    2.0000    1.9990
    5.0000    1.4838    0.6082
    2.2000    1.7130    2.3140
    3.0000    0.0272    0.0011

This model has much worse parameter values. On the other hand, it performs nearly
identically to the true system m0 when tested on the other data set dat2:

compare(dat2,m0,m2,m2v)
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Fixing Known Parameters During Estimation

Suppose we know from other sources that one time constant is 1:

m2v.Structure.Tp1.Value = 1;
m2v.Structure.Tp1.Free = false;

We can fix this value, while estimating the other parameters:

m2v = procest(dat2v,m2v)
%

m2v =
Process model with transfer function:         
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                   1+Tz*s                     
  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = 1.0111                          
        Tp1 = 1                               
        Tp2 = 5.3014                          
         Td = 2.195                           
         Tz = 3.231                           
                                              
Parameterization:
    'P2DIZ'
   Number of free coefficients: 4
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: 92.05%                      
FPE: 0.09952, MSE: 0.09794                          

As observed, fixing Tp1 to its known value dramatically improves the estimates of the
remaining parameters in model m2v.

This also indicates that simple approximation should do well on the data:

m1x_init = idproc('P2D'); % simpler structure (no zero, no integrator)
m1x_init.Structure.Td.Maximum = 2;
m1x = procest(dat2v, m1x_init)
compare(dat2,m0,m2,m2v,m1x)

m1x =
Process model with transfer function:  
                Kp                     
  G(s) = ----------------- * exp(-Td*s)
         (1+Tp1*s)(1+Tp2*s)            
                                       
         Kp = -1.2554                  
        Tp1 = 1.0249e-06               
        Tp2 = 0.078359                 
         Td = 1.958                    
                                       
Parameterization:
    'P2D'
   Number of free coefficients: 4
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   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: -23.87%                     
FPE: 24.15, MSE: 23.77                              

Thus, the simpler model is able to estimate system output pretty well. However, m1x does
not contain any integration, so the open loop long time range behavior will be quite
different:

step(m0,m2,m2v,m1x)
legend('m0','m2','m2v','m1x')
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bdclose('iddempr2')
warning(Warn)

Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.
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Process Model Structure Specification
This topic describes how to specify the model structure in the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In the System Identification app, specify the model structure by selecting the number of
real or complex poles, and whether to include a zero, delay, and integrator. The resulting
transfer function is displayed in the Process Models dialog box.

At the command line, specify the model structure using an acronym that includes the
following letters and numbers:

• (Required) P for a process model
• (Required) 0, 1, 2 or 3 for the number of poles
•

(Optional) D to include a time-delay term e
sT

d
-

• (Optional) Z to include a process zero (numerator term)
• (Optional) U to indicate possible complex-valued (underdamped) poles
• (Optional) I to indicate enforced integration

Typically, you specify the model-structure acronym as an argument in the estimation
command procest:

• procest(data,'P1D') to estimate the following structure:

G s
K

sT
e

p

p

sTd( ) =

+

-

1 1

• procest(data,'P2ZU') to estimate the following structure:

G s
K sT

s T s T

p z

w w

( ) =
+( )

+ +

1

1 2
2 2z

• procest(data,'P0ID') to estimate the following structure:

G s
K

s
e

p sTd( ) =
-
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• procest(data,'P3Z') to estimate the following structure:

G s
K sT

sT sT sT

p z

p p p

( ) =
+( )

+( ) +( ) +( )

1

1 1 11 2 3

For more information about estimating models, see “Estimate Process Models at the
Command Line” on page 5-11.

See Also

More About
• “What Is a Process Model?” on page 5-2
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Estimating Multiple-Input, Multi-Output Process Models
If your model contains multiple inputs, multiple outputs, or both, you can specify whether
to estimate the same transfer function for all input-output pairs, or a different transfer
function for each. The information in this section supports the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In the System Identification app — To fit a data set with multiple inputs, or multiple
outputs, or both, in the Process Models dialog box, configure the process model settings
for one input-output pair at a time. Use the input and output selection lists to switch to a
different input/output pair.

If you want the same transfer function to apply to all input/output pairs, select the All
same check box. To apply a different structure to each channel, leave this check box
clear, and create a different transfer function for each input.

At the command line — Specify the model structure as a cell array of character vectors in
the estimation command procest. For example, use this command to specify the first-
order transfer function for the first input, and a second-order model with a zero and an
integrator for the second input:

m = idproc({'P1','P2ZI'})
m = procest(data,m)

To apply the same structure to all inputs, define a single structure in idproc.

See Also

More About
• “Data Supported by Process Models” on page 5-4
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Disturbance Model Structure for Process Models
This section describes how to specify a noise model in the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In addition to the transfer function G, a linear system can include an additive noise term
He, as follows:

y Gu He= +

where e is white noise.

You can estimate only the dynamic model G, or estimate both the dynamic model and the
disturbance model H. For process models, H is a rational transfer function C/D, where the
C and D polynomials for a first- or second-order ARMA model.

In the System Identification app, to specify whether to include or exclude a noise model in
the Process Models dialog box, select one of the following options from the Disturbance
Model list:

• None — The algorithm does not estimate a noise model (C=D=1). This option also sets
Focus to Simulation.

• Order 1 — Estimates a noise model as a continuous-time, first-order ARMA model.
• Order 2 — Estimates a noise model as a continuous-time, second-order ARMA model.

At the command line, specify the disturbance model using the procestOptions option
set. For example, use this command to estimate a first-order transfer function and a first-
order noise model:

opt = procestOptions;
opt.DisturbanceModel = 'arma1';
model = procest(data, 'P1D', opt);

For a complete list of values for the DisturbanceModel model property, see the
procestOptions reference page.

See Also
procestOptions
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More About
• “Estimate Process Models Using the App” on page 5-5
• “Estimate Process Models at the Command Line” on page 5-11
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5-47



Specifying Initial Conditions for Iterative Estimation
Algorithms

You can optionally specify how the iterative algorithm treats initial conditions for
estimation of model parameters. This information supports the estimation procedures
“Estimate Process Models Using the App” on page 5-5 and “Estimate Process Models at
the Command Line” on page 5-11.

In the System Identification app, set Initial condition to one of the following options:

• Zero — Sets all initial states to zero.
• Estimate — Treats the initial states as an unknown vector of parameters and

estimates these states from the data.
• Backcast — Estimates initial states using a backward filtering method (least-squares
fit).

• U-level est — Estimates both the initial conditions and input offset levels. For
multiple inputs, the input level for each input is estimated individually. Use if you
included an integrator in the transfer function.

• Auto — Automatically chooses one of the preceding options based on the estimation
data. If the initial conditions have negligible effect on the prediction errors, they are
taken to be zero to optimize algorithm performance.

At the command line, specify the initial conditions using the InitialCondition model
estimation option, configured using the procestOptions command. For example, use
this command to estimate a first-order transfer function and set the initial states to zero:

opt = procestOptions('InitialCondition','zero');
model = procest(data,'P1D',opt)

See Also
procestOptions

More About
• “Estimate Process Models Using the App” on page 5-5
• “Estimate Process Models at the Command Line” on page 5-11
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Identifying Input-Output Polynomial
Models

• “What Are Polynomial Models?” on page 6-2
• “Data Supported by Polynomial Models” on page 6-8
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-10
• “Estimate Polynomial Models in the App” on page 6-18
• “Estimate Polynomial Models at the Command Line” on page 6-23
• “Polynomial Sizes and Orders of Multi-Output Polynomial Models” on page 6-27
• “Specifying Initial States for Iterative Estimation Algorithms” on page 6-32
• “Polynomial Model Estimation Algorithms” on page 6-34
• “Estimate Models Using armax” on page 6-35
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What Are Polynomial Models?

Polynomial Model Structure
A polynomial model uses a generalized notion of transfer functions to express the
relationship between the input, u(t), the output y(t), and the noise e(t) using the equation:
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The variables A, B, C, D, and F are polynomials expressed in the time-shift operator q^-1.
ui is the ith input, nu is the total number of inputs, and nki is the ith input delay that
characterizes the transport delay. The variance of the white noise e(t) is assumed to be l .
For more information about the time-shift operator, see “Understanding the Time-Shift
Operator q” on page 6-3.

In practice, not all the polynomials are simultaneously active. Often, simpler forms, such
as ARX, ARMAX, Output-Error, and Box-Jenkins are employed. You also have the option of
introducing an integrator in the noise source so that the general model takes the form:
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For more information, see “Different Configurations of Polynomial Models” on page 6-3.

You can estimate polynomial models using time or frequency domain data.

For estimation, you must specify the model order as a set of integers that represent the
number of coefficients for each polynomial you include in your selected structure—na for
A, nb for B, nc for C, nd for D, and nf for F. You must also specify the number of samples
nk corresponding to the input delay—dead time—given by the number of samples before
the output responds to the input.

The number of coefficients in denominator polynomials is equal to the number of poles,
and the number of coefficients in the numerator polynomials is equal to the number of
zeros plus 1. When the dynamics from u(t) to y(t) contain a delay of nk samples, then the
first nk coefficients of B are zero.
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For more information about the family of transfer-function models, see the corresponding
section in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

Understanding the Time-Shift Operator q
The general polynomial equation is written in terms of the time-shift operator q–1. To
understand this time-shift operator, consider the following discrete-time difference
equation:

y t a y t T a y t T
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where y(t) is the output, u(t) is the input, and T is the sample time. q-1 is a time-shift

operator that compactly represents such difference equations using q u t u t T-
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Note This q description is completely equivalent to the Z-transform form: q corresponds
to z.

Different Configurations of Polynomial Models
These model structures are subsets of the following general polynomial equation:
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The model structures differ by how many of these polynomials are included in the
structure. Thus, different model structures provide varying levels of flexibility for
modeling the dynamics and noise characteristics.

The following table summarizes common linear polynomial model structures supported by
the System Identification Toolbox product. If you have a specific structure in mind for
your application, you can decide whether the dynamics and the noise have common or
different poles. A(q) corresponds to poles that are common for the dynamic model and the
noise model. Using common poles for dynamics and noise is useful when the disturbances
enter the system at the input. F i determines the poles unique to the system dynamics,
and D determines the poles unique to the disturbances.

Model Structure Equation Description
ARX

A q y t B q u t nk e ti i i
i

nu

( ) ( ) ( ) ( )= -( ) +

=
Â

1

The noise model is 1

A
 and the

noise is coupled to the dynamics
model. ARX does not let you model
noise and dynamics independently.
Estimate an ARX model to obtain a
simple model at good signal-to-
noise ratios.

ARIX
Ay Bu

q
e= +

-
-

1

1
1

Extends the ARX structure by
including an integrator in the noise
source, e(t). This is useful in cases
where the disturbance is not
stationary.

ARMAX
A q y t B q u t nk C q e ti i i

i

nu

( ) ( ) ( ) ( ) ( )= -( ) +

=
Â

1

Extends the ARX structure by
providing more flexibility for
modeling noise using the C
parameters (a moving average of
white noise). Use ARMAX when
the dominating disturbances enter
at the input. Such disturbances are
called load disturbances.

6 Identifying Input-Output Polynomial Models

6-4



Model Structure Equation Description
ARIMAX

Ay Bu C
q

e= +

-
-
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1
1

Extends the ARMAX structure by
including an integrator in the noise
source, e(t). This is useful in cases
where the disturbance is not
stationary.

Box-Jenkins (BJ)
y t
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Provides completely independent
parameterization for the dynamics
and the noise using rational
polynomial functions.

Use BJ models when the noise
does not enter at the input, but is
primary a measurement
disturbance, This structure
provides additional flexibility for
modeling noise.

Output-Error
(OE) y t
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Use when you want to
parameterize dynamics, but do not
want to estimate a noise model.

Note In this case, the noise
models is H = 1  in the general
equation and the white noise
source e(t) affects only the output.

The polynomial models can contain one or more outputs and zero or more inputs.

The System Identification app supports direct estimation of ARX, ARMAX, OE and BJ
models. You can add a noise integrator to the ARX, ARMAX and BJ forms. However, you
can use polyest to estimate all five polynomial or any subset of polynomials in the
general equation. For more information about working with pem, see “Using polyest to
Estimate Polynomial Models” on page 6-24.

Continuous-Time Representation of Polynomial Models
In continuous time, the general frequency-domain equation is written in terms of the
Laplace transform variable s, which corresponds to a differentiation operation:
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In the continuous-time case, the underlying time-domain model is a differential equation
and the model order integers represent the number of estimated numerator and
denominator coefficients. For example, na=3 and nb=2 correspond to the following model:

A s s a s a s a

B s b s b

( )

( )

= + + +

= +

4
1

3
2

2
3

1 2

You can only estimate continuous-time polynomial models directly using continuous-time
frequency-domain data. In this case, you must set the Ts data property to 0 to indicate
that you have continuous-time frequency-domain data, and use the oe command to
estimate an Output-Error polynomial model. Continuous-time models of other structures
such as ARMAX or BJ cannot be estimated. You can obtain those forms only by direct
construction (using idpoly), conversion from other model types, or by converting a
discrete-time model into continuous-time (d2c). Note that the OE form represents a
transfer function expressed as a ratio of numerator (B) and denominator (F) polynomials.
For such forms consider using the transfer function models, represented by idtf models.
You can estimate transfer function models using both time and frequency domain data. In
addition to the numerator and denominator polynomials, you can also estimate transport
delays. See idtf and tfest for more information.

Multi-Output Polynomial Models
For a MIMO polynomial model with ny outputs and nu inputs, the relation between inputs
and outputs for the lth output can be written as:
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The A polynomial array (Aij; i=1:ny, j=1:ny) are stored in the A property of the idpoly
object. The diagonal polynomials (Aii; i=1:ny) are monic, that is, the leading coefficients
are one. The off-diagonal polynomials (Aij; i ≠j ) contain a delay of at least one sample,
that is, they start with zero. For more details on the orders of multi-output models, see
“Polynomial Sizes and Orders of Multi-Output Polynomial Models” on page 6-27.
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You can create multi-output polynomial models by using the idpoly command or
estimate them using ar, arx, bj, oe, armax, and polyest. In the app, you can estimate
such models by choosing a multi-output data set and setting the orders appropriately in
the Polynomial Models dialog box.

See Also
ar | armax | arx | bj | idpoly | oe | polyest

Related Examples
• “Estimate Polynomial Models in the App” on page 6-18
• “Estimate Polynomial Models at the Command Line” on page 6-23

More About
• “Data Supported by Polynomial Models” on page 6-8

 See Also
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Data Supported by Polynomial Models
Types of Supported Data
You can estimate linear, black-box polynomial models from data with the following
characteristics:

• Time- or frequency-domain data (iddata or idfrd data objects).

Note For frequency-domain data, you can only estimate ARX and OE models.

To estimate polynomial models for time-series data, see “Time Series Analysis”.
• Real data or complex data in any domain.
• Single-output and multiple-output.

You must import your data into the MATLAB workspace, as described in “Data
Preparation”.

Designating Data for Estimating Continuous-Time Models
To get a linear, continuous-time model of arbitrary structure for time-domain data, you
can estimate a discrete-time model, and then use d2c to transform it to a continuous-time
model.

For continuous-time frequency-domain data, you can estimate directly only Output-Error
(OE) continuous-time models. Other structures include noise models, which is not
supported for frequency-domain data.

Tip To denote continuous-time frequency-domain data, set the data sample time to 0. You
can set the sample time when you import data into the app or set the Ts property of the
data object at the command line.

Designating Data for Estimating Discrete-Time Models
You can estimate arbitrary-order, linear state-space models for both time- or frequency-
domain data.
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Set the data property Ts to:

• 0, for frequency response data that is measured directly from an experiment.
• Equal to the Ts of the original data, for frequency response data obtained by

transforming time-domain iddata (using spa and etfe).

Tip You can set the sample time when you import data into the app or set the Ts property
of the data object at the command line.

See Also

Related Examples
• “Estimate Polynomial Models in the App” on page 6-18
• “Estimate Polynomial Models at the Command Line” on page 6-23

More About
• “What Are Polynomial Models?” on page 6-2
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Preliminary Step – Estimating Model Orders and Input
Delays

Why Estimate Model Orders and Delays?
To estimate polynomial models, you must provide input delays and model orders. If you
already have insight into the physics of your system, you can specify the number of poles
and zeros.

In most cases, you do not know the model orders in advance. To get initial model orders
and delays for your system, you can estimate several ARX models with a range of orders
and delays and compare the performance of these models. You choose the model orders
that correspond to the best model performance and use these orders as an initial guess
for further modeling.

Because this estimation procedure uses the ARX model structure, which includes the A
and B polynomials, you only get estimates for the na, nb, and nk parameters. However,
you can use these results as initial guesses for the corresponding polynomial orders and
input delays in other model structures, such as ARMAX, OE, and BJ.

If the estimated nk is too small, the leading nb coefficients are much smaller than their
standard deviations. Conversely, if the estimated nk is too large, there is a significant
correlation between the residuals and the input for lags that correspond to the missing B
terms. For information about residual analysis plots, see topics on the “Residual Analysis”
page.

Estimating Orders and Delays in the App
The following procedure assumes that you have already imported your data into the app
and performed any necessary preprocessing operations. For more information, see
“Represent Data”.

To estimate model orders and input delays in the System Identification app:

1 In the System Identification app, select Estimate > Polynomial Models to open the
Polynomials Models dialog box.

The ARX model is already selected by default in the Structure list.
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Note For time-series models, select the AR model structure.
2 Edit the Orders field to specify a range of poles, zeros, and delays. For example,

enter the following values for na, nb, and nk:

[1:10 1:10 1:10]

Tip As a shortcut for entering 1:10 for each required model order, click Order
Selection.

3 Click Estimate to open the ARX Model Structure Selection window, which displays
the model performance for each combination of model parameters. The following
figure shows an example plot.
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4 Select a rectangle that represents the optimum parameter combination and click
Insert to estimates a model with these parameters. For information about using this
plot, see “Selecting Model Orders from the Best ARX Structure” on page 6-15.

This action adds a new model to the Model Board in the System Identification app.
The default name of the parametric model contains the model type and the number of
poles, zeros, and delays. For example, arx692 is an ARX model with na=6, nb=9, and
a delay of two samples.

5 Click Close to close the ARX Model Structure Selection window.

Note You cannot estimate model orders when using multi-output data.

After estimating model orders and delays, use these values as initial guesses for
estimating other model structures, as described in “Estimate Polynomial Models in the
App” on page 6-18.

6 Identifying Input-Output Polynomial Models

6-12



Estimating Model Orders at the Command Line
You can estimate model orders using the struc, arxstruc, and selstruc commands in
combination.

If you are working with a multiple-output system, you must use the struc, arxstruc,
and selstruc commands one output at a time. You must subreference the correct output
channel in your estimation and validation data sets.

For each estimation, you use two independent data sets—an estimation data set and a
validation data set. These independent data set can be from different experiments, or data
subsets from a single experiment. For more information about subreferencing data, see
“Select Data Channels, I/O Data and Experiments in iddata Objects” on page 2-54 and
“Select I/O Channels and Data in idfrd Objects” on page 2-86.

For an example of estimating model orders for a multiple-input system, see “Estimating
Delays in the Multiple-Input System” in System Identification Toolbox Getting Started
Guide.

struc

The struc command creates a matrix of possible model-order combinations for a
specified range of na, nb, and nk values.

For example, the following command defines the range of model orders and delays
na=2:5, nb=1:5, and nk=1:5:

NN = struc(2:5,1:5,1:5))

arxstruc

The arxstruc command takes the output from struc, estimates an ARX model for each
model order, and compares the model output to the measured output. arxstruc returns
the loss for each model, which is the normalized sum of squared prediction errors.

For example, the following command uses the range of specified orders NN to compute the
loss function for single-input/single-output estimation data data_e and validation data
data_v:

V = arxstruc(data_e,data_v,NN);

Each row in NN corresponds to one set of orders:
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[na nb nk]

selstruc

The selstruc command takes the output from arxstruc and opens the ARX Model
Structure Selection window to guide your choice of the model order with the best
performance.

For example, to open the ARX Model Structure Selection window and interactively choose
the optimum parameter combination, use the following command:

selstruc(V);

For more information about working with the ARX Model Structure Selection window, see
“Selecting Model Orders from the Best ARX Structure” on page 6-15.

To find the structure that minimizes Akaike's Information Criterion, use the following
command:

nn = selstruc(V,'AIC');

where nn contains the corresponding na, nb, and nk orders.

Similarly, to find the structure that minimizes the Rissanen's Minimum Description Length
(MDL), use the following command:

nn = selstruc(V,'MDL');

To select the structure with the smallest loss function, use the following command:

nn = selstruc(V,0);

After estimating model orders and delays, use these values as initial guesses for
estimating other model structures, as described in “Using polyest to Estimate Polynomial
Models” on page 6-24.

Estimating Delays at the Command Line
The delayest command estimates the time delay in a dynamic system by estimating a
low-order, discrete-time ARX model and treating the delay as an unknown parameter.

By default, delayest assumes that na=nb=2 and that there is a good signal-to-noise
ratio, and uses this information to estimate nk.
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To estimate the delay for a data set data, type the following at the prompt:

delayest(data);

If your data has a single input, MATLAB computes a scalar value for the input delay—
equal to the number of data samples. If your data has multiple inputs, MATLAB returns a
vector, where each value is the delay for the corresponding input signal.

To compute the actual delay time, you must multiply the input delay by the sample time of
the data.

You can also use the ARX Model Structure Selection window to estimate input delays and
model order together, as described in “Estimating Model Orders at the Command Line”
on page 6-13.

Selecting Model Orders from the Best ARX Structure
You generate the ARX Model Structure Selection window for your data to select the best-
fit model.

For a procedure on generating this plot in the System Identification app, see “Estimating
Orders and Delays in the App” on page 6-10. To open this plot at the command line, see
“Estimating Model Orders at the Command Line” on page 6-13.

The following figure shows a sample plot in the ARX Model Structure Selection window.

You use this plot to select the best-fit model.
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• The horizontal axis is the total number of parameters — na + nb.
• The vertical axis, called Unexplained output variance (in %), is the portion of the

output not explained by the model—the ARX model prediction error for the number of
parameters shown on the horizontal axis.

The prediction error is the sum of the squares of the differences between the
validation data output and the model one-step-ahead predicted output.

• nk is the delay.

Three rectangles are highlighted on the plot in green, blue, and red. Each color indicates
a type of best-fit criterion, as follows:

• Red — Best fit minimizes the sum of the squares of the difference between the
validation data output and the model output. This rectangle indicates the overall best
fit.

• Green — Best fit minimizes Rissanen MDL criterion.
• Blue — Best fit minimizes Akaike AIC criterion.
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In the ARX Model Structure Selection window, click any bar to view the orders that give
the best fit. The area on the right is dynamically updated to show the orders and delays
that give the best fit.

For more information about the AIC criterion, see “Loss Function and Model Quality
Metrics” on page 1-64.

See Also

Related Examples
• “Estimate Polynomial Models in the App” on page 6-18
• “Estimate Polynomial Models at the Command Line” on page 6-23
• “Model Structure Selection: Determining Model Order and Input Delay” on page 4-

48

More About
• “What Are Polynomial Models?” on page 6-2
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Estimate Polynomial Models in the App
Prerequisites

Before you can perform this task, you must have:

• Imported data into the System Identification app. See “Import Time-Domain Data into
the App” on page 2-16. For supported data formats, see “Data Supported by
Polynomial Models” on page 6-8.

• Performed any required data preprocessing operations. To improve the accuracy of
your model, you should detrend your data. Removing offsets and trends is especially
important for Output-Error (OE) models and has less impact on the accuracy of models
that include a flexible noise model structure, such as ARMAX and Box-Jenkins. See
“Ways to Prepare Data for System Identification” on page 2-6.

• Select a model structure, model orders, and delays. For a list of available structures,
see “What Are Polynomial Models?” on page 6-2 For more information about how to
estimate model orders and delays, see “Estimating Orders and Delays in the App” on
page 6-10. For multiple-output models, you must specify order matrices in the
MATLAB workspace, as described in “Polynomial Sizes and Orders of Multi-Output
Polynomial Models” on page 6-27.

1 In the System Identification app, select Estimate > Polynomial Models to open the
Polynomial Models dialog box.
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For more information on the options in the dialog box, click Help.
2 In the Structure list, select the polynomial model structure you want to estimate

from the following options:

• ARX:[na nb nk]
• ARMAX:[na nb nc nk]
• OE:[nb nf nk]
• BJ:[nb nc nd nf nk]

This action updates the options in the Polynomial Models dialog box to correspond
with this model structure. For information about each model structure, see “What Are
Polynomial Models?” on page 6-2.
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Note For time-series data, only AR and ARMA models are available. For more
information about estimating time-series models, see “Time Series Analysis”.

3 In the Orders field, specify the model orders and delays, as follows:

• For single-output polynomial models, enter the model orders and delays according
to the sequence displayed in the Structure field. For multiple-input models,
specify nb and nk as row vectors with as many elements as there are inputs. If
you are estimating BJ and OE models, you must also specify nf as a vector.

For example, for a three-input system, nb can be [1 2 4], where each element
corresponds to an input.

• For multiple-output models, enter the model orders as described in “Polynomial
Sizes and Orders of Multi-Output Polynomial Models” on page 6-27.

Tip To enter model orders and delays using the Order Editor dialog box, click Order
Editor.

4 (ARX models only) Select the estimation Method as ARX or IV (instrumental variable
method). For information about the algorithms, see “Polynomial Model Estimation
Algorithms” on page 6-34.

5 (ARX, ARMAX, and BJ models only) Check the Add noise integration check box to
add an integrator to the noise source, e.

6 Specify the delay using the Input delay edit box. The value must be a vector of
length equal to the number of input channels in the data. For discrete-time
estimations (any estimation using data with nonzero sample-time), the delay must be
expressed in the number of lags. These delays are separate from the “in-model”
delays specified by the nk order in the Orders edit box.

7 In the Name field, edit the name of the model or keep the default.
8 In the Focus list, select how to weigh the relative importance of the fit at different

frequencies. For more information about each option, see “Assigning Estimation
Weightings” on page 6-21.

9 In the Initial state list, specify how you want the algorithm to treat initial conditions.
For more information about the available options, see “Specifying Initial Conditions
for Iterative Estimation Algorithms” on page 5-48.

Tip If you get an inaccurate fit, try setting a specific method for handling initial
states rather than choosing it automatically.
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10 In the Covariance list, select Estimate if you want the algorithm to compute
parameter uncertainties. Effects of such uncertainties are displayed on plots as
model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty computation for
large, multiple-output models might reduce computation time.

11 Click Regularization to obtain regularized estimates of model parameters. Specify
the regularization constants in the Regularization Options dialog box. To learn more,
see “Regularized Estimates of Model Parameters” on page 1-48.

12 (ARMAX, OE, and BJ models only) To view the estimation progress in the MATLAB
Command Window, select the Display progress check box. This launches a progress
viewer window in which estimation progress is reported.

13 Click Estimate to add this model to the Model Board in the System Identification
app.

14 (Prediction-error method only) To stop the search and save the results after the
current iteration has been completed, click Stop Iterations. To continue iterations
from the current model, click the Continue iter button to assign current parameter
values as initial guesses for the next search.

Assigning Estimation Weightings
You can specify how the estimation algorithm weighs the fit at various frequencies. In the
app, set Focus to one of the following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges. Corresponds to
minimizing one-step-ahead prediction, which typically favors the fit over a short time
interval. Optimized for output prediction applications.

• Simulation — Uses the input spectrum to weigh the relative importance of the fit in
a specific frequency range. Does not use the noise model to weigh the relative
importance of how closely to fit the data in various frequency ranges. Optimized for
output simulation applications.

• Stability — Estimates the best stable model. For more information about model
stability, see “Unstable Models” on page 17-118.

• Filter — Specify a custom filter to open the Estimation Focus dialog box, where you
can enter a filter, as described in “Simple Passband Filter” on page 2-132 or “Defining
a Custom Filter” on page 2-132. This prefiltering applies only for estimating the
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dynamics from input to output. The disturbance model is determined from the
unfiltered estimation data.

Next Steps
• Validate the model by selecting the appropriate check box in the Model Views area of

the System Identification app. For more information about validating models, see
“Validating Models After Estimation” on page 17-3.

• Export the model to the MATLAB workspace for further analysis by dragging it to the
To Workspace rectangle in the System Identification app.

Tip For ARX and OE models, you can use the exported model for initializing a
nonlinear estimation at the command line. This initialization may improve the fit of the
model. See “Initialize Nonlinear ARX Estimation Using Linear Model” on page 11-25,
and “Initialize Hammerstein-Wiener Estimation Using Linear Model” on page 12-8.

See Also

Related Examples
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-10
• “Estimate Polynomial Models at the Command Line” on page 6-23

More About
• “What Are Polynomial Models?” on page 6-2
• “Data Supported by Polynomial Models” on page 6-8
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Estimate Polynomial Models at the Command Line
Prerequisites

Before you can perform this task, you must have

• Input-output data as an iddata object or frequency response data as an frd or idfrd
object. See “Representing Time- and Frequency-Domain Data Using iddata Objects” on
page 2-50. For supported data formats, see “Data Supported by Polynomial Models” on
page 6-8.

• Performed any required data preprocessing operations. To improve the accuracy of
results when using time domain data, you can detrend the data or specify the input/
output offset levels as estimation options. Removing offsets and trends is especially
important for Output-Error (OE) models and has less impact on the accuracy of models
that include a flexible noise model structure, such as ARMAX and Box-Jenkins. See
“Ways to Prepare Data for System Identification” on page 2-6.

• Select a model structure, model orders, and delays. For a list of available structures,
see “What Are Polynomial Models?” on page 6-2 For more information about how to
estimate model orders and delays, see “Estimating Model Orders at the Command
Line” on page 6-13 and “Estimating Delays at the Command Line” on page 6-14. For
multiple-output models, you must specify order matrices in the MATLAB workspace, as
described in “Polynomial Sizes and Orders of Multi-Output Polynomial Models” on
page 6-27.

Using arx and iv4 to Estimate ARX Models
You can estimate single-output and multiple-output ARX models using the arx and iv4
commands. For information about the algorithms, see “Polynomial Model Estimation
Algorithms” on page 6-34.

You can use the following general syntax to both configure and estimate ARX models:

% Using ARX method
m = arx(data,[na nb nk],opt);
% Using IV method
m = iv4(data,[na nb nk],opt);

data is the estimation data and [na nb nk] specifies the model orders, as discussed in
“What Are Polynomial Models?” on page 6-2.
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The third input argument opt contains the options for configuring the estimation of the
ARX model, such as handling of initial conditions and input offsets. You can create and
configure the option set opt using the arxOptions and iv4Options commands. The
three input arguments can also be followed by name and value pairs to specify optional
model structure attributes such as InputDelay, IODelay, and IntegrateNoise.

To get discrete-time models, use the time-domain data (iddata object).

Note Continuous-time polynomials of ARX structure are not supported.

For more information about validating you model, see “Validating Models After
Estimation” on page 17-3.

You can use pem or polyest to refine parameter estimates of an existing polynomial
model, as described in “Refine Linear Parametric Models” on page 4-6.

For detailed information about these commands, see the corresponding reference page.

Tip You can use the estimated ARX model for initializing a nonlinear estimation at the
command line, which improves the fit of the model. See “Initialize Nonlinear ARX
Estimation Using Linear Model” on page 11-25.

Using polyest to Estimate Polynomial Models
You can estimate any polynomial model using the iterative prediction-error estimation
method polyest. For Gaussian disturbances of unknown variance, this method gives the
maximum likelihood estimate. The resulting models are stored as idpoly model objects.

Use the following general syntax to both configure and estimate polynomial models:

m = polyest(data,[na nb nc nd nf nk],opt,Name,Value);

where data is the estimation data. na, nb, nc, nd, nf are integers that specify the model
orders, and nk specifies the input delays for each input.For more information about model
orders, see “What Are Polynomial Models?” on page 6-2.

Tip You do not need to construct the model object using idpoly before estimation.
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If you want to estimate the coefficients of all five polynomials, A, B, C, D, and F, you must
specify an integer order for each polynomial. However, if you want to specify an ARMAX
model for example, which includes only the A, B, and C polynomials, you must set nd and
nf to zero matrices of the appropriate size. For some simpler configurations, there are
dedicated estimation commands such as arx, armax, bj, and oe, which deliver the
required model by using just the required orders. For example, oe(data,[nb nf
nk],opt) estimates an output-error structure polynomial model.

Note To get faster estimation of ARX models, use arx or iv4 instead of polyest.

In addition to the polynomial models listed in “What Are Polynomial Models?” on page 6-
2, you can use polyest to model the ARARX structure—called the generalized least-
squares model—by setting nc=nf=0. You can also model the ARARMAX structure—called
the extended matrix model—by setting nf=0.

The third input argument, opt, contains the options for configuring the estimation of the
polynomial model, such as handling of initial conditions, input offsets and search
algorithm. You can create and configure the option set opt using the polyestOptions
command. The three input arguments can also be followed by name and value pairs to
specify optional model structure attributes such as InputDelay, IODelay, and
IntegrateNoise.

For ARMAX, Box-Jenkins, and Output-Error models—which can only be estimated using
the iterative prediction-error method—use the armax, bj, and oe estimation commands,
respectively. These commands are versions of polyest with simplified syntax for these
specific model structures, as follows:

m = armax(Data,[na nb nc nk]);
m = oe(Data,[nb nf nk]);
m = bj(Data,[nb nc nd nf nk]);

Similar to polyest, you can specify as input arguments the option set configured using
commands armaxOptions, oeOptions, and bjOptions for the estimators armax, oe,
and bj respectively. You can also use name and value pairs to configure additional model
structure attributes.

Tip If your data is sampled fast, it might help to apply a lowpass filter to the data before
estimating the model, or specify a frequency range for the WeightingFilter property
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during estimation. For example, to model only data in the frequency range 0-10 rad/s, use
the WeightingFilter property, as follows:

opt = oeOptions('WeightingFilter',[0 10]);
m = oe(Data, [nb nf nk], opt);

For more information about validating your model, see “Validating Models After
Estimation” on page 17-3.

You can use pem or polyest to refine parameter estimates of an existing polynomial
model (of any configuration), as described in “Refine Linear Parametric Models” on page
4-6.

For more information, see polyest, pem and idpoly.

See Also

Related Examples
• “Estimate Models Using armax” on page 6-35
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-10
• “Estimate Polynomial Models in the App” on page 6-18

More About
• “What Are Polynomial Models?” on page 6-2
• “Data Supported by Polynomial Models” on page 6-8
• “Loss Function and Model Quality Metrics” on page 1-64
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Polynomial Sizes and Orders of Multi-Output Polynomial
Models

For a model with Ny (Ny > 1) outputs and Nu inputs, the polynomials A, B, C, D, and F
are specified as cell arrays of row vectors. Each entry in the cell array contains the
coefficients of a particular polynomial that relates input, output, and noise values. Orders
are matrices of integers used as input arguments to the estimation commands.

Polynomi
al

Dimension Relation Described Orders

A Ny-by-Ny array of row vectors A{i,j} contains coefficients of
relation between output yi and
output yj

na: Ny-by-
Ny matrix
such that
each entry
contains
the degree
of the
correspon
ding A
polynomial
.
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Polynomi
al

Dimension Relation Described Orders

B Ny-by-Nu array of row vectors B{i,j} contain coefficients of
relations between output yi and input
uj

nk: Ny-by-
Nu matrix
such that
each entry
contains
the
number of
leading
fixed zeros
of the
correspon
ding B
polynomial
(input
delay).

nb: Ny-by-
Nu matrix
such
nb(i,j)
=
length(
B{i,j})-
nk(i,j).
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Polynomi
al

Dimension Relation Described Orders

C,D Ny-by-1 array of row vectors C{i} and D{i} contain coefficients
of relations between output yi and
noise ei

nc and nd
are Ny-
by-1
matrices
such that
each entry
contains
the degree
of the
correspon
ding C and
D
polynomial
,
respectivel
y.

F Ny-by-Nu array of row vectors F{i,j} contains coefficients of
relations between output yi and input
uj

nf: Ny-by-
Nu matrix
such that
each entry
contains
the degree
of the
correspon
ding F
polynomial
.

For more information, see idpoly.

For example, consider the ARMAX set of equations for a 2 output, 1 input model:

y (t) + 0.5 y (t-1) + 0.9 y (t-1) + 0.1 y (t-2) = u(t)  + 1 1 2 2 55 u(t-1)  + 2 u(t-2) + e (t) + 0.01 e (t-1)

y (t) + 0.05 y

1 1

2 22 2 2 2(t-1)  + 0.3 y (t-2)   = 10 u(t-2) + e (t) + 0.1 e (t-1)  + 0.02 e (t-2)2

y1 andy2 represent the two outputs and u represents the input variable. e1 and e2
represent the white noise disturbances on the outputs, y1 and y2, respectively. To
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represent these equations as an ARMAX form polynomial using idpoly, configure the A,
B, and C polynomials as follows:

A = cell(2,2);
A{1,1} = [1 0.5];
A{1,2} = [0 0.9 0.1];
A{2,1} = [0];
A{2,2} = [1 0.05 0.3];

B = cell(2,1);
B{1,1} = [1 5 2];
B{2,1}  = [0 0 10];

C = cell(2,1);
C{1} = [1 0.01];
C{2} = [1 0.1 0.02];

model = idpoly(A,B,C)

model =
Discrete-time ARMAX model:                                                      
  Model for output number 1: A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + C(z)e_1(t)
    A(z) = 1 + 0.5 z^-1                                                         
                                                                                
    A_2(z) = 0.9 z^-1 + 0.1 z^-2                                                
                                                                                
    B(z) = 1 + 5 z^-1 + 2 z^-2                                                  
                                                                                
    C(z) = 1 + 0.01 z^-1                                                        
                                                                                
  Model for output number 2: A(z)y_2(t) = B(z)u(t) + C(z)e_2(t)
    A(z) = 1 + 0.05 z^-1 + 0.3 z^-2                            
                                                               
    B(z) = 10 z^-2                                             
                                                               
    C(z) = 1 + 0.1 z^-1 + 0.02 z^-2                            
                                                               
Sample time: unspecified
  
Parameterization:
   Polynomial orders:   na=[1 2;0 2]   nb=[3;1]   nc=[1;2]
   nk=[0;2]
   Number of free coefficients: 12
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:                                                         
Created by direct construction or transformation. Not estimated.

model is a discrete-time ARMAX model with unspecified sample-time. When estimating
such models, you need to specify the orders of these polynomials as input arguments.

In the System Identification app, you can enter the matrices directly in the Orders field.

At the command line, define variables that store the model order matrices and specify
these variables in the model-estimation command.

Tip To simplify entering large matrices orders in the System Identification app, define the
variable NN=[NA NB NK] at the command line. You can specify this variable in the
Orders field.

See Also
ar | armax | arx | bj | idpoly | oe | polyest

Related Examples
• “Estimate Polynomial Models in the App” on page 6-18
• “Estimate Polynomial Models at the Command Line” on page 6-23

More About
• “What Are Polynomial Models?” on page 6-2
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Specifying Initial States for Iterative Estimation
Algorithms

When you use the pem or polyest to estimate ARMAX, Box-Jenkins (BJ), Output-Error
(OE), you must specify how the algorithm treats initial conditions.

This information supports the estimation procedures “Estimate Polynomial Models in the
App” on page 6-18 and “Using polyest to Estimate Polynomial Models” on page 6-24.

In the System Identification app, for ARMAX, OE, and BJ models, set Initial state to one
of the following options:

• Auto — Automatically chooses Zero, Estimate, or Backcast based on the
estimation data. If initial states have negligible effect on the prediction errors, the
initial states are set to zero to optimize algorithm performance.

• Zero — Sets all initial states to zero.
• Estimate — Treats the initial states as an unknown vector of parameters and

estimates these states from the data.
• Backcast — Estimates initial states using a smoothing filter.

At the command line, specify the initial conditions as an estimation option. Use
polyestOptions to configure options for the polyest command, armaxOptions for
the armax command etc. Set the InitialCondition option to the desired value in the
option set. For example, use this command to estimate an ARMAX model and set the
initial states to zero:

opt = armaxOptions('InitialCondition','zero');
m = armax(data,[2 2 2 3],opt);

For a complete list of values for the InitialCondition estimation option, see the
armaxOptions reference page.

See Also
armaxOptions | arxOptions | bjOptions | iv4Options | oeOptions |
polyestOptions
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Related Examples
• “Estimate Polynomial Models in the App” on page 6-18
• “Estimate Polynomial Models at the Command Line” on page 6-23

 See Also
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Polynomial Model Estimation Algorithms
For linear ARX and AR models, you can choose between the ARX and IV algorithms. ARX
implements the least-squares estimation method that uses QR-factorization for
overdetermined linear equations. IV is the instrument variable method. For more
information about IV, see the section on variance-optimal instruments in System
Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR,
1999.

The ARX and IV algorithms treat noise differently. ARX assumes white noise. However, the
instrumental variable algorithm, IV, is not sensitive to noise color. Thus, use IV when the
noise in your system is not completely white and it is incorrect to assume white noise. If
the models you obtained using ARX are inaccurate, try using IV.

Note AR models apply to time-series data, which has no input. For more information, see
“Time Series Analysis”. For more information about working with AR and ARX models,
see “Input-Output Polynomial Models”.

See Also
ar | arx | iv4

More About
• “What Are Polynomial Models?” on page 6-2
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Estimate Models Using armax
This example shows how to estimate a linear, polynomial model with an ARMAX structure
for a three-input and single-output (MISO) system using the iterative estimation method
armax. For a summary of all available estimation commands in the toolbox, see “Model
Estimation Commands” on page 1-44.

Load a sample data set z8 with three inputs and one output, measured at 1 -second
intervals and containing 500 data samples.

load iddata8

Use armax to both construct the idpoly model object, and estimate the parameters:

Typically, you try different model orders and compare results, ultimately choosing the
simplest model that best describes the system dynamics. The following command
specifies the estimation data set, z8 , and the orders of the A , B , and C polynomials as
na , nb , and nc, respectively. nk of [0 0 0] specifies that there is no input delay for all
three input channels.

opt = armaxOptions;
opt.Focus = 'simulation';
opt.SearchOptions.MaxIterations = 50;
opt.SearchOptions.Tolerance = 1e-5;
na = 4;
nb = [3 2 3];
nc = 4;
nk = [0 0 0];
m_armax = armax(z8, [na nb nc nk], opt);

Focus, Tolerance, and MaxIter are estimation options that configure the estimation
objective function and the attributes of the search algorithm. The Focus option specifies
whether the model is optimized for simulation or prediction applications. The Tolerance
and MaxIter search options specify when to stop estimation. For more information about
these properties, see the armaxOptions reference page.

armax is a version of polyest with simplified syntax for the ARMAX model structure.
The armax method both constructs the idpoly model object and estimates its
parameters.
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View information about the resulting model object.

m_armax

m_armax =
Discrete-time ARMAX model:  A(z)y(t) = B(z)u(t) + C(z)e(t)           
  A(z) = 1 - 1.284 z^-1 + 0.3048 z^-2 + 0.2648 z^-3 - 0.05708 z^-4   
                                                                     
  B1(z) = -0.07547 + 1.087 z^-1 + 0.7166 z^-2                        
                                                                     
  B2(z) = 1.019 + 0.1142 z^-1                                        
                                                                     
  B3(z) = -0.06739 + 0.06828 z^-1 + 0.5509 z^-2                      
                                                                     
  C(z) = 1 - 0.06096 z^-1 - 0.1296 z^-2 + 0.02489 z^-3 - 0.04699 z^-4
                                                                     
Sample time: 1 seconds
  
Parameterization:
   Polynomial orders:   na=4   nb=[3 2 3]   nc=4   nk=[0 0 0]
   Number of free coefficients: 16
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARMAX on time domain data "z8".  
Fit to estimation data: 80.86% (simulation focus)
FPE: 2.888, MSE: 0.9868                          

m_armax is an idpoly model object. The coefficients represent estimated parameters of
this polynomial model. You can use present(m_armax) to show additional information
about the model, including parameter uncertainties.

View all property values for this model.

get(m_armax)

                 A: [1 -1.2836 0.3048 0.2648 -0.0571]
                 B: {[-0.0755 1.0870 0.7166]  [1.0188 0.1142]  [1x3 double]}
                 C: [1 -0.0610 -0.1296 0.0249 -0.0470]
                 D: 1
                 F: {[1]  [1]  [1]}
    IntegrateNoise: 0
          Variable: 'z^-1'
           IODelay: [0 0 0]
         Structure: [1x1 pmodel.polynomial]
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     NoiseVariance: 2.7984
            Report: [1x1 idresults.polyest]
        InputDelay: [3x1 double]
       OutputDelay: 0
                Ts: 1
          TimeUnit: 'seconds'
         InputName: {3x1 cell}
         InputUnit: {3x1 cell}
        InputGroup: [1x1 struct]
        OutputName: {'y1'}
        OutputUnit: {''}
       OutputGroup: [1x1 struct]
             Notes: [0x1 string]
          UserData: []
              Name: ''
      SamplingGrid: [1x1 struct]

The Report model property contains detailed information on the estimation results. To
view the properties and values inside Report, use dot notation. For example:

m_armax.Report

ans = 
              Status: 'Estimated using ARMAX with simulation focus'
              Method: 'ARMAX'
    InitialCondition: 'zero'
                 Fit: [1x1 struct]
          Parameters: [1x1 struct]
         OptionsUsed: [1x1 idoptions.polyest]
           RandState: [1x1 struct]
            DataUsed: [1x1 struct]
         Termination: [1x1 struct]

This action displays the contents of estimation report such as model quality measures
(Fit), search termination criterion (Termination), and a record of estimation data
(DataUsed) and options (OptionsUsed).

 Estimate Models Using armax

6-37



See Also

Related Examples
• “Estimate Polynomial Models at the Command Line” on page 6-23

More About
• “What Are Polynomial Models?” on page 6-2
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Identifying State-Space Models

• “What Are State-Space Models?” on page 7-2
• “Data Supported by State-Space Models” on page 7-6
• “Supported State-Space Parameterizations” on page 7-7
• “Estimate State-Space Model With Order Selection” on page 7-8
• “Estimate State-Space Models in System Identification App” on page 7-13
• “Estimate State-Space Models at the Command Line” on page 7-23
• “Estimate State-Space Models with Free-Parameterization” on page 7-29
• “Estimate State-Space Models with Canonical Parameterization” on page 7-30
• “Estimate State-Space Models with Structured Parameterization” on page 7-32
• “Estimate State-Space Equivalent of ARMAX and OE Models” on page 7-39
• “Specifying Initial States for Iterative Estimation Algorithms” on page 7-41
• “State-Space Model Estimation Methods” on page 7-42
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What Are State-Space Models?

Definition of State-Space Models
State-space models are models that use state variables to describe a system by a set of
first-order differential or difference equations, rather than by one or more nth-order
differential or difference equations. State variables x(t) can be reconstructed from the
measured input-output data, but are not themselves measured during an experiment.

The state-space model structure is a good choice for quick estimation because it requires
you to specify only one input, the model order, n. The model order is an integer equal to
the dimension of x(t) and relates to, but is not necessarily equal to, the number of delayed
inputs and outputs used in the corresponding linear difference equation.

Continuous-Time Representation
It is often easier to define a parameterized state-space model in continuous time because
physical laws are most often described in terms of differential equations. In continuous-
time, the state-space description has the following form:

& %x t Fx t Gu t Kw t

y t Hx t Du t w t

x x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

= + +

= + +

=0 0

The matrices F, G, H, and D contain elements with physical significance—for example,
material constants. x0 specifies the initial states.

Note %K  = 0 gives the state-space representation of an Output-Error model. For more
information, see “What Are Polynomial Models?” on page 6-2.

You can estimate continuous-time state-space model using both time- and frequency-
domain data.
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Discrete-Time Representation
The discrete-time state-space model structure is often written in the innovations form that
describes noise:

x kT T Ax kT Bu kT Ke kT

y kT Cx kT Du kT e kT

x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

+ = + +

= + +

=0 xx0

where T is the sample time, u(kT) is the input at time instant kT, and y(kT) is the output at
time instant kT.

Note K=0 gives the state-space representation of an Output-Error model. For more
information about Output-Error models, see “What Are Polynomial Models?” on page 6-2.

Discrete-time state-space models provide the same type of linear difference relationship
between the inputs and outputs as the linear ARMAX model, but are rearranged such that
there is only one delay in the expressions.

You cannot estimate a discrete-time state-space model using continuous-time frequency-
domain data.

The innovations form uses a single source of noise, e(kT), rather than independent
process and measurement noise. If you have prior knowledge about the process and
measurement noise, you can use linear grey-box estimation to identify a state-space
model with structured independent noise sources. For more information, see “Identifying
State-Space Models with Separate Process and Measurement Noise Descriptions” on
page 13-70.

Relationship Between Continuous-Time and Discrete-Time
State Matrices
The relationships between the discrete state-space matrices A, B, C, D, and K and the

continuous-time state-space matrices F, G, H, D, and %K  are given for piece-wise-constant
input, as follows:
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These relationships assume that the input is piece-wise-constant over time intervals
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The exact relationship between K and %K  is complicated. However, for short sample time
T, the following approximation works well:
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State-Space Representation of Transfer Functions
For linear models, the general model description is given by:

y Gu He= +

G is a transfer function that takes the input u to the output y. H is a transfer function that
describes the properties of the additive output noise model.

The relationships between the transfer functions and the discrete-time state-space
matrices on page 7-3 are given by the following equations:
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-
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Here, Inx is the nx-by-nx identity matrix, and nx is the number of states. Iny is the ny-by-ny
identity matrix, and ny is the dimension of y and e.

The state-space representation in the continuous-time case is similar.
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See Also

Related Examples
• “Estimate State-Space Models in System Identification App” on page 7-13
• “Estimate State-Space Models at the Command Line” on page 7-23

More About
• “Data Supported by State-Space Models” on page 7-6
• “Supported State-Space Parameterizations” on page 7-7

 See Also
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Data Supported by State-Space Models
You can estimate linear state-space models from data with the following characteristics:

• Time- or frequency-domain data

To estimate state-space models for time-series data, see “Time Series Analysis”.
• Real data or complex data
• Single-output and multiple-output

To estimate state-space models, you must first import your data into the MATLAB
workspace, as described in “Data Preparation”.
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Supported State-Space Parameterizations
System Identification Toolbox software supports the following parameterizations that
indicate which parameters are estimated and which remain fixed at specific values:

• Free parameterization results in the estimation of all elements of the system
matrices A, B, C, D, and K. See “Estimate State-Space Models with Free-
Parameterization” on page 7-29.

• Canonical parameterization represents a state-space system in a reduced-
parameter form where many entries of the A, B and C matrices are fixed to zeros and
ones. The free parameters appear in only a few of the rows and columns in the system
matrices A, B, C and D. The software supports companion, modal decomposition and
observability canonical forms. See “Estimate State-Space Models with Canonical
Parameterization” on page 7-30.

• Structured parameterization lets you specify the fixed values of specific parameters
and exclude these parameters from estimation. You choose which entries of the system
matrices to estimate and which to treat as fixed. See “Estimate State-Space Models
with Structured Parameterization” on page 7-32.

• Completely arbitrary mapping of parameters to state-space matrices. See “Estimate
Linear Grey-Box Models” on page 13-8.

See Also

• “Estimate State-Space Models with Free-Parameterization” on page 7-29
• “Estimate State-Space Models with Canonical Parameterization” on page 7-30
• “Estimate State-Space Models with Structured Parameterization” on page 7-32
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Estimate State-Space Model With Order Selection
To estimate a state-space model, you must provide a value of its order, which represents
the number of states. When you do not know the order, you can search and select an
order using the following procedures.

Estimate Model With Selected Order in the App
You must have already imported your data into the app, as described in “Represent Data”.

To estimate model orders for a specific input delay:

1 In the System Identification app, select Estimate > State Space Models to open the
State Space Models dialog box.

2 Select the Pick best value in the range option and specify a range in the adjacent
field. The default range is 1:10.
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3 (Optional) Expand Model Structure Configuration to specify additional attributes
of the model structure when searching for best orders. Such attributes include
disturbance component, input delays, presence of feedthrough, and parameterization.

4 Expand Estimation Options and verify that Subspace (N4SID) is selected as the
Method.

5 Click Estimate.

This action opens the Model Order Selection window, which displays the relative
measure of how much each state contributes to the input-output behavior of the
model (log of singular values of the covariance matrix). The following figure shows an
example plot.

6 Select the rectangle that represents the cutoff for the states on the left that provide a
significant contribution to the input-output behavior.

In the previous figure, states 1 and 2 provide the most significant contribution. The
contributions to the right of state 2 drop significantly. Click Insert to estimate a
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model with this order. Red indicates the recommended choice. For information about
using the Model Order Selection window, see “Using the Model Order Selection
Window” on page 7-11.

This action adds a new model to the Model Board in the System Identification app.
The default name of the model is ss1. You can use this model as an initial guess for
estimating other state-space models, as described in “Estimate State-Space Models in
System Identification App” on page 7-13.

7 Click Close to close the window.

Estimate Model With Selected Order at the Command Line
You can estimate a state-space model with selected order using n4sid, ssest or
ssregest.

Use the following syntax to specify the range of model orders to try for a specific input
delay:

m = n4sid(data,n1:n2);

where data is the estimation data set, n1 and n2 specify the range of orders.

The command opens the Model Order Selection window. For information about using this
plot, see “Using the Model Order Selection Window” on page 7-11.

Alternatively, use ssest or ssregest:

m1 = ssest(data,nn)
m2 = ssregest(data,nn)

where nn = [n1,n2,...,nN] specifies the vector or range of orders you want to try.

n4sid and ssregest estimate a model whose sample time matches that of data by
default, hence a discrete-time model for time-domain data. ssest estimates a continuous-
time model by default. You can change the default setting by including the Ts name-value
pair input arguments in the estimation command. For example, to estimate a discrete-
time model of optimal order, assuming Data.Ts>0, type:

model = ssest(data,nn,'Ts',data.Ts);

or

model = ssregest(data,nn,'Ts',data.Ts);
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To automatically select the best order without opening the Model Order Selection window,
type m = n4sid(data,'best'), m = ssest(data,'best') or m =
ssregest(data,'best').

Using the Model Order Selection Window
The following figure shows a sample Model Order Selection window.

You use this plot to decide which states provide a significant relative contribution to the
input-output behavior, and which states provide the smallest contribution. Based on this
plot, select the rectangle that represents the cutoff for the states on the left that provide a
significant contribution to the input-output behavior. The recommended choice is shown
in red. To learn how to generate this plot, see “Estimate Model With Selected Order in the
App” on page 7-8 or “Estimate Model With Selected Order at the Command Line” on page
7-10.
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The horizontal axis corresponds to the model order n. The vertical axis, called Log of
Singular values, shows the singular values of a covariance matrix constructed from the
observed data.

For example, in the previous figure, states 1 and 2 provide the most significant
contribution. However, the contributions of the states to the right of state 2 drop
significantly. This sharp decrease in the log of the singular values after n=2 indicates that
using two states is sufficient to get an accurate model.
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Estimate State-Space Models in System Identification
App

Prerequisites

• Import data into the System Identification app. See “Represent Data”. For supported
data formats, see “Data Supported by State-Space Models” on page 7-6.

• Perform data preprocessing. To improve the accuracy of your model, you detrend your
data. See “Ways to Prepare Data for System Identification” on page 2-6.

1 Select Estimate > State Space Models.

The State Space Models dialog box opens.
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Tip For more information on the options in the dialog box, click Help.
2 Specify a model name by clicking  adjacent to Model name. The name of the

model must be unique in the Model Board.
3 Select the Specify value option (if not already selected) and specify the model order

in the edit field. Model order refers to the number of states in the state-space model.

Tip When you do not know the model order, search for and select an order. For more
information, see “Estimate Model With Selected Order in the App” on page 7-8.

4 Select the Continuous-time or Discrete-time option to specify the type of model to
estimate.

You cannot estimate a discrete-time model if the working data is continuous-time
frequency-domain data.

5 Expand the Model Structure Configuration section to select the model structure,
such as canonical form, whether to estimate the disturbance component (K matrix)
and specification of feedthrough and input delays.
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For more information about the type of state-space parameterization, see “Supported
State-Space Parameterizations” on page 7-7.

6 Expand the Estimation Options section to select the estimation method and
configure the cost function.

Select one of the following Estimation Method from the drop-down list and
configure the options. For more information about these methods, see “State-Space
Model Estimation Methods” on page 7-42.
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Subspace (N4SID)

a In the N4Weight drop-down list, specify the weighting scheme used for singular-
value decomposition by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and Prediction Error
Minimization (PEM) methods.

b In the N4Horizon field, specify the forward and backward prediction horizons
used by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and PEM methods.
c In the Focus drop-down list, select how to weigh the relative importance of the

fit at different frequencies. For more information about each option, see
“Assigning Estimation Weightings” on page 7-21.

d Select the Allow unstable models check box to specify whether to allow the
estimation process to use parameter values that may lead to unstable models.

Setting this option is same as setting the estimation option Focus to
'prediction' at the command line. An unstable model is delivered only if it
produces a better fit to the data than other stable models computed during the
estimation process.

e Select the Estimate covariance check box if you want the algorithm to compute
parameter uncertainties.
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Effects of such uncertainties are displayed on plots as model confidence regions.
Skipping uncertainty computation reduces computation time for complex models
and large data sets.

f Select the Display progress check box to open a progress viewer window
during estimation.

g In the Initial state list, specify how you want the algorithm to treat initial states.
For more information about the available options, see “Specifying Initial States
for Iterative Estimation Algorithms” on page 7-41.

Prediction Error Minimization (PEM)

• In the N4Weight drop-down list, specify the weighting scheme used for singular-
value decomposition by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and Prediction Error
Minimization (PEM) methods.

• In the N4Horizon field, specify the forward and backward prediction horizons
used by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and PEM methods.
• In the Focus drop-down list, select how to weigh the relative importance of the fit

at different frequencies. For more information about each option, see “Assigning
Estimation Weightings” on page 7-21.
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• Select the Allow unstable models check box to specify whether to allow the
estimation process to use parameter values that may lead to unstable models.

Setting this option is same as setting the estimation option Focus to
'prediction' at the command line. An unstable model is delivered only if it
produces a better fit to the data than other stable models computed during the
estimation process.

• Select the Estimate covariance check box if you want the algorithm to compute
parameter uncertainties.

Effects of such uncertainties are displayed on plots as model confidence regions.
Skipping uncertainty computation reduces computation time for complex models
and large data sets.

• Select the Display progress check box to open a progress viewer window during
estimation.

• In the Initial state list, specify how you want the algorithm to treat initial states.
For more information about the available options, see “Specifying Initial States for
Iterative Estimation Algorithms” on page 7-41.

Tip If you get an inaccurate fit, try setting a specific method for handling initial
states rather than choosing it automatically.

• Click Regularization to obtain regularized estimates of model parameters.
Specify the regularization constants in the Regularization Options dialog box. To
learn more, see “Regularized Estimates of Model Parameters” on page 1-48.

• Click Iteration Options to specify options for controlling the iterations. The
Options for Iterative Minimization dialog box opens.
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Iteration Options

In the Options for Iterative Minimization dialog box, you can specify the following
iteration options:

• Search Method — Method used by the iterative search algorithm. Search
method is auto by default. The descent direction is calculated using gn
(Gauss-Newton), gna (Adaptive Gauss-Newton), lm (Levenberg-Marquardt),
lsqnonlin (Trust-Region Reflective Newton), and grad (Gradient Search)
successively at each iteration until a sufficient reduction in error is achieved.

• Output weighting — Weighting applied to the loss function to be minimized.
Use this option for multi-output estimations only. Specify as 'noise' or a
positive semidefinite matrix of size equal the number of outputs.

• Maximum number of iterations — Maximum number of iterations to use
during search.

• Termination tolerance — Tolerance value when the iterations should
terminate.

• Error threshold for outlier penalty — Robustification of the quadratic
criterion of fit.
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Regularized Reduction

• In the Regularization Kernel drop-down list, select the regularizing kernel to
use for regularized estimation of the underlying ARX model. To learn more, see
“Regularized Estimates of Model Parameters” on page 1-48.

• In the ARX Orders field, specify the order of the underlying ARX model. By
default, the orders are automatically computed by the estimation algorithm. If you
specify a value, it is recommended that you use a large value for nb order. To
learn more about ARX orders, see arx.

• In the Focus drop-down list, select how to weigh the relative importance of the fit
at different frequencies. For more information about each option, see “Assigning
Estimation Weightings” on page 7-21.

• In the Reduction Method drop-down list, specify the reduction method:

• Truncate — Discards the specified states without altering the remaining
states. This method tends to product a better approximation in the frequency
domain, but the DC gains are not guaranteed to match.

• MatchDC — Discards the specified states and alters the remaining states to
preserve the DC gain.

• Select the Estimate covariance check box if you want the algorithm to compute
parameter uncertainties.
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Effects of such uncertainties are displayed on plots as model confidence regions.
Skipping uncertainty computation reduces computation time for complex models
and large data sets.

• Select the Display progress check box to open a progress viewer window during
estimation.

• In the Initial state list, specify how you want the algorithm to treat initial states.
For more information about the available options, see “Specifying Initial States for
Iterative Estimation Algorithms” on page 7-41.

Tip If you get an inaccurate fit, try setting a specific method for handling initial
states rather than choosing it automatically.

The estimation process uses parameter values that always lead to a stable model.
7 Click Estimate to estimate the model. A new model gets added to the System

Identification app.

Next Steps

• Validate the model by selecting the appropriate response type in the Model Views
area of the app. For more information about validating models, see “Validating Models
After Estimation” on page 17-3.

• Export the model to the MATLAB workspace for further analysis by dragging it to the
To Workspace rectangle in the app.

Assigning Estimation Weightings
You can specify how the estimation algorithm weights the fit at various frequencies. In the
app, set Focus to one of the following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges. Corresponds to
minimizing one-step-ahead prediction, which typically favors the fit over a short time
interval. Optimized for output prediction applications.

• Simulation — Uses the input spectrum to weigh the relative importance of the fit in
a specific frequency range. Does not use the noise model to weigh the relative
importance of how closely to fit the data in various frequency ranges. Optimized for
output simulation applications.
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• Stability — Estimates the best stable model. For more information about model
stability, see “Unstable Models” on page 17-118.

• Filter — Specify a custom filter to open the Estimation Focus dialog box, where you
can enter a filter, as described in “Simple Passband Filter” on page 2-132 or “Defining
a Custom Filter” on page 2-132. This prefiltering applies only for estimating the
dynamics from input to output. The disturbance model is determined from the
estimation data.
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Estimate State-Space Models at the Command Line

Black Box vs. Structured State-Space Model Estimation
You can estimate state-space models in two ways at the command line, depending upon
your prior knowledge of the nature of the system and your requirements.

Black Box Estimation

In this approach, you specify the model order, and, optionally, additional model structure
attributes that configure the overall structure of the state-space matrices. You call ssest,
ssregest or n4sid with data and model order as primary input arguments, and use
name-value pairs to specify any additional attributes, such as model sample time,
presence of feedthrough, absence of noise component, etc. You do not work directly with
the coefficients of the A, B, C, D, K, and X0 matrices.

Structured Estimation

In this approach, you create and configure an idss model that contains the initial values
for all the system matrices. You use the Structure property of the idss model to specify
all the parameter constraints. For example, you can designate certain coefficients of
system matrices as fixed and impose minimum/maximum bounds on the values of the
others. For quick configuration of the parameterization and whether to estimate
feedthrough and disturbance dynamics, use ssform.

After configuring the idss model with desired constraints, you specify this model as an
input argument to the ssest command. You cannot use n4sid or ssregest for
structured estimation.

Note

• The structured estimation approach is also referred to as grey-box modeling. However,
in this toolbox, the “grey box modeling” terminology is used only when referring to
idgrey and idnlgrey models.

• Using the structured estimation approach, you cannot specify relationships among
state-space coefficients. Each coefficient is essentially considered to be independent of
others. For imposing dependencies, or to use more complex forms of parameterization,
use the idgrey model and greyest estimator.

 Estimate State-Space Models at the Command Line

7-23



Estimating State-Space Models Using ssest, ssregest and
n4sid
Prerequisites

• Represent input-output data as an iddata object or frequency-response data as an
frd or idfrd object. See “Representing Time- and Frequency-Domain Data Using
iddata Objects” on page 2-50. For supported data formats, see “Data Supported by
State-Space Models” on page 7-6.

• Perform data preprocessing. To improve the accuracy of results when using time-
domain data, you can detrend the data or specify the input/output offset levels as
estimation options. See “Ways to Prepare Data for System Identification” on page 2-6.

• Select a model order. When you do not know the model order, search and select for an
order. For more information, see “Estimate Model With Selected Order at the
Command Line” on page 7-10.

You can estimate continuous-time and discrete-time state-space models using the iterative
estimation command ssest that minimizes the prediction errors to obtain maximum-
likelihood values.

Use the following general syntax to both configure and estimate state-space models:

m = ssest(data,n,opt,Name,Value)

where data is the estimation data, n is the model order, and opt contains options for
configuring the estimation of the state-space models. These options include the handling
of the initial conditions, input and output offsets, estimation focus and search algorithm
options. opt can be followed by name-value pair input arguments that specify optional
model structure attributes such as the presence of feedthrough, the canonical form of the
model, and input delay.

As an alternative to ssest, you can use the noniterative subspace estimators n4sid or
ssregest:

m = n4sid(data,n,opt,Name,Value)
m = ssregest(data,n,opt,Name,Value)

Unless you specify the sample time as a name-value pair input argument, n4sid and
ssregest estimate a discrete-time model, while ssest estimates a continuous-time
model.
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Note ssest uses n4sid to initialize the state-space matrices, and takes longer than
n4sid to estimate a model but typically provides a better fit to data.

For information about validating your model, see “Validating Models After Estimation” on
page 17-3

Choosing the Structure of A, B, C Matrices
By default, all entries of the A, B, and C state-space matrices are treated as free
parameters. Using the Form name-value pair input argument of ssest , you can choose
various canonical forms, such as the companion and modal forms, that use fewer
parameters.

For more information about estimating a specific state-space parameterization, see:

• “Estimate State-Space Models with Free-Parameterization” on page 7-29
• “Estimate State-Space Models with Canonical Parameterization” on page 7-30
• “Estimate State-Space Models with Structured Parameterization” on page 7-32

Choosing Between Continuous-Time and Discrete-Time
Representations
For estimation of state-space models, you have the option of switching the model sample
time between zero and that of the estimation data. You can do this using the Ts name-
value pair input argument.

• By default, ssest estimates a continuous-time model. If you are using data set with
nonzero sample time, data, which includes all time domain data, you can also
estimate a discrete-time model by using:

model = ssest(data,nx,'Ts',data.Ts);

If you are using continuous-time frequency-domain data, you cannot estimate a
discrete-time model.

• By default, n4sid and ssregest estimate a model whose sample time matches that of
the data. Thus, for time-domain data, n4sid and ssregest deliver a discrete-time
model. You can estimate a continuous-time model by using:

model = n4sid(data,nx,'Ts',0);
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or

model = ssregest(data,nx,'Ts',0);

Choosing to Estimate D, K, and X0 Matrices
For state-space models with any parameterization, you can specify whether to estimate
the D, K and X0 matrices, which represent the input-to-output feedthrough, noise model
and the initial states, respectively.

For state-space models with structured parameterization, you can also specify to estimate
the D matrix. However, for free and canonical forms, the structure of the D matrix is set
based on your choice for the 'Feedthrough' name-value pair input argument.

D Matrix

By default, the D matrix is not estimated and its value is fixed to zero, except for static
models.

• Black box estimation: Use the Feedthrough name-value pair input argument to
denote the presence or absence of feedthrough from individual inputs. For example, in
case of a two input model such that there is feedthrough from only the second input,
use:

model = n4sid(data,n,'Feedthrough',[false true]);
• Structured estimation: Configure the values of the init_sys.Structure.D,

where init_sys is an idss model that represents the desired model structure. To
force no feedthrough for the i-th input, set:

init_sys.Structure.D.Value(:,i) = 0;
init_sys.Structure.D.Free = true;
init_sys.Structure.D.Free(:,i) = false;

The first line specifies the value of the i-th column of D as zero. The next line specifies
all the elements of D as free, estimable parameters. The last line specifies that the i-th
column of the D matrix is fixed for estimation.

Alternatively, use ssform with 'Feedthrough' name-value pair.

K Matrix

K represents the noise matrix of the model, such that the noise component of the model
is:.
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For frequency-domain data, no noise model is estimated and K is set to 0. For time-
domain data, K is estimated by default in the black box estimation setup. yn is the
contribution of the disturbances to the model output.

• Black box estimation: Use the DisturbanceModel name-value pair input argument
to indicate if the disturbance component is fixed to zero (specify Value = 'none') or
estimated as a free parameter (specify Value = 'estimate'). For example, use :

model = n4sid(data,n,'DisturbanceModel','none');

• Structured estimation: Configure the value of the init_sys.Structure.K
parameter, where init_sys is an idss model that represents the desired model
structure. You can fix some K matrix coefficients to known values and prescribe
minimum/maximum bounds for free coefficients. For example, to estimate only the first
column of the K matrix for a two output model:

kpar = init_sys.Structure.K;
kpar.Free(:,1) = true;
kpar.Free(:,2) = false;
kpar.Value(:,2) = 0; % second column value is fixed to zero
init_sys.Structure.K = kpar;

Alternatively, use ssform.

When not sure how to easily fix or free all coefficients of K, initially you can omit
estimating the noise parameters in K to focus on achieving a reasonable model for the
system dynamics. After estimating the dynamic model, you can use ssest to refine the
model while configuring the K parameters to be free. For example:

init_sys = ssest(data, n,'DisturbanceModel','none');
init_sys.Structure.K.Free = true;
sys = ssest(data,init_sys);

where init_sys is the dynamic model without noise.

To set K to zero in an existing model, you can set its Value to 0 and Free flag to false:

m.Structure.K.Value = 0;
m.Structure.K.Free = false;
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X0 Matrices

The initial state vector X0 is obtained as the by-product of model estimation. The n4sid,
ssest and ssregest commands return the value of X0 as their second output
arguments. You can choose how to handle initial conditions during model estimation by
using the InitialState estimation option. Use n4sidOptions (for n4sid),
ssestOptions (for ssest) or ssregestOptions (for ssregest) to create the
estimation option set. For example, in order to hold the initial states to zero during
estimation using n4sid:

opt = n4sidOptions;
opt.InitialState = 'zero';
[m,X0] = n4sid(data,n,opt);

The returned X0 variable is a zero vector of length n.

When you estimate models using multiexperiment data, the X0 matrix contains as many
columns as data experiments.

For a complete list of values for the InitialStates option, see “Specifying Initial States
for Iterative Estimation Algorithms” on page 7-41.

See Also

More About
• “Loss Function and Model Quality Metrics” on page 1-64
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Estimate State-Space Models with Free-
Parameterization

The default parameterization of the state-space matrices A, B, C, D, and K is free; that is,
any elements in the matrices are adjustable by the estimation routines. Because the
parameterization of A, B, and C is free, a basis for the state-space realization is
automatically selected to give well-conditioned calculations.

To estimate the disturbance model K, you must use time-domain data.

Suppose that you have no knowledge about the internal structure of the discrete-time
state-space model. To quickly get started, use the following syntax:

m = ssest(data)

or

m = ssregest(data)

where data is your estimation data. ssest estimates a continuous-time state-space
model for an automatically selected order between 1 and 10. ssregest estimates a
discrete-time model.

To find a model of a specific order n, use the following syntax:

m = ssest(data,n)

or

m = ssregest(dat,n)

The iterative algorithm ssest is initialized by the subspace method n4sid. You can use
n4sid directly, as an alternative to ssest:

m = n4sid(data)

which automatically estimates a discrete-time model of the best order in the 1:10 range.
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Estimate State-Space Models with Canonical
Parameterization

What Is Canonical Parameterization?
Canonical parameterization represents a state-space system in a reduced parameter form
where many elements of A, B and C matrices are fixed to zeros and ones. The free
parameters appear in only a few of the rows and columns in state-space matrices A, B, C,
D, and K. The free parameters are identifiable — they can be estimated to unique values.
The remaining matrix elements are fixed to zeros and ones.

The software supports the following canonical forms:

• Companion form: The characteristic polynomial appears in the rightmost column of
the A matrix.

• Modal decomposition form: The state matrix A is block diagonal, with each block
corresponding to a cluster of nearby modes.

Note The modal form has a certain symmetry in its block diagonal elements. If you
update the parameters of a model of this form (as a structured estimation using
ssest), the symmetry is not preserved, even though the updated model is still block-
diagonal.

• Observability canonical form: The free parameters appear only in select rows of the
A matrix and in the B and K matrices.

For more information about the distribution of free parameters in the observability
canonical form, see the Appendix 4A, pp 132-134, on identifiability of black-box
multivariable model structures in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999 (equation 4A.16).

Estimating Canonical State-Space Models
You can estimate state-space models with chosen parameterization at the command line.

For example, to specify an observability canonical form, use the 'Form' name-value pair
input argument, as follows:

m = ssest(data,n,'Form','canonical')
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Similarly, set 'Form' as 'modal' or 'companion' to specify modal decomposition and
companion canonical forms, respectively.

If you have time-domain data, the preceding command estimates a continuous-time
model. If you want a discrete-time model, specify the data sample time using the 'Ts'
name-value pair input argument:

md = ssest(data, n,'Form','canonical','Ts',data.Ts)

If you have continuous-time frequency-domain data, you can only estimate a continuous-
time model.
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Estimate State-Space Models with Structured
Parameterization

What Is Structured Parameterization?
Structured parameterization lets you exclude specific parameters from estimation by
setting these parameters to specific values. This approach is useful when you can derive
state-space matrices from physical principles and provide initial parameter values based
on physical insight. You can use this approach to discover what happens if you fix specific
parameter values or if you free certain parameters.

There are two stages to the structured estimation procedure:

1 Specify the state-space model structure, as described in “Specify the State-Space
Model Structure” on page 7-32

2 Estimate the free model parameters, as described in “Estimate State-Space Models at
the Command Line” on page 7-23

This approach differs from estimating models with free and canonical parameterizations,
where it is not necessary to specify initial parameter values before the estimation. For
free parameterization, there is no structure to specify because it is assumed to be
unknown. For canonical parameterization, the structure is fixed to a specific form.

Note To estimate structured state-space models in the System Identification app, define
the corresponding model structures at the command line and import them into the
System Identification app.

Specify the State-Space Model Structure
To specify the state-space model structure:

1 Use idss to create a state-space model. For example:

A = [0 1; 0 -1]; 
B = [0; 0.28]; 
C = eye(2);
D = zeros(2,1);
m = idss(A,B,C,D,K,'Ts',T)
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creates a discrete-time state-space structure, where A, B, C, D, and K specify the
initial values for the free parameters. T is the sample time.

2 Use the Structure property of the model to specify which parameters to estimate
and which to set to specific values.

More about Structure

Structure contains parameters for the five state-space matrices, A, B, C, D, and K.

For each parameter, you can set the following attributes:

• Value — Parameter values. For example, sys.Structure.A.Value contains the
initial or estimated values of the A matrix.

NaN represents unknown parameter values.

Each property sys.A, sys.B, sys.C, and sys.D is an alias to the corresponding
Value entry in the Structure property of sys. For example, sys.A is an alias to
the value of the property sys.Structure.A.Value

• Minimum — Minimum value that the parameter can assume during estimation. For
example, sys.Structure.K.Minimum = 0 constrains all entries in the K matrix
to be greater than or equal to zero.

• Maximum — Maximum value that the parameter can assume during estimation.
• Free — Boolean specifying whether the parameter is a free estimation variable. If

you want to fix the value of a parameter during estimation, set the corresponding
Free = false. For example, if A is a 3-by-3 matrix, sys.Structure.A.Free =
eyes(3) fixes all of the off-diagonal entries in A, to the values specified in
sys.Structure.A.Value. In this case, only the diagonal entries in A are
estimable.

• Scale — Scale of the parameter’s value. Scale is not used in estimation.
• Info — Structure array for storing parameter units and labels. The structure has

Label and Unit fields.

Specify parameter units and labels as character vectors. For example, 'Time'.

For example, if you want to fix A(1,2)=A(2,1)=0, use:

m.Structure.A.Value(1,2) = 0;
m.Structure.A.Value(2,1) = 0;
m.Structure.A.Free(1,2) = false;
m.Structure.A.Free(2,1) = false;
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The estimation algorithm only estimates the parameters in A for which
m.Structure.A.Free is true.

Use physical insight, whenever possible, to initialize the parameters for the iterative
search algorithm. Because it is possible that the numerical minimization gets stuck in
a local minimum, try several different initialization values for the parameters. For
random initialization, use init. When the model structure contains parameters with
different orders of magnitude, try to scale the variables so that the parameters are all
roughly the same magnitude.

Alternatively, to quickly configure the parameterization and whether to estimate
feedthrough and disturbance dynamics, use ssform.

3 Use ssest to estimate the model, as described in “Estimate State-Space Models at
the Command Line” on page 7-23.

The iterative search computes gradients of the prediction errors with respect to the
parameters using numerical differentiation. The step size is specified by the nuderst
command. The default step size is equal to 10–4 times the absolute value of a parameter or
equal to 10–7, whichever is larger. To specify a different step size, edit the nuderst
MATLAB file.

Are Grey-Box Models Similar to State-Space Models with
Structured Parameterization?
You estimate state-space models with structured parameterization on page 7-32 when you
know some parameters of a linear system and need to estimate the others. These models
are therefore similar to grey-box models. However, in this toolbox, the "grey box
modeling" terminology is used only when referring to idgrey and idnlgrey models. In
these models, you can specify complete linear or nonlinear models with complicated
relationships between the unknown parameters.

If you have independent unknown matrix elements in a linear state-space model
structure, then it is easier and quicker to use state-space models with structured
parameterizations. For imposing dependencies, or to use more complex forms of
parameterization, use the idgrey model and the associated greyest estimator. For more
information, see “Grey-Box Model Estimation”.

If you want to incorporate prior knowledge regarding the state and output covariances
into the estimation process, use an idgrey model to identify your system using a general
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state-space model structure. For more information, see “Identifying State-Space Models
with Separate Process and Measurement Noise Descriptions” on page 13-70.

Estimate Structured Discrete-Time State-Space Models
This example shows how to estimate the unknown parameters of a discrete-time model.

In this example, you estimate  in the following discrete-time model:

Suppose that the nominal values of the unknown parameters ( ) are -1, 2,
3, 4,and 5, respectively.

The discrete-time state-space model structure is defined by the following equation:

Construct the parameter matrices and initialize the parameter values using the nominal
parameter values.

A = [1,-1;0,1];
B = [2;3];
C = [1,0];
D = 0;
K = [4;5];

Construct the state-space model object.

m = idss(A,B,C,D,K);

Specify the parameter values in the structure matrices that you do not want to estimate.

 Estimate State-Space Models with Structured Parameterization

7-35



S = m.Structure;
S.A.Free(1,1) = false;
S.A.Free(2,:) = false;
S.C.Free = false;
m.Structure = S;

D is initialized, by default, as a fixed value, and K and B are initialized as free values.
Suppose you want to fix the initial states to known zero values. To enforce this, configure
the InitialState estimation option.

opt = ssestOptions;
opt.InitialState = 'zero';

Load estimation data.

load iddata1 z1;

Estimate the model structure.

m = ssest(z1,m,opt);

where z1 is name of the iddata object. The data can be time-domain or frequency-
domain data. The iterative search starts with the nominal values in the A, B, C, D, and K
matrices.

Estimate Structured Continuous-Time State-Space Models
This example shows how to estimate the unknown parameters of a continuous-time
model.

In this example, you estimate  in the following continuous-time model:
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This equation represents an electrical motor, where  is the angular position

of the motor shaft, and  is the angular velocity. The parameter  is the

inverse time constant of the motor, and    is the static gain from the input to the
angular velocity.

The motor is at rest at t=0 , but its angular position  is unknown. Suppose that the

approximate nominal values of the unknown parameters are  and .

The variance of the errors in the position measurement is 0.01 , and the variance in the
angular velocity measurements is 0.1 . For more information about this example, see the
section on state-space models in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

The continuous-time state-space model structure is defined by the following equation:

Construct the parameter matrices and initialize the parameter values using the nominal
parameter values.

A = [0 1;0 -1];
B = [0;0.25];
C = eye(2);
D = [0;0];
K = zeros(2,2);
x0 = [0;0];

The matrices correspond to continuous-time representation. However, to be consistent
with the idss object property name, this example uses A, B, and C instead of F, G, and H.

Construct the continuous-time state-space model object.

m = idss(A,B,C,D,K,'Ts',0);

Specify the parameter values in the structure matrices that you do not want to estimate.
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S = m.Structure;
S.A.Free(1,:) = false;
S.A.Free(2,1) = false;
S.B.Free(1) = false;
S.C.Free = false;
S.D.Free = false;
S.K.Free = false;
m.Structure = S;
m.NoiseVariance = [0.01 0; 0 0.1];

The initial state is partially unknown. Use the InitialState option of the
ssestOptions option set to configure the estimation behavior of X0.

opt = ssestOptions;
opt.InitialState = idpar(x0);
opt.InitialState.Free(2) = false;

Estimate the model structure.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1);
m = ssest(z,m,opt);

The iterative search for a minimum is initialized by the parameters in the nominal model
m . The continuous-time model is sampled using the same sample time as the data during
estimation.

Simulate this system using the sample time T=0.1 for input u and the noise realization e.

e = randn(300,2);
u1 = idinput(300);
simdat = iddata([],u1,'Ts',0.1);
simopt = simOptions('AddNoise',true,'NoiseData',e);
y1 = sim(m,simdat,simopt);

The continuous system is sampled using Ts=0.1 for simulation purposes. The noise
sequence is scaled according to the matrix m.NoiseVariance .

If you discover that the motor was not initially at rest, you can estimate  by setting
the second element of the InitialState parameter to be free.

opt.InitialState.Free(2) = true;
m_new = ssest(z,m,opt);

7 Identifying State-Space Models

7-38



Estimate State-Space Equivalent of ARMAX and OE
Models

This example shows how to estimate ARMAX and OE-form models using the state-space
estimation approach.

You can estimate the equivalent of multiple-output ARMAX and Output-Error (OE) models
using state-space model structures:

• For an armax model, specify to estimate the K matrix for the state-space model.
• For an oe model, set .

Convert the resulting models into idpoly models to see them in the commonly defined
ARMAX or OE forms.

Load measured data.

load iddata1 z1

Estimate state-space models.

mss_noK = n4sid(z1,2,'DisturbanceModel','none');
mss = n4sid(z1,2);

mss_noK is a second order state-space model with no disturbance model used during
estimation. mss is also a second order state-space model, but with an estimated noise
component. Both models use the measured data set z1 for estimation.

Convert the state-space models to polynomial models.

mOE = idpoly(mss_noK);
mARMAX = idpoly(mss);

Converting to polynomial models results in the parameter covariance information for mOE
and mARMAX to be lost.

You can use one of the following to recompute the covariance:

• Zero-iteration update using the same estimation data.
• translatecov as a Gauss approximation formula-based translation of covariance of

mss_noK and mss into covariance of mOE and mARMAX.
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Reestimate mOE and mARMAX for the parameters of the polynomial model using a zero
iteration update.

opt = polyestOptions;
opt.SearchOptions.MaxIterations = 0;

mOE = polyest(z1,mOE,opt);
mARMAX = polyest(z1,mARMAX,opt);

The options object, opt, specifies a zero iteration update for mOE and mARMAX.
Consequently, the model parameters remain unchanged and only their covariance
information is updated.

Alternatively, you can use translatecov to convert the estimated models into
polynomial form.

fcn = @(x)idpoly(x);
mOEt = translatecov(fcn,mss_noK);
mARMAXt = translatecov(fcn,mss);

Because polyest and translatecov use different computation algorithms, the
covariance data obtained by running a zero-iteration update may not match that obtained
using translatecov.

You can view the uncertainties of the model parameters using present(mOE) and
present(mARMAX).

You can use a state-space model with  (Output-Error (OE) form) for initializing a
Hammerstein-Wiener estimation at the command line. This initialization may improve the
fit of the model. See “Initialize Hammerstein-Wiener Estimation Using Linear Model” on
page 12-8.

For more information about ARMAX and OE models, see “Input-Output Polynomial
Models”.
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Specifying Initial States for Iterative Estimation
Algorithms

When you estimate state-space models, you can specify how the algorithm treats initial
states. This information supports the estimation procedures “Estimate State-Space
Models in System Identification App” on page 7-13 and “Estimate State-Space Models at
the Command Line” on page 7-23.

In the System Identification app, set Initial state to one of the following options:

• Auto — Automatically chooses Zero, Estimate, or Backcast based on the
estimation data. If initial states have negligible effect on the prediction errors, the
initial states are set to zero to optimize algorithm performance.

• Zero — Sets all initial states to zero.
• Estimate — Treats the initial states as an unknown vector of parameters and

estimates these states from the data.
• Backcast — Estimates initial states using a backward filtering method (least-squares
fit).

At the command line, specify the method for handling initial states using the
InitialState estimation option. For example, to estimate a fourth-order state-space
model and set the initial states to be estimated from the data:

opt = ssestOptions('InitialState','estimate');
m = ssest(data,4,opt)

For a complete list of values for the InitialState model property, see the
ssestOptions, n4sidOptions and ssregestOptions reference pages.

Note For the n4sid algorithm, 'auto' and 'backcast' are equivalent to
'estimate'.
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State-Space Model Estimation Methods
You can estimate state-space models using one of the following estimation methods:

• N4SID — Noniterative, subspace method. The method works on both time-domain and
frequency-domain data and is typically faster than the SSEST algorithm. You can
choose the subspace algorithms such as CVA, SSARX, or MOESP using the n4Weight
option. You can also use this method to get an initial model (see n4sid), and then
refine the initial estimate using the iterative prediction-error method ssest.

For more information about this algorithm, see [1].
• SSEST — Iterative method that uses prediction error minimization algorithm. The

method works on both time-domain and frequency-domain data. For black-box
estimation, the method initializes the model parameters using n4sid and then
updates the parameters using an iterative search to minimize the prediction errors.
You can also use this method for structured estimation using an initial model with
initial values of one or more parameters fixed in value.

For more information on this algorithm, see [2].
• SSREGEST — Noniterative method. The method works on discrete time-domain data

and frequency-domain data. It first estimates a high-order regularized ARX or FIR
model, converts it to a state-space model and then performs balanced reduction on it.
This method provides improved accuracy on short, noisy data sets.

With all the estimation methods, you have the option of specifying how to handle initial
state, delays, feedthrough behavior and disturbance component of the model.
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Identifying Transfer Function
Models

• “What are Transfer Function Models?” on page 8-2
• “Data Supported by Transfer Function Models” on page 8-5
• “Estimate Transfer Function Models in the System Identification App” on page 8-6
• “Estimate Transfer Function Models at the Command Line” on page 8-13
• “Transfer Function Structure Specification” on page 8-14
• “Estimate Transfer Function Models by Specifying Number of Poles” on page 8-15
• “Estimate Transfer Function Models with Transport Delay to Fit Given Frequency-

Response Data” on page 8-16
• “Estimate Transfer Function Models With Prior Knowledge of Model Structure and

Constraints” on page 8-17
• “Estimate Transfer Function Models with Unknown Transport Delays” on page 8-19
• “Estimate Transfer Functions with Delays” on page 8-21
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What are Transfer Function Models?

Definition of Transfer Function Models
Transfer function models describe the relationship between the inputs and outputs of a
system using a ratio of polynomials. The model order is equal to the order of the
denominator polynomial. The roots of the denominator polynomial are referred to as the
model poles. The roots of the numerator polynomial are referred to as the model zeros.

The parameters of a transfer function model are its poles, zeros and transport delays.

Continuous-Time Representation
In continuous-time, a transfer function model has the form:

Y s
num s

den s
U s E s( )

( )

( )
( ) ( )= +

Where, Y(s), U(s) and E(s) represent the Laplace transforms of the output, input and
noise, respectively. num(s) and den(s) represent the numerator and denominator
polynomials that define the relationship between the input and the output.

Discrete-Time Representation
In discrete-time, a transfer function model has the form:

y t
num q

den q
u t e t

num q b b q b q

den

( )
( )

( )
( ) ( )

( )

= +

= + + +º

-

-

- - -

1

1

1
0 1

1
2

2

(( )q a q a q- - -
= + + +º

1
1

1
2

2
1

The roots of num(q^-1) and den(q^-1) are expressed in terms of the lag variable q^-1.

If you take the Z-transform, the transfer function has the form:
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den a az z z( )

Where, Y(z-1), U(z-1) and E(z-1) represent the Z-transforms of the output, input and noise,
respectively. z-1 is the Z-transform of the lag operator.

Delays
In continuous-time, input and transport delays are of the form:

Y s
num s

den s
e U s E s

s
( )

( )

( )
( ) ( )= +

- t

Where τ represents the delay.

In discrete-time:

y t
num

den
u t e t( ) ( ) ( )= - +t

where num and den are polynomials in the lag operator q^(-1).

Multi-Input Multi-Output Models
A single-input single-output (SISO) continuous transfer function has the form

G s
num s

den s
( )

( )

( )
=

. The corresponding transfer function model can be represented as:

Y s G s U s E s( ) ( ) ( ) ( )= +

A multi-input multi-output (MIMO) transfer function contains a SISO transfer function
corresponding to each input-output pair in the system. For example, a continuous-time
transfer function model with two inputs and two outputs has the form:
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Y s G s U s G s U s E s

Y s G s U s G s

1 11 1 12 2 1

2 21 1 22

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

= + +

= + )) ( ) ( )U s E s2 2+

Where, Gij(s) is the SISO transfer function between the ith output and the jth input. E1(s)
and E2(s) are the Laplace transforms of the noise corresponding to the two outputs.

The representation of discrete-time MIMO transfer function models is analogous.

See Also

More About
• “Data Supported by Transfer Function Models” on page 8-5
• “Estimate Transfer Function Models in the System Identification App” on page 8-6
• “Estimate Transfer Function Models at the Command Line” on page 8-13
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Data Supported by Transfer Function Models
You can estimate transfer function models from data with the following characteristics:

• Real data or complex data
• Single-output and multiple-output
• Time- or frequency-domain data

Note that you cannot use time-series data for transfer function model identification.

You must first import your data into the MATLAB workspace, as described in “Data
Preparation”.

See Also

More About
• “Estimate Transfer Function Models in the System Identification App” on page 8-6
• “Estimate Transfer Function Models at the Command Line” on page 8-13

 Data Supported by Transfer Function Models

8-5



Estimate Transfer Function Models in the System
Identification App

This topic shows how to estimate transfer function models in the System Identification
app.

Prerequisites

• Import data into the System Identification app. See “Represent Data”. For supported
data formats, see “Data Supported by Transfer Function Models” on page 8-5.

• Perform any required data preprocessing operations. If input and/or output signals
contain nonzero offsets, consider detrending your data. See “Ways to Prepare Data for
System Identification” on page 2-6.

1 In the System Identification app, select Estimate > Transfer Function Models

The Transfer Functions dialog box opens.
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Tip For more information on the options in the dialog box, click Help.
2 In the Number of poles and Number of zeros fields, specify the number of poles

and zeros of the transfer function as nonnegative integers.

Multi-Input, Multi-Output Models

For systems that are multiple input, multiple output, or both:

• To use the same number of poles or zeros for all the input/output pairs, specify a
scalar.

• To use a different number of poles and zeros for the input/output pairs, specify an
ny-by-nu matrix. ny is the number of outputs and nu is the number of inputs.

Alternatively, click .

The Model Orders dialog box opens where you specify the number of poles and
zeros for each input/output pair. Use the Output list to select an output.
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3 Select Continuous-time or Discrete-time to specify whether the model is a
continuous- or discrete-time transfer function.

For discrete-time models, the number of poles and zeros refers to the roots of the
numerator and denominator polynomials expressed in terms of the lag variable q^-1.

4 (For discrete-time models only) Specify whether to estimate the model feedthrough.
Select the Feedthrough check box.

A discrete-time model with 2 poles and 3 zeros takes the following form:

H z
b b z b z b z

a z a z

( )
-

- - -

- -
=

+ + +

+ +

1
1 2 3

1 2

0 1 2 3

1 1 2

When the model has direct feedthrough, b0 is a free parameter whose value is
estimated along with the rest of the model parameters b1, b2, b3, a1, a2. When the
model has no feedthrough, b0 is fixed to zero.

Multi-Input, Multi-Output Models

For models that are multi input, multi output or both, click Feedthrough.
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The Model Orders dialog box opens, where you specify to estimate the feedthrough
for each input/output pair separately. Use the Output list to select an output.

5 Expand the I/O Delay section to specify nominal values and constraints for transport
delays for different input/output pairs.

Use the Output list to select an output. Select the Fixed check box to specify a
transport delay as a fixed value. Specify its nominal value in the Delay field.

6 Expand the Estimation Options section to specify estimation options.
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• Set the range slider to the desired passband to specify the frequency range over
which the transfer function model must fit the data. By default the entire
frequency range (0 to Nyquist frequency) is covered.

• Select Display progress to view the progress of the optimization.
• Select Estimate covariance to estimate the covariance of the transfer function

parameters.
• (For frequency-domain data only) Specify whether to allow the estimation process

to use parameter values that may lead to unstable models. Select the Allow
unstable models option.

Setting this option is same as setting the estimation option Focus to
'prediction' at the command line. An unstable model is delivered only if it
produces a better fit to the data than other stable models computed during the
estimation process.

• Specify how to treat the initial conditions in the Initial condition list. For more
information, see “Specifying Initial Conditions for Iterative Estimation
Algorithms” on page 8-22.

• Specify the algorithm used to initialize the values of the numerator and
denominator coefficients in the Initialization method list.

• IV — Instrument Variable approach.
• SVF — State Variable Filters approach.
• N4SID — Generalized Poisson Moment Functions approach.
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• GPMF — Subspace state-space estimation approach.
• All — Combination of all of the above approaches. The software tries all the

above methods and selects the method that yields the smallest value of
prediction error norm.

7 Click Regularization to obtain regularized estimates of model parameters. Specify
the regularization constants in the Regularization Options dialog box. To learn more,
see “Regularized Estimates of Model Parameters” on page 1-48.

8 Click Iterations Options to specify options for controlling the iterations. The
Options for Iterative Minimization dialog box opens.

Iteration Options

In the Options for Iterative Minimization dialog box, you can specify the following
iteration options:

• Search Method — Method used by the iterative search algorithm. Search method
is auto by default. The descent direction is calculated using gn (Gauss-Newton),
gna (Adaptive Gauss-Newton), lm (Levenberg-Marquardt), lsqnonlin (Trust-
Region Reflective Newton), and grad (Gradient Search) successively at each
iteration until a sufficient reduction in error is achieved.
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• Output weighting — Weighting applied to the loss function to be minimized. Use
this option for multi-output estimations only. Specify as 'noise' or a positive
semidefinite matrix of size equal the number of outputs.

• Maximum number of iterations — Maximum number of iterations to use during
search.

• Termination tolerance — Tolerance value when the iterations should terminate.
• Error threshold for outlier penalty — Robustification of the quadratic criterion

of fit.
9 Click Estimate to estimate the model. A new model gets added to the System

Identification app.

Next Steps

• Validate the model by selecting the appropriate check box in the Model Views area of
the System Identification app. For more information about validating models, see
“Validating Models After Estimation” on page 17-3.

• Export the model to the MATLAB workspace for further analysis. Drag the model to
the To Workspace rectangle in the System Identification app.
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Estimate Transfer Function Models at the Command Line
This topic shows how to estimate transfer function models at the command line.

Before you estimate a transfer function model, you must have:

• Input/Output data. See “Representing Time- and Frequency-Domain Data Using iddata
Objects” on page 2-50. For supported data formats, see “Data Supported by Transfer
Function Models” on page 8-5.

• Performed any required data preprocessing operations. You can detrend your data
before estimation. For more information, see “Ways to Prepare Data for System
Identification” on page 2-6.

Alternatively, you can specify the input/output offset for the data using an estimation
option set. Use tfestOptions to create the estimation option set. Use the
InputOffset and OutputOffset name and value pairs to specify the input/output
offset.

Estimate continuous-time and discrete-time transfer function models using tfest. The
output of tfest is an idtf object, which represents the identified transfer function.

The general workflow in estimating a transfer function model is:

1 Create a data object (iddata or idfrd) that captures the experimental data.
2 (Optional) Specify estimation options using tfestOptions.
3 (Optional) Create a transfer function model that specifies the expected model

structure and any constraints on the estimation parameters.
4 Use tfest to identify the transfer function model, based on the data.
5 Validate the model. See “Model Validation”.

See Also

Related Examples
• “Troubleshoot Frequency-Domain Identification of Transfer Function Models” on

page 8-23
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Transfer Function Structure Specification
You can use a priori knowledge of the expected transfer function model structure to
initialize the estimation. The Structure property of an idtf model contains parameters
that allow you to specify the values and constraints for the numerator, denominator and
transport delays.

For example, specify a third-order transfer function model that contains an integrator and
has a transport delay of at most 1.5 seconds:

init_sys = idtf([nan nan],[1 2 1 0]);
init_sys.Structure.IODelay.Maximum = 1.5;
init_sys.Structure.Denominator.Free(end) = false;

int_sys is an idtf model with three poles and one zero. The denominator coefficient for
the s^0 term is zero and implies that one of the poles is an integrator.

init_sys.Structure.IODelay.Maximum = 1.5 constrains the transport delay to a
maximum of 1.5 seconds. The last element of the denominator coefficients (associated
with the s^0 term) is not a free estimation variable. This constraint forces one of the
estimated poles to be at s = 0.

For more information regarding configuring the initial parameterization of an estimated
transfer function, see Structure in idtf.
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Estimate Transfer Function Models by Specifying
Number of Poles

This example shows how to identify a transfer function containing a specified number of
poles for given data.

Load time-domain system response data and use it to estimate a transfer function for the
system.

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

z1 is an iddata object that contains time-domain, input-output data.

np specifies the number of poles in the estimated transfer function.

sys is an idtf model containing the estimated transfer function.

To see the numerator and denominator coefficients of the resulting estimated model sys,
enter:

sys.Numerator;
sys.Denominator;

To view the uncertainty in the estimates of the numerator and denominator and other
information, use tfdata.
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Estimate Transfer Function Models with Transport Delay
to Fit Given Frequency-Response Data

This example shows how to identify a transfer function to fit a given frequency response
data (FRD) containing additional phase roll off induced by input delay.

This example requires a Control System Toolbox™ license.

Obtain frequency response data.

For this example, use bode to obtain the magnitude and phase response data for the
following system:

Use 100 frequency points, ranging from 0.1 rad/s to 10 rad/s, to obtain the frequency
response data. Use frd to create a frequency-response data object.

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[1 2 1 1],'InputDelay',.5),freq);
data = frd(mag.*exp(1j*phase*pi/180),freq);

data is an iddata object that contains frequency response data for the described
system.

Estimate a transfer function using data. Specify an unknown transport delay for the
identified transfer function.

np = 3;
nz = 1;
iodelay = NaN;
sys = tfest(data,np,nz,iodelay);

np and nz specify the number of poles and zeros in the identified transfer function,
respectively.

iodelay specifies an unknown transport delay for the identified transfer function.

sys is an idtf model containing the identified transfer function.
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Estimate Transfer Function Models With Prior
Knowledge of Model Structure and Constraints

This example shows how to estimate a transfer function model when the structure of the
expected model is known and apply constraints to the numerator and denominator
coefficients.

Load time-domain data.

load iddata1 z1;
z1.y = cumsum(z1.y);

cumsum integrates the output data of z1. The estimated transfer function should
therefore contain an integrator.

Create a transfer function model with the expected structure.

init_sys = idtf([100 1500],[1 10 10 0]);

int_sys is an idtf model with three poles and one zero. The denominator coefficient for
the s^0 term is zero which indicates that int_sys contains an integrator.

Specify constraints on the numerator and denominator coefficients of the transfer
function model. To do so, configure fields in the Structure property:

init_sys.Structure.Numerator.Minimum = eps;
init_sys.Structure.Denominator.Minimum = eps;
init_sys.Structure.Denominator.Free(end) = false;

The constraints specify that the numerator and denominator coefficients are nonnegative.
Additionally, the last element of the denominator coefficients (associated with the s^0
term) is not an estimable parameter. This constraint forces one of the estimated poles to
be at s = 0.

Create an estimation option set that specifies using the Levenberg–Marquardt search
method.

opt = tfestOptions('SearchMethod','lm');

Estimate a transfer function for z1 using init_sys and the estimation option set.

sys = tfest(z1,init_sys,opt);

 Estimate Transfer Function Models With Prior Knowledge of Model Structure and Constraints

8-17



tfest uses the coefficients of init_sys to initialize the estimation of sys. Additionally,
the estimation is constrained by the constraints you specify in the Structure property of
init_sys. The resulting idtf model sys contains the parameter values that result from
the estimation.
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Estimate Transfer Function Models with Unknown
Transport Delays

This example shows how to estimate a transfer function model with unknown transport
delays and apply an upper bound on the unknown transport delays.

Create a transfer function model with the expected numerator and denominator structure
and delay constraints.

For this example, the experiment data consists of two inputs and one output. Both
transport delays are unknown and have an identical upper bound. Additionally, the
transfer functions from both inputs to the output are identical in structure.

init_sys = idtf(NaN(1,2),[1, NaN(1,3)],'IODelay',NaN);
init_sys.Structure(1).IODelay.Free = true;
init_sys.Structure(1).IODelay.Maximum = 7;

init_sys is an idtf model describing the structure of the transfer function from one
input to the output. The transfer function consists of one zero, three poles and a transport
delay. NaN indicates unknown coefficients.

init_sys.Structure(1).IODelay.Free = true indicates that the transport delay is
not fixed.

init_sys.Structure(1).IODelay.Maximum = 7 sets the upper bound for the
transport delay to 7 seconds.

Specify the transfer function from both inputs to the output.

init_sys = [init_sys,init_sys];

Load time-domain system response data and detrend the data.

load co2data;
Ts = 0.5; 
data = iddata(Output_exp1,Input_exp1,Ts);
T = getTrend(data);
T.InputOffset = [170,50];
T.OutputOffset = mean(data.y(1:75));
data = detrend(data, T);

Identify a transfer function model for the measured data using the specified delay
constraints.
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sys = tfest(data,init_sys);

sys is an idtf model containing the identified transfer function.
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Estimate Transfer Functions with Delays
This example shows how to estimate transfer function models with I/O delays.

The tfest command supports estimation of IO delays. In the simplest case, if you specify
NaN as the value for the IODelay input argument, tfest estimates the corresponding
delay value.

load iddata1 z1
sys = tfest(z1,2,2,NaN); % 2 poles, 2 zeros, unknown transport delay

If you want to assign an initial guess to the value of delay or prescribe bounds for its
value, you must first create a template idtf model and configure IODelay using the
model's Structure property:

sys0 = idtf([nan nan nan],[1 nan nan]);
sys0.Structure.IODelay.Value = 0.1; % initial guess
sys0.Structure.IODelay.Maximum = 1; % maximum allowable value for delay 
sys0.Structure.IODelay.Free = true; % treat delay as estimatable quantity
sys = tfest(z1,sys0);

If estimation data is in the time-domain, the delays are not estimated iteratively. If a finite
initial value is specified, that value is retained as is with no iterative updates. The same is
true of discrete-time frequency domain data. Thus in the example above, if data has a
nonzero sample time, the estimated value of delay in the returned model sys is 0.1 (same
as the initial guess specified for sys0 ). The delays are updated iteratively only for
continuous-time frequency domain data. If, on the other hand, a finite initial value for
delay is not specified (e.g., sys0.Structure.IODelay.Value = NaN ), then a value for
delay is determined using the delayest function, regardless of the nature of the data.

Determination of delay as a quantity independent of the model's poles and zeros is a
difficult task. Estimation of delays becomes especially difficult for multi-input or multi-
output data. It is strongly recommended that you perform some investigation to
determine delays before estimation. You can use functions such as delayest, arxstruc,
selstruc and impulse response analysis to determine delays. Often, physical knowledge
of the system or dedicated transient tests (how long does it take for a step change in
input to show up in a measured output?) will reveal the value of transport delays. Use the
results of such analysis to assign initial guesses as well as minimum and maximum
bounds on the estimated values of delays.
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Specifying Initial Conditions for Iterative Estimation
Algorithms

If you estimate transfer function models using tfest, you can specify how the algorithm
treats initial conditions.

In the System Identification app, set Initial condition to one of the following options:

• auto — Automatically chooses Zero, Estimate, or Backcast based on the
estimation data. If initial conditions have negligible effect on the prediction errors, the
initial conditions are set to zero to optimize algorithm performance.

• Zero — Sets all initial conditions to zero.
• Estimate — Treats the initial conditions as an estimation parameters.
• Backcast — Estimates initial conditions using a backward filtering method (least-

squares fit).

At the command line, specify the initial conditions by using an estimation option set. Use
tfestOptions to create the estimation option set. For example, create an options set
that sets the initial conditions to zero:

opt = tfestOptions('InitialCondition','zero');

See Also
tfest | tfestOptions

More About
• “Estimate Transfer Function Models in the System Identification App” on page 8-6
• “Estimate Transfer Function Models at the Command Line” on page 8-13
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Troubleshoot Frequency-Domain Identification of
Transfer Function Models

This example shows how to perform and troubleshoot the identification of a SISO system
using frequency-response data (FRD). The techniques explained here can also be applied
to MIMO models and frequency-domain input-output data.

When you use the tfest command to estimate a SISO transfer function model from the
frequency-response data, the estimation algorithm minimizes the following least-squares
loss (cost) function:

Here W is a frequency-dependent weight that you specify, G is the transfer function that is
to be estimated, f is the measured frequency-response data, and  is the frequency. Nf is
the number frequencies at which the data is available.  is the frequency-
response error.

In this example, you first estimate the model without preprocessing the data or using
estimation options to specify a weighting filter. You then apply these troubleshooting
techniques to improve the model estimation.

Estimate the Model Without Preprocessing and Filtering

Load the measured continuous-time frequency response data.

load troubleshooting_example_data Gfrd;

Gfrd is an idfrd object that stores the data.

Estimate an initial transfer function model with 11 poles and 10 zeros by using the
estimation data.

Gfit = tfest(Gfrd,11,10);

Plot the frequency-response magnitude of the estimated model and the measured
frequency-response data.
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bodemag(Gfrd,Gfit);
ylim([-100 0])
legend('Measured','Estimated')

The estimated model contains spurious dynamics. The estimation algorithm misses the
valley at 60 rad/s and the resonant peaks after that. Therefore, the model is not a good fit
to the data.

The algorithm minimizes the squared error magnitude, , in the
loss function. Plot this quantity as a function of frequency. This error plot provides a view
of which data points contribute the most to the loss function, and so are the likely limiting
factors during estimation. The plot can help you identify why there are spurious or
uncaptured dynamics.
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Because you have not specified a frequency-dependent weight,  is 1.

w = Gfrd.Frequency;
r1 = squeeze(freqresp(Gfit,w));
r2 = squeeze(freqresp(Gfrd,w));
fitError = r1-r2;
semilogx(w,abs(fitError).^2)
title('Weighted Estimation Error');
xlabel('Frequency (rad/s)');
ylabel('Magnitude (abs)')

From the data, model, and error plots you can see that:

• The largest fitting errors are below 10 rad/s.
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• The algorithm focusses on fitting the noisy high magnitude data points below 10 rad/s,
which have a large contribution to the optimization loss function. As a result, the
algorithm assigns spurious poles and zeros to this data region. To address this issue,
you can preprocess the data to improve signal-to-noise ratio in this region. You can
also use frequency-dependent weights to make the algorithm put less focus on this
region.

• Below approximately 40 rad/s, most variations in data are due to noise. There are no
significant system modes (valleys or peaks) in the data. To address this issue, you can
use a moving-average filter over the data to smooth the measured response.

• The algorithm ignores the valley around 60 rad/s and the three lightly damped
resonant peaks that follow it. These features contribute little to the loss function
because the fitting error is small at these frequencies. To address this issue, you can
specify frequency-dependent weights to make the algorithm pay more attention to
these frequencies.

Preprocess Data

To improve the estimated model quality, preprocess the data. To do so, you truncate the
low signal-to-noise portions of data below 1 rad/s and above 2e4 rad/s that are not
interesting. Then you use a moving-average filter to smooth data in the low-frequency
high-magnitude region below 40 rad/s. At these frequencies, the data has a low signal-to-
noise ratio, but has dynamics that you are interested in capturing. Do not apply the filter
at frequencies above 40 rad/s to avoid smoothing data where you see the valley and the
three peaks that follow it.

Make a copy of the original idfrd data object.

GfrdProcessed = Gfrd;

Truncate the data below 1 rad/s and above 2e4 rad/s.

GfrdProcessed = fselect(GfrdProcessed,1,2e4);

Apply a three-point centered moving-average filter to smooth out the frequency-response
data below 40 rad/s that contains spurious dynamics. The response data is stored in the
ResponseData property of the object.

w = GfrdProcessed.Frequency;
f = squeeze(GfrdProcessed.ResponseData);
idx = w<40;
f(idx) = movmean(f(idx),3);
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Here f(idx) is the frequency-response data at frequencies less than 40 rad/s.

Place the filtered data back into the original data object.

GfrdProcessed.ResponseData = f;

Plot the original and preprocessed data.

bodemag(Gfrd,GfrdProcessed);
ylim([-100 0]);
legend('Original data','Preprocessed data');

The plot shows that all desired dynamics are intact after preprocessing.
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Specify Weighting Filter

Use a low weight for the low frequency region under 10 rad/s where spurious dynamics
exist. This low weight and the smoothing applied earlier to this data reduce the chance of
spurious peaks in the estimated model response in this region.

Weight = ones(size(f));
idx = w<10;
Weight(idx) = Weight(idx)/10;

Use a high weight for data in the frequency range 40-6e3 rad/s where you want to
capture the dynamics but the response data magnitude is low.

idx = w>40 & w<6e3;
Weight(idx) = Weight(idx)*30;

Specify the weights in the WeightingFilter option of the estimation option set.

tfestOpt = tfestOptions('WeightingFilter',Weight);

Note that Weight is a custom weighting filter. You can also specify WeightingFilter as
'inv' or 'invsqrt' for frequency-response data. These options specify the weight as

 and , respectively. These options enable you to quickly test the effect
of using a higher weight for low magnitude regions of data. 'invsqrt' is typically a
good initial choice. If these weights do not yield good estimation results, you can provide
custom weights as shown in this example.

Estimate Model Using Preprocessed and Filtered Data

Estimate a transfer function model with 11 poles and 10 zeros using the preprocessed
data and specified weighting filter.

GfitNew = tfest(GfrdProcessed,11,10,tfestOpt);

Plot the original data, the initial model response, and the new model response.

bodemag(Gfrd,Gfit,GfitNew);
ylim([-100 0]);
legend('Original Data','Original Model','New Model');
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Plot the estimation error. Compute the estimation error by including the weighting filter
Weight that you used for estimating GfitNew.

w = GfrdProcessed.Frequency;
r1 = squeeze(freqresp(GfitNew,w));
r2 = squeeze(freqresp(GfrdProcessed,w));
fitErrorNew = Weight.*(r1-r2);
semilogx(w,abs(fitErrorNew).^2)
title('Weighted Estimation Error');
xlabel('Frequency (rad/s)');
ylabel('Magnitude (abs)');
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The new model successfully captures all system dynamics of interest.

You can use the weighted error plot for further troubleshooting if your initial choice of
weights does not yield a satisfactory result.

See Also
tfest | tfestOptions

More About
• “Estimating Models Using Frequency-Domain Data”
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• “Estimate Transfer Function Models at the Command Line” on page 8-13
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Identifying Frequency-Response
Models

• “What is a Frequency-Response Model?” on page 9-2
• “Data Supported by Frequency-Response Models” on page 9-4
• “Estimate Frequency-Response Models in the App” on page 9-5
• “Estimate Frequency-Response Models at the Command Line” on page 9-7
• “Selecting the Method for Computing Spectral Models” on page 9-9
• “Controlling Frequency Resolution of Spectral Models” on page 9-11
• “Spectrum Normalization” on page 9-13
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What is a Frequency-Response Model?
A frequency-response model is the frequency response of a linear system evaluated over a
range of frequency values. The model is represented by an idfrd model object that
stores the frequency response, sample time, and input-output channel information.

The frequency-response function describes the steady-state response of a system to
sinusoidal inputs. For a linear system, a sinusoidal input of a specific frequency results in
an output that is also a sinusoid with the same frequency, but with a different amplitude
and phase. The frequency-response function describes the amplitude change and phase
shift as a function of frequency.

You can estimate frequency-response models and visualize the responses on a Bode plot,
which shows the amplitude change and the phase shift as a function of the sinusoid
frequency.

For a discrete-time system sampled with a time interval T, the transfer function G(z)
relates the Z-transforms of the input U(z) and output Y(z):

Y z G z U z H z E z( ) ( ) ( ) ( ) ( )= +

The frequency-response is the value of the transfer function, G(z), evaluated on the unit
circle (z = expiwT) for a vector of frequencies, w. H(z) represents the noise transfer
function, and E(z) is the Z-transform of the additive disturbance e(t) with variance λ. The
values of G are stored in the ResponseData property of the idfrd object. The noise
spectrum is stored in the SpectrumData property.

Where, the noise spectrum is defined as:
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A MIMO frequency-response model contains frequency-responses corresponding to each
input-output pair in the system. For example, for a two-input, two-output model:

Y z G z U z G z U z H z E z
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1 11 1 12 2 1 1

2 21 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

= + +

= + GG z U z H z E z22 2 2 2( ) ( ) ( ) ( )+

Where, Gij is the transfer function between the ith output and the jth input. H1(z) and H2(z)
represent the noise transfer functions for the two outputs. E1(z) and E2(z) are the Z-
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transforms of the additive disturbances, e1(t) and e2(t), at the two model outputs,
respectively.

Similar expressions apply for continuous-time frequency response. The equations are
represented in Laplace domain. For more details, see the idfrd reference page.

See Also

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-5
• “Estimate Frequency-Response Models at the Command Line” on page 9-7

More About
• “Data Supported by Frequency-Response Models” on page 9-4

 See Also
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Data Supported by Frequency-Response Models
You can estimate spectral analysis models from data with the following characteristics:

• Complex or real data.
• Time- or frequency-domain iddata or idfrd data object. To learn more about

estimating time-series models, see “Time Series Analysis”.
• Single- or multiple-output data.

See Also

More About
• “What is a Frequency-Response Model?” on page 9-2
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Estimate Frequency-Response Models in the App
You must have already imported your data into the app and performed any necessary
preprocessing operations. For more information, see “Data Preparation”.

To estimate frequency-response models in the System Identification app:

1 In the System Identification app, select Estimate > Spectral models to open the
Spectral Model dialog box.

2 In the Method list, select the spectral analysis method you want to use. For
information about each method, see “Selecting the Method for Computing Spectral
Models” on page 9-9.

3 Specify the frequencies at which to compute the spectral model in one of the
following ways:

• In the Frequencies field, enter either a vector of values, a MATLAB expression
that evaluates to a vector, or a variable name of a vector in the MATLAB
workspace. For example, logspace(-1,2,500).

• Use the combination of Frequency Spacing and Frequencies to construct the
frequency vector of values:

• In the Frequency Spacing list, select Linear or Logarithmic frequency
spacing.

Note For etfe, only the Linear option is available.
• In the Frequencies field, enter the number of frequency points.

For time-domain data, the frequency ranges from 0 to the Nyquist frequency. For
frequency-domain data, the frequency ranges from the smallest to the largest
frequency in the data set.

4 In the Frequency Resolution field, enter the frequency resolution, as described in
“Controlling Frequency Resolution of Spectral Models” on page 9-11. To use the
default value, enter default or, equivalently, the empty matrix [].

5 In the Model Name field, enter the name of the correlation analysis model. The
model name should be unique in the Model Board.

6 Click Estimate to add this model to the Model Board in the System Identification
app.
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7 In the Spectral Model dialog box, click Close.
8 To view the frequency-response plot, select the Frequency resp check box in the

System Identification app. For more information about working with this plot, see
“Frequency Response Plots” on page 17-64.

9 To view the estimated disturbance spectrum, select the Noise spectrum check box
in the System Identification app. For more information about working with this plot,
see “Noise Spectrum Plots” on page 17-73.

10 Validate the model after estimating it. For more information, see “Model Validation”.

To export the model to the MATLAB workspace, drag it to the To Workspace rectangle in
the System Identification app. You can retrieve the responses from the resulting idfrd
model object using the bode or nyquist command.

See Also

Related Examples
• “Estimate Frequency-Response Models at the Command Line” on page 9-7

More About
• “What is a Frequency-Response Model?” on page 9-2
• “Data Supported by Frequency-Response Models” on page 9-4
• “Selecting the Method for Computing Spectral Models” on page 9-9
• “Controlling Frequency Resolution of Spectral Models” on page 9-11
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Estimate Frequency-Response Models at the Command
Line

You can use the etfe, spa, and spafdr commands to estimate spectral models. The
following table provides a brief description of each command and usage examples.

The resulting models are stored as idfrd model objects. For detailed information about
the commands and their arguments, see the corresponding reference page.

Commands for Frequency Response

Command Description Usage
etfe Estimates an empirical

transfer function using
Fourier analysis.

To estimate a model m, use the following syntax:

m=etfe(data)

spa Estimates a frequency
response with a fixed
frequency resolution
using spectral analysis.

To estimate a model m, use the following syntax:

m=spa(data)

spafdr Estimates a frequency
response with a variable
frequency resolution
using spectral analysis.

To estimate a model m, use the following syntax:

m=spafdr(data,R,w)

where R is the resolution vector and w is the frequency
vector.

Validate the model after estimating it. For more information, see “Model Validation”.

See Also

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-5

More About
• “What is a Frequency-Response Model?” on page 9-2
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• “Data Supported by Frequency-Response Models” on page 9-4
• “Selecting the Method for Computing Spectral Models” on page 9-9
• “Controlling Frequency Resolution of Spectral Models” on page 9-11
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Selecting the Method for Computing Spectral Models
This section describes how to select the method for computing spectral models in the
estimation procedures “Estimate Frequency-Response Models in the App” on page 9-5
and “Estimate Frequency-Response Models at the Command Line” on page 9-7.

You can choose from the following three spectral-analysis methods:

• etfe (Empirical Transfer Function Estimate)

For input-output data — This method computes the ratio of the Fourier transform of
the output to the Fourier transform of the input.

For time-series data — This method computes a periodogram as the normalized
absolute squares of the Fourier transform of the time series.

ETFE works well for highly resonant systems or narrowband systems. The drawback of
this method is that it requires linearly spaced frequency values, does not estimate the
disturbance spectrum, and does not provide confidence intervals. ETFE also works
well for periodic inputs and computes exact estimates at multiples of the fundamental
frequency of the input and their ratio.

• spa (SPectral Analysis)

This method is the Blackman-Tukey spectral analysis method, where windowed
versions of the covariance functions are Fourier transformed.

• spafdr (SPectral Analysis with Frequency Dependent Resolution)

This method is a variant of the Blackman-Tukey spectral analysis method with
frequency-dependent resolution. First, the algorithm computes Fourier transforms of
the inputs and outputs. Next, the products of the transformed inputs and outputs with
the conjugate input transform are smoothed over local frequency regions. The widths
of the local frequency regions can vary as a function of frequency. The ratio of these
averages computes the frequency-response estimate.
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See Also

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-5
• “Estimate Frequency-Response Models at the Command Line” on page 9-7
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Controlling Frequency Resolution of Spectral Models
This section supports the estimation procedures “Estimate Frequency-Response Models
in the App” on page 9-5 and “Estimate Frequency-Response Models at the Command
Line” on page 9-7.

What Is Frequency Resolution?
Frequency resolution is the size of the smallest frequency for which details in the
frequency response and the spectrum can be resolved by the estimate. A resolution of 0.1
rad/s means that the frequency response variations at frequency intervals at or below 0.1
rad/s are not resolved.

Note Finer resolution results in greater uncertainty in the model estimate.

Specifying the frequency resolution for etfe and spa is different than for spafdr.

Frequency Resolution for etfe and spa
For etfe and spa, the frequency resolution is approximately equal to the following value:

2p
M

radians

sampling interval

Ê

Ë
Á

ˆ

¯
˜

M is a scalar integer that sets the size of the lag window. The value of M controls the
trade-off between bias and variance in the spectral estimate.

The default value of M for spa is good for systems without sharp resonances. For etfe,
the default value of M gives the maximum resolution.

A large value of M gives good resolution, but results in more uncertain estimates. If a true
frequency function has sharp peak, you should specify higher M values.

Frequency Resolution for spafdr
In case of etfe and spa, the frequency response is defined over a uniform frequency
range, 0-Fs/2 radians per second, where Fs is the sampling frequency—equal to twice the
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Nyquist frequency. In contrast, spafdr lets you increase the resolution in a specific
frequency range, such as near a resonance frequency. Conversely, you can make the
frequency grid coarser in the region where the noise dominates—at higher frequencies,
for example. Such customizing of the frequency grid assists in the estimation process by
achieving high fidelity in the frequency range of interest.

For spafdr, the frequency resolution around the frequency k is the value R(k). You can
enter R(k) in any one of the following ways:

• Scalar value of the constant frequency resolution value in radians per second.

Note The scalar R is inversely related to the M value used for etfe and spa.
• Vector of frequency values the same size as the frequency vector.
• Expression using MATLAB workspace variables and evaluates to a resolution vector

that is the same size as the frequency vector.

The default value of the resolution for spafdr is twice the difference between
neighboring frequencies in the frequency vector.

etfe Frequency Resolution for Periodic Input
If the input data is marked as periodic and contains an integer number of periods
(data.Period is an integer), etfe computes the frequency response at frequencies
2 1 2pk

T
kk

Period
   where Period( ) = , ,..., .

For periodic data, the frequency resolution is ignored.

See Also
etfe | spa | spafdr

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-5
• “Estimate Frequency-Response Models at the Command Line” on page 9-7
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Spectrum Normalization
The spectrum of a signal is the square of the Fourier transform of the signal. The spectral
estimate using the commands spa, spafdr, and etfe is normalized by the sample time
T:

F y y
k M

M
iwT
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where WM(k) is the lag window, and M is the width of the lag window. The output
covariance Ry(kT) is given by the following discrete representation:
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Because there is no scaling in a discrete Fourier transform of a vector, the purpose of T is
to relate the discrete transform of a vector to the physically meaningful transform of the

measured signal. This normalization sets the units of F y ( )w  as power per radians per
unit time, and makes the frequency units radians per unit time.

The scaling factor of T is necessary to preserve the energy density of the spectrum after
interpolation or decimation.

By Parseval's theorem, the average energy of the signal must equal the average energy in
the estimated spectrum, as follows:
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To compare the left side of the equation (S1) to the right side (S2), enter the following

commands. In this code, phiy contains F y ( )w  between w = 0  and w p=
T

 with the
frequency step given as follows:
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length(phiy)

load iddata1

Create a time-series iddata object.

y = z1(:,1,[]);

Define sample interval from the data.

T = y.Ts;

Estimate the frequency response.

sp = spa(y);

Remove spurious dimensions

phiy = squeeze(sp.spec);

Compute average energy of the signal.

S1 = sum(y.y.^2)/size(y,1)

S1 = 19.4646

Compute average energy from the estimated energy spectrum, where S2 is scaled by T.

S2 = sum(phiy)/length(phiy)/T

S2 = 19.2076

Thus, the average energy of the signal approximately equals the average energy in the
estimated spectrum.

See Also
etfe | spa | spafdr
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Identifying Impulse-Response
Models

• “What Is Time-Domain Correlation Analysis?” on page 10-2
• “Data Supported by Correlation Analysis” on page 10-3
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
• “Compute Response Values” on page 10-8
• “Identify Delay Using Transient-Response Plots” on page 10-9
• “Correlation Analysis Algorithm” on page 10-12
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What Is Time-Domain Correlation Analysis?
Time-domain correlation analysis refers to non-parametric estimation of the impulse
response of dynamic systems as a finite impulse response (FIR) model from the data. The
estimated model is stored as transfer function model object (idtf). For information about
transfer function models, see “What are Transfer Function Models?” on page 8-2.

Correlation analysis assumes a linear system and does not require a specific model
structure.

Impulse response is the output signal that results when the input is an impulse and has
the following definition for a discrete model:

u t t

u t t

( )

( )

= >

= =

0 0

1 0

     

     

The response to an input u(t) is equal to the convolution of the impulse response, as
follows:

y t h t z u z dz
t

( ) ( )= -( ) ◊Ú0

See Also

Related Examples
• “Estimate Impulse-Response Models Using System Identification App” on page 10-

4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6

More About
• “Data Supported by Correlation Analysis” on page 10-3
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Data Supported by Correlation Analysis
You can estimate impulse-response models from data with the following characteristics:

• Real or complex data.
• Single- or multiple-output data.
• Time- or frequency-domain data with nonzero sample time.

Time-domain data must be regularly sampled. You cannot use time-series data for
correlation analysis.

See Also

More About
• “What Is Time-Domain Correlation Analysis?” on page 10-2
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Estimate Impulse-Response Models Using System
Identification App

Before you can perform this task, you must have:

• Imported data into the System Identification app. See “Import Time-Domain Data into
the App” on page 2-16. For supported data formats, see “Data Supported by
Correlation Analysis” on page 10-3.

• Performed any required data preprocessing operations. To improve the accuracy of
your model, you should detrend your data. See “Ways to Prepare Data for System
Identification” on page 2-6.

To estimate in the System Identification app using time-domain correlation analysis:

1 In the System Identification app, select Estimate > Correlation models to open the
Correlation Model dialog box.

2 In the Time span (s) field, specify a scalar value as the time interval over which the
impulse or step response is calculated. For a scalar time span T, the resulting
response is plotted from -T/4 to T.

Tip You can also enter a 2-D vector in the format [min_value max_value].
3 In the Order of whitening filter field, specify the filter order.

The prewhitening filter is determined by modeling the input as an autoregressive
process of order N. The algorithm applies a filter of the form A(q)u(t)=u_F(t). That is,
the input u(t) is subjected to an FIR filter A to produce the filtered signal u_F(t).
Prewhitening the input by applying a whitening filter before estimation might
improve the quality of the estimated impulse response g.

The order of the prewhitening filter, N, is the order of the A filter. N equals the
number of lags. The default value of N is 10, which you can also specify as [].

4 In the Model Name field, enter the name of the correlation analysis model. The
name of the model should be unique in the Model Board.

5 Click Estimate to add this model to the Model Board in the System Identification
app.

6 In the Correlation Model dialog box, click Close.
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Next Steps
• Export the model to the MATLAB workspace for further analysis by dragging it to the

To Workspace rectangle in the System Identification app.
• View the transient response plot by selecting the Transient resp check box in the

System Identification app. For more information about working with this plot and
selecting to view impulse- versus step-response, see “Impulse and Step Response
Plots” on page 17-55.

See Also

Related Examples
• “Identify Delay Using Transient-Response Plots” on page 10-9
• “Estimate Impulse-Response Models at the Command Line” on page 10-6

More About
• “What Is Time-Domain Correlation Analysis?” on page 10-2
• “Data Supported by Correlation Analysis” on page 10-3
• “Correlation Analysis Algorithm” on page 10-12

 See Also
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Estimate Impulse-Response Models at the Command
Line

Before you can perform this task, you must have:

• Input/output or frequency-response data. See “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50. For supported data formats, see
“Data Supported by Correlation Analysis” on page 10-3.

• Performed any required data preprocessing operations. If you use time-domain data,
you can detrend it before estimation. See “Ways to Prepare Data for System
Identification” on page 2-6.

Use impulseest to compute impulse response models. impulseest estimates a high-
order, noncausal FIR model using correlation analysis. The resulting models are stored as
idtf model objects and contain impulse-response coefficients in the model numerator.

To estimate the model m and plot the impulse or step response, use the following syntax:

m=impulseest(data,N);
impulse(m,Time);
step(m,Time);

where data is a single- or multiple-output iddata or idfrd object. N is a scalar value
specifying the order of the FIR system corresponding to the time range 0:Ts:(N-1)*Ts,
where Ts is the data sample time.

You can also specify estimation options, such as regularizing kernel, pre-whitening filter
order and data offsets, using impulseestOptions and pass them as an input to
impulseest. For example:

opt = impulseestOptions('RegularizationKernel','TC'));
m = impulseest(data,N,opt);

To view the confidence region for the estimated response, use impulseplot and
stepplot to create the plot. Then use showConfidence.

For example:

h = stepplot(m,Time);
showConfidence(h,3) % 3 std confidence region
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Note cra is an alternative method for computing impulse response from time-domain
data only.

Next Steps
• Perform model analysis. See “Validating Models After Estimation” on page 17-3.

See Also

Related Examples
• “Identify Delay Using Transient-Response Plots” on page 10-9
• “Compute Response Values” on page 10-8
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4

More About
• “What Is Time-Domain Correlation Analysis?” on page 10-2
• “Data Supported by Correlation Analysis” on page 10-3
• “Correlation Analysis Algorithm” on page 10-12

 See Also
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Compute Response Values
You can use impulse and step commands with output arguments to get the numerical
impulse- and step-response vectors as a function of time, respectively.

To get the numerical response values:

1 Compute the FIR model by using impulseest, as described in “Estimate Impulse-
Response Models at the Command Line” on page 10-6.

2 Apply the following syntax on the resulting model:

% To compute impulse-response data
[y,t,~,ysd] = impulse(model)
% To compute step-response data
[y,t,~,ysd] = step(model)

where y is the response data, t is the time vector, and ysd is the standard deviations
of the response.

See Also

Related Examples
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
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Identify Delay Using Transient-Response Plots
You can use transient-response plots to estimate the input delay, or dead time, of linear
systems. Input delay represents the time it takes for the output to respond to the input.

In the System Identification app: To view the transient response plot, select the
Transient resp check box in the System Identification app. For example, the following
step response plot shows a time delay of about 0.25 s before the system responds to the
input.

Step Response Plot

At the command line: You can use impulseplot to plot the impulse response. The time
delay is equal to the first positive peak in the transient response magnitude that is
greater than the confidence region for positive time values.

For example, the following commands create an impulse-response plot with a 1-standard-
deviation confidence region:

load dry2
ze = dry2(1:500); 
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opt = impulseestOptions('RegularizationKernel','TC');
sys = impulseest(ze,40,opt);
h = impulseplot(sys);
showConfidence(h,1);

The resulting figure shows that the first positive peak of the response magnitude, which is
greater than the confidence region for positive time values, occurs at 0.24 s.

Instead of using showConfidence, you can plot the confidence interval interactively, by
right-clicking on the plot and selecting Characteristics > Confidence Region.
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See Also

Related Examples
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
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Correlation Analysis Algorithm
Correlation analysis refers to methods that estimate the impulse response of a linear
model, without specific assumptions about model orders.

The impulse response, g, is the system's output when the input is an impulse signal. The
output response to a general input, u(t), is obtained as the convolution with the impulse
response. In continuous time:

y t g u t d
t
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In discrete-time:
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The values of g(k) are the discrete time impulse response coefficients.

You can estimate the values from observed input-output data in several different ways.
impulseest estimates the first n coefficients using the least-squares method to obtain a
finite impulse response (FIR) model of order n.

Several important options are associated with the estimate:

• Prewhitening — The input can be pre-whitened by applying an input-whitening filter
of order PW to the data. This minimizes the effect of the neglected tail (k > n) of the
impulse response.

1 A filter of order PW is applied such that it whitens the input signal u:

1/A = A(u)e, where A is a polynomial and e is white noise.
2 The inputs and outputs are filtered using the filter:

uf = Au, yf = Ay
3 The filtered signals uf and yf are used for estimation.

You can specify prewhitening using the PW name-value pair argument of
impulseestOptions.
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• Regularization — The least-squares estimate can be regularized. This means that a
prior estimate of the decay and mutual correlation among g(k) is formed and used to
merge with the information about g from the observed data. This gives an estimate
with less variance, at the price of some bias. You can choose one of the several kernels
to encode the prior estimate.

This option is essential because, often, the model order n can be quite large. In cases
where there is no regularization, n can be automatically decreased to secure a
reasonable variance.

You can specify the regularizing kernel using the RegularizationKernel Name-
Value pair argument of impulseestOptions.

• Autoregressive Parameters — The basic underlying FIR model can be
complemented by NA autoregressive parameters, making it an ARX model.

y t g k u t k a y t k
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This gives both better results for small n and allows unbiased estimates when data are
generated in closed loop. impulseest uses NA = 5 for t>0 and NA = 0 (no
autoregressive component) for t<0.

• Noncausal effects — Response for negative lags. It may happen that the data has
been generated partly by output feedback:
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where h(k) is the impulse response of the regulator and r is a setpoint or disturbance
term. The existence and character of such feedback h can be estimated in the same
way as g, simply by trading places between y and u in the estimation call. Using
impulseest with an indication of negative delays,

mi  impulseest  = <( , , ),data nk nb nk 0 , returns a model mi with an impulse response

h nk h nk h g g g nb nk(- ), (- - ), ..., ( ), ( ), ( ), ..., ( )1 0 1 2 +[ ]

aligned so that it corresponds to lags nk nk nb nk, ,.., , , , ...,+ +[ ]1 0 1 2 . This is achieved
because the input delay (InputDelay) of model mi is nk.
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For a multi-input multi-output system, the impulse response g(k) is an ny-by-nu matrix,
where ny is the number of outputs and nu is the number of inputs. The i–j element of the
matrix g(k) describes the behavior of the ith output after an impulse in the jth input.

See Also

Related Examples
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
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Nonlinear Black-Box Model
Identification

• “About Identified Nonlinear Models” on page 11-2
• “Nonlinear Model Structures” on page 11-7
• “Available Nonlinear Models” on page 11-12
• “Preparing Data for Nonlinear Identification” on page 11-15
• “What are Nonlinear ARX Models?” on page 11-17
• “Identifying Nonlinear ARX Models” on page 11-21
• “Available Nonlinearity Estimators for Nonlinear ARX Models” on page 11-27
• “Estimate Nonlinear ARX Models in the App” on page 11-29
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-32
• “Estimate Nonlinear ARX Models Initialized Using Linear ARX Models”

on page 11-44
• “Validate Nonlinear ARX Models” on page 11-49
• “Using Nonlinear ARX Models” on page 11-55
• “How the Software Computes Nonlinear ARX Model Output” on page 11-57
• “Linear Approximation of Nonlinear Black-Box Models” on page 11-64
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About Identified Nonlinear Models

What Are Nonlinear Models?
Dynamic models in System Identification Toolbox software are mathematical relationships
between the inputs u(t) and outputs y(t) of a system. The model is dynamic because the
output value at the current time depends on the input-output values at previous time
instants. Therefore, dynamic models have memory of the past. You can use the input-
output relationships to compute the current output from previous inputs and outputs.
Dynamic models have states, where a state vector contains the information of the past.

The general form of a model in discrete time is:

y(t) = f(u(t - 1), y(t - 1), u(t - 2), y(t - 2), . . .)

Such a model is nonlinear if the function f is a nonlinear function. f may represent
arbitrary nonlinearities, such as switches and saturations.

The toolbox uses objects to represent various linear and nonlinear model structures. The
nonlinear model objects are collectively known as identified nonlinear models. These
models represent nonlinear systems with coefficients that are identified using measured
input-output data. See “Nonlinear Model Structures” on page 11-7 for more
information.

When to Fit Nonlinear Models
In practice, all systems are nonlinear and the output is a nonlinear function of the input
variables. However, a linear model is often sufficient to accurately describe the system
dynamics. In most cases, you should first try to fit linear models.

However, for some scenarios, you might need the additional flexibility of nonlinear
models.

Linear Model Is Not Good Enough

You might need nonlinear models when a linear model provides a poor fit to the measured
output signals and cannot be improved by changing the model structure or order.
Nonlinear models have more flexibility in capturing complex phenomena than the linear
models of similar orders.
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Physical System Is Weakly Nonlinear

From physical insight or data analysis, you might know that a system is weakly nonlinear.
In such cases, you can estimate a linear model and then use this model as an initial model
for nonlinear estimation. Nonlinear estimation can improve the fit by using nonlinear
components of the model structure to capture the dynamics not explained by the linear
model. For more information, see “Initialize Nonlinear ARX Estimation Using Linear
Model” on page 11-25 and “Initialize Hammerstein-Wiener Estimation Using Linear
Model” on page 12-8.

Physical System Is Inherently Nonlinear

You might have physical insight that your system is nonlinear. Certain phenomena are
inherently nonlinear in nature, including dry friction in mechanical systems, actuator
power saturation, and sensor nonlinearities in electromechanical systems. You can try
modeling such systems using the Hammerstein-Wiener model structure, which lets you
interconnect linear models with static nonlinearities. For more information, see
“Identifying Hammerstein-Wiener Models” on page 12-5.

Nonlinear models might be necessary to represent systems that operate over a range of
operating points. In some cases, you might fit several linear models, where each model is
accurate at specific operating conditions. You can also try using the nonlinear ARX model
structure with tree partitions to model such systems. For more information, see
“Identifying Nonlinear ARX Models” on page 11-21.

If you know the nonlinear equations describing a system, you can represent this system as
a nonlinear grey-box model and estimate the coefficients from experimental data. In this
case, the coefficients are the parameters of the model. For more information, see “Grey-
Box Model Estimation”.

Before fitting a nonlinear model, try transforming your input and output variables such
that the relationship between the transformed variables becomes linear. For example, you
might be dealing with a system that has current and voltage as inputs to an immersion
heater, and the temperature of the heated liquid as an output. In this case, the output
depends on the inputs via the power of the heater, which is equal to the product of
current and voltage. Instead of fitting a nonlinear model to two-input and one-output data,
you can create a new input variable by taking the product of current and voltage. You can
then fit a linear model to the single-input/single-output data.
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Linear and Nonlinear Dynamics Are Captured Separately

You might have multiple data sets that capture the linear and nonlinear dynamics
separately. For example, one data set with low amplitude input (excites the linear
dynamics only) and another data set with high amplitude input (excites the nonlinear
dynamics). In such cases, first estimate a linear model using the first data set. Next, use
the model as an initial model to estimate a nonlinear model using the second data set. For
more information, see “Initialize Nonlinear ARX Estimation Using Linear Model” on page
11-25 and “Initialize Hammerstein-Wiener Estimation Using Linear Model” on page 12-
8.

Nonlinear Model Estimation
Black Box Estimation

In a black-box or “cold start” estimation, you only have to specify the order to configure
the structure of the model.

sys = estimator(data,orders) 

where estimator is the name of an estimation command to use for the desired model
type.

For example, you use nlarx to estimate nonlinear ARX models, and nlhw for
Hammerstein-Wiener models.

The first argument, data, is time-domain data represented as an iddata object. The
second argument, orders, represents one or more numbers whose definition depends
upon the model type.

• For nonlinear ARX models, orders refers to the model orders and delays for defining
the regressor configuration.

• For Hammerstein-Wiener models, orders refers to the model order and delays of the
linear subsystem transfer function.

When working in the System Identification app, you specify the orders in the appropriate
edit fields of corresponding model estimation dialog boxes.

Refining Existing Models

You can refine the parameters of a previously estimated nonlinear model using the
following command:
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sys = estimator(data,sys0) 

This command updates the parameters of an existing model sys0 to fit the data and
returns the results in output model sys. For nonlinear systems, estimator can be nlarx,
nlhw, or nlgreyest.

Initializing Estimations with Known Information About Linear Component

Nonlinear ARX (idnlarx) and Hammerstein-Wiener (idnlhw) models contain a linear
component in their structure. If you have knowledge of the linear dynamics, such as
through identification of a linear model using low-amplitude data, you can incorporate it
during the estimation of nonlinear models. In particular, you can replace the orders
input argument with a previously estimated linear model using the following command:

sys = estimator(data,LinModel)

This command uses the linear model LinModel to determine the order of the nonlinear
model sys as well as initialize the coefficients of its linear component.

Estimation Options

There are many options associated with an estimation algorithm that configures the
estimation objective function, initial conditions, and numerical search algorithm, among
other things of the model. For every estimation command, estimator, there is a
corresponding option command named estimatorOptions. For example, use
nlarxOptions to generate the option set for nlarx. The options command returns an
option set that you then pass as an input argument to the corresponding estimation
command.

For example, to estimate a nonlinear ARX model with simulation as the focus and
lsqnonlin as the search method, use nlarxOptions.

load iddata1 z1
Options = nlarxOptions('Focus','simulation','SearchMethod','lsqnonlin');
sys= nlarx(z1,[2 2 1],Options);

Information about the options used to create an estimated model is stored in
sys.Report.OptionsUsed. For more information, see “Estimation Report” on page 1-
29.
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See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-21
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on

page 13-37

More About
• “Nonlinear Model Structures” on page 11-7
• “Available Nonlinear Models” on page 11-12
• “About Identified Linear Models” on page 1-13
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Nonlinear Model Structures
About System Identification Toolbox Model Objects
Objects are instances of model classes. Each class is a blueprint that defines the following
information about your model:

• How the object stores data
• Which operations you can perform on the object

This toolbox includes nine classes for representing models. For example, idss represents
linear state-space models and idnlarx represents nonlinear ARX models. For a complete
list of available model objects, see “Available Linear Models” on page 1-25 and “Available
Nonlinear Models” on page 11-12.

Model properties define how a model object stores information. Model objects store
information about a model, such as the mathematical form of a model, names of input and
output channels, units, names and values of estimated parameters, parameter
uncertainties, and estimation report. For example, an idss model has an InputName
property for storing one or more input channel names.

The allowed operations on an object are called methods. In System Identification Toolbox
software, some methods have the same name but apply to multiple model objects. For
example, step creates a step response plot for all dynamic system objects. However,
other methods are unique to a specific model object. For example, canon is unique to
state-space idss models and linearize to nonlinear black-box models.

Every class has a special method, called the constructor, for creating objects of that class.
Using a constructor creates an instance of the corresponding class or instantiates the
object. The constructor name is the same as the class name. For example, idss and
idnlarx are both the name of the class and the name of the constructor for instantiating
the linear state-space models and nonlinear ARX models, respectively.

When to Construct a Model Structure Independently of
Estimation
You use model constructors to create a model object at the command line by specifying all
required model properties explicitly.

You must construct the model object independently of estimation when you want to:
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• Simulate or analyze the effect of model parameters on its response, independent of
estimation.

• Specify an initial guess for specific model parameter values before estimation. You can
specify bounds on parameter values, or set up the auxiliary model information in
advance, or both. Auxiliary model information includes specifying input/output names,
units, notes, user data, and so on.

In most cases, you can use the estimation commands to both construct and estimate the
model—without having to construct the model object independently. For example, the
estimation command tfest creates a transfer function model using data and the number
of poles and zeros of the model. Similarly, nlarx creates a nonlinear ARX model using
data and model orders and delays that define the regressor configuration. For information
about how to both construct and estimate models with a single command, see “Model
Estimation Commands” on page 1-44.

In case of grey-box models, you must always construct the model object first and then
estimate the parameters of the ordinary differential or difference equation.

Commands for Constructing Nonlinear Model Structures
The following table summarizes the model constructors available in the System
Identification Toolbox product for representing various types of nonlinear models.

After model estimation, you can recognize the corresponding model objects in the
MATLAB Workspace browser by their class names. The name of the constructor matches
the name of the object it creates.

For information about how to both construct and estimate models with a single command,
see “Model Estimation Commands” on page 1-44.
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Summary of Model Constructors

Model Constructor Resulting Model Class
idnlgrey Nonlinear ordinary differential or difference equation

(grey-box models). You write a function or MEX-file to
represent the governing equations.

idnlarx Nonlinear ARX models, which define the predicted
output as a nonlinear function of past inputs and
outputs.

idnlhw Nonlinear Hammerstein-Wiener models, which
include a linear dynamic system with nonlinear static
transformations of inputs and outputs.

For more information about when to use these commands, see “When to Construct a
Model Structure Independently of Estimation” on page 11-7.

Model Properties
A model object stores information in the properties of the corresponding model class.

The nonlinear models idnlarx, idnlhw, and idnlgrey are based on the idnlmodel
superclass and inherit all idnlmodel properties.

In general, all model objects have properties that belong to the following categories:

• Names of input and output channels, such as InputName and OutputName
• Sample time of the model, such as Ts
• Time units
• Model order and mathematical structure (for example, ODE or nonlinearities)
• Properties that store estimation results (Report)
• User comments, such as Notes and Userdata

For information about getting help on object properties, see the model reference pages.

The following table summarizes the commands for viewing and changing model property
values. Property names are not case sensitive. You do not need to type the entire property
name if the first few letters uniquely identify the property.
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Task Command Example
View all model
properties and
their values

Use get. Load sample data, compute a nonlinear ARX
model, and list the model properties.

load iddata1
sys = nlarx(z1,[4 4 1]);
get(sys)

Access a specific
model property

Use dot notation. View the nonlinearity estimator in the previous
model.

sys.Nonlinearity

For properties, such as
Report, that are configured
like structures, use dot
notation of the form
model.PropertyName.Fiel
dName.
FieldName is the name of
any field of the property.

View the options used in the nonlinear ARX
model estimation.

sys.Report.OptionsUsed

Change model
property values

Use dot notation. Change the nonlinearity estimator.

sys.Nonlinearity = 'sigmoidnet';

Access model
parameter values
and uncertainty
information

Use getpvec and getcov
(for idnlgrey models only).

Model parameters and associated uncertainty
data.

getpvec(sys)

Set model
parameter values
and uncertainty
information

Use setpar and setcov (for
idnlgrey models only).

Set the parameter vector.

sys = setpar(sys,'Value',parlist)

Get number of
parameters

Use nparams. Get the number of parameters.

nparams(sys)
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See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-21
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on

page 13-37

More About
• “About Identified Nonlinear Models” on page 11-2
• “Available Nonlinear Models” on page 11-12
• “About Identified Linear Models” on page 1-13
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Available Nonlinear Models

Overview
The System Identification Toolbox software provides three types of nonlinear model
structures:

• “Nonlinear ARX Models” on page 11-12
• “Hammerstein-Wiener Models” on page 11-13
• “Nonlinear Grey-Box Models” on page 11-13

The toolbox refers to Nonlinear ARX and Hammerstein-Wiener collectively as "nonlinear
black box" models. You can configure these models in a variety of ways to represent
various behavior using nonlinear functions such as wavelet networks, tree partitions,
piece-wise linear functions, polynomials, saturation and dead zones.

The nonlinear grey-box models lets you to estimate coefficients of nonlinear differential
equations.

Nonlinear ARX Models
Nonlinear ARX models extend the linear ARX models on page 6-2 to the nonlinear case
and have this structure:

y(t) = f(y(t - 1), ..., y(t - na), u(t - nk), ..., u(t -nk -nb + 1))

where the function f depends on a finite number of previous inputs u and outputs y. na is
the number of past output terms and nb is the number of past input terms used to predict
the current output. nk is the delay from the input to the output, specified as the number
of samples.

Use this model to represent nonlinear extensions of linear models. This structure allows
you to model complex nonlinear behavior using flexible nonlinear functions, such as
wavelet and sigmoid networks. Typically, you use nonlinear ARX models as black-box
structures. The nonlinear function of the nonlinear ARX model is a flexible nonlinearity
estimator with parameters that need not have physical significance.

System Identification Toolbox software uses idnlarx objects to represent nonlinear ARX
models. For more information about estimation, see “Nonlinear ARX Models”.
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Hammerstein-Wiener Models
Hammerstein-Wiener models describe dynamic systems using one or two static nonlinear
blocks in series with a linear block. The linear block is a discrete transfer function and
represents the dynamic component of the model.

You can use the Hammerstein-Wiener structure to capture physical nonlinear effects in
sensors and actuators that affect the input and output of a linear system, such as dead
zones and saturation. Alternatively, use Hammerstein-Wiener structures as black box
structures that do not represent physical insight into system processes.

System Identification Toolbox software uses idnlhw objects to represent Hammerstein-
Wiener models. For more information about estimation, see “Hammerstein-Wiener
Models”.

Nonlinear Grey-Box Models
Nonlinear state-space models have this representation:

&x t F x t u t

y t H x t u t

( ) = ( ) ( )( )

( ) = ( ) ( )( )

,

,

where F and H can have any parameterization. A nonlinear ordinary differential equation
of high order can be represented as a set of first order equations. You use the idnlgrey
object to specify the structures of such models based on physical insight about your
system. The parameters of such models typically have physical interpretations. Use this
model to represent nonlinear ODEs with unknown parameters.

For more information about estimating nonlinear state-space models, see “Grey-Box
Model Estimation”.

See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-21
• “Identifying Hammerstein-Wiener Models” on page 12-5
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• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on
page 13-37

More About
• “About Identified Nonlinear Models” on page 11-2
• “Nonlinear Model Structures” on page 11-7
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Preparing Data for Nonlinear Identification
Estimating nonlinear ARX and Hammerstein-Wiener models requires uniformly sampled
time-domain data. Your data can have one or more input and output channels.

For time-series data, you can only fit nonlinear ARX models and nonlinear state-space
models on page 13-34.

Tip Whenever possible, use different data sets for model estimation and validation.

Before estimating models, import your data into the MATLAB workspace and do one of
the following:

• In the System Identification app. Import data into the app, as described in
“Represent Data”.

• At the command line. Represent your data as an iddata object, as described in the
corresponding reference page.

You can analyze data quality and preprocess data by interpolating missing values, filtering
to emphasize a specific frequency range, or resampling using a different sample time (see
“Ways to Prepare Data for System Identification” on page 2-6).

Data detrending can be useful in certain cases, such as before modeling the relationship
between the change in input and the change in output about an operating point. However,
most applications do not require you to remove offsets and linear trends from the data
before nonlinear modeling.

See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-21
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on

page 13-37
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More About
• “About Identified Nonlinear Models” on page 11-2
• “Available Nonlinear Models” on page 11-12
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What are Nonlinear ARX Models?
Nonlinear ARX models extend the linear ARX models on page 6-2 to the nonlinear case.
The structure of these models enables you to model complex nonlinear behavior using
flexible nonlinear functions, such as wavelet and sigmoid networks. For information about
when to fit nonlinear models, see “About Identified Nonlinear Models” on page 11-2.

Nonlinear ARX Model Extends the Linear ARX Structure
A linear SISO ARX model on page 6-2 has the following structure:

y t a y t a y t a y t na b u t b u tna( ) ( ) ( ) ... ( ) ( ) ( ) ...+ - + - + + - = + - + +1 2 1 21 2 1 bb u t nb e tnb ( )- + + ( )1

Where, u,y, and e are the input, output, and noise. This structure implies that the current
output y(t) is predicted as a weighted sum of past output values and current and past
input values. na is the number of past output terms, and nb is the number of past input
terms used to predict the current output. The input delay nk is set to zero to simplify the
notation. Rewriting the equation as a product gives:

y t a a a b b b y t y t yp na nb( ) , ,..., , , ,.., ( ), ( ),..., (= - - -[ ]* - -1 2 1 2 1 2 tt na u t u t u t nb
T

- - - -[ ]), ( ), ( ),..., ( )1 1

where y t y t y t na u t u t u t nb( ), ( ),..., ( ), ( ), ( ),..., ( )- - - - - -1 2 1 1  are delayed input and output
variables, called regressors. The coefficients vector [–a1, ... ,bnb] represents the weighting
applied to these regressors. The linear ARX model thus predicts the current output yp as a
weighted sum of its regressors.

The structure of a nonlinear ARX model allows the following additional flexibility:

• Instead of the weighted sum of the regressors that represents a linear mapping, the
nonlinear ARX model has a more flexible nonlinear mapping function, F.

y t F y t y t y t u t u t u tp ( ) ( ( ), ( ), ( ), ..., ( ), ( ), ( ),..)= - - - - -1 2 3 1 2

Inputs to F are model regressors. When you specify the nonlinear ARX model
structure, you can choose one of several available nonlinear functions. For example, F
can represent a weighted sum of wavelets that operate on the distance of the
regressors from their means. For more information, see “Available Nonlinearity
Estimators for Nonlinear ARX Models” on page 11-27.

 What are Nonlinear ARX Models?

11-17



• Nonlinear ARX regressors can be both delayed input-output variables and more
complex, nonlinear expressions of delayed input and output variables. Examples of
such nonlinear regressors are y(t-1)2, u(t-1)*y(t-2), abs(u(t-1)), and
max(u(t-1)*y(t-3),-10).

Structure of Nonlinear ARX Models
A nonlinear ARX model consists of model regressors and a nonlinearity estimator. The
nonlinearity estimator comprises both linear and nonlinear functions that act on the
model regressors to give the model output. This block diagram represents the structure of
a nonlinear ARX model in a simulation scenario.

Regressors

Nonlinear
Function

u

y

u(t),u(t-1),y(t-1), ...
Linear

Function

Nonlinearity Estimator

The software computes the nonlinear ARX model output y in two stages:

1 It computes regressor values from the current and past input values and past output
data.

In the simplest case, regressors are delayed inputs and outputs, such as u(t-1) and
y(t-3). These kind of regressors are called standard regressors. You specify the
standard regressors using the model orders and delay. For more information, see
“Nonlinear ARX Model Orders and Delay” on page 11-19. You can also specify
custom regressors, which are nonlinear functions of delayed inputs and outputs. For
example, u(t-1)*y(t-3). To create a set of polynomial type regressors, use polyreg.

By default, all regressors are inputs to both the linear and the nonlinear function
blocks of the nonlinearity estimator. You can choose a subset of regressors as inputs
to the nonlinear function block.

2 It maps the regressors to the model output using the nonlinearity estimator block.
The nonlinearity estimator block can include linear and nonlinear blocks in parallel.
For example:
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F x L x r d g Q x rT
( ) ( ) ( )= - + + -( )

Here, x is a vector of the regressors, and r is the mean of the regressors x. L x d
T

( ) +

is the output of the linear function block and is affine when d ≠ 0. d is a scalar offset.

g Q x r( )-( )  represents the output of the nonlinear function block. Q is a projection
matrix that makes the calculations well conditioned. The exact form of F(x) depends
on your choice of the nonlinearity estimator. You can select from available
nonlinearity estimators on page 11-27, such as tree-partition networks, wavelet
networks, and multilayer neural networks. You can also exclude either the linear or
the nonlinear function block from the nonlinearity estimator.

When estimating a nonlinear ARX model, the software computes the model
parameter values, such as L, r, d, Q, and other parameters specifying g.

Resulting nonlinear ARX models are idnlarx objects that store all model data, including
model regressors and parameters of the nonlinearity estimator. For more information
about these objects, see “Nonlinear Model Structures” on page 11-7.

Typically, you use nonlinear ARX models as black-box structures. The nonlinear function
of the nonlinear ARX model is a flexible nonlinearity estimator with parameters that need
not have physical significance. You can estimate nonlinear ARX in the System
Identification app or at the command line using the nlarx command. You can use
uniformly sampled time-domain input-output data or time-series data (no inputs) for
estimating nonlinear ARX models. Your data can have one or more input and output
channels. You cannot use frequency-domain data for estimation.

Nonlinear ARX Model Orders and Delay
You use the orders and delays of a nonlinear ARX model to define the standard regressors
of the model. The orders and delay are defined as follows:

• na — Number of past output terms used to predict the current output.
• nb — Number of past input terms used to predict the current output.
• nk — Delay from input to the output in terms of the number of samples.

The meaning of na, nb, and nk is similar to that for linear ARX model parameters. Orders
are specified as scalars for SISO data, and as ny-by-nu matrices for MIMO data, where ny
and nu are the number of outputs and inputs. If you are not sure what values to use for
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the orders and delays, you can estimate them as described in “Preliminary Step –
Estimating Model Orders and Input Delays” on page 6-10. Such an estimate is based on
linear ARX models and only provides initial guidance. The best orders for a linear ARX
model might not be the best orders for a nonlinear ARX model.

System Identification Toolbox software computes standard regressors using the model
orders and delays. For example, suppose that you specify na = 2, nb = 3, and nk = 5
for a SISO model with input u and output y. The toolbox computes standard regressors
y(t-2), y(t-1),u(t-5), u(t-6), and u(t-7).

You can also specify custom regressors in addition to standard regressors. For more
information, see “Estimate Nonlinear ARX Models in the App” on page 11-29 and
“Estimate Nonlinear ARX Models at the Command Line” on page 11-32.

See Also
idnlarx | nlarx

More About
• “About Identified Nonlinear Models” on page 11-2
• “Identifying Nonlinear ARX Models” on page 11-21
• “Available Nonlinearity Estimators for Nonlinear ARX Models” on page 11-27
• “Using Nonlinear ARX Models” on page 11-55
• “How the Software Computes Nonlinear ARX Model Output” on page 11-57
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Identifying Nonlinear ARX Models
Nonlinear ARX models extend the linear ARX model to the nonlinear case. For information
about the structure of nonlinear ARX models, see “What are Nonlinear ARX Models?” on
page 11-17

You can estimate nonlinear ARX models in the System Identification app or at the
command line using the nlarx command. To estimate a nonlinear ARX model, you first
prepare the estimation data. You then configure the model structure and estimation
algorithm, and then perform the estimation. After estimation, you can validate the
estimated model as described in “Validate Nonlinear ARX Models” on page 11-49.

Prepare Data for Identification
You can use uniformly sampled time-domain input-output data or time-series data (no
inputs) for estimating nonlinear ARX models. Your data can have zero or more input
channels and one or more output channels. You cannot use frequency-domain data for
estimation.

To prepare the data for model estimation, import your data into the MATLAB workspace,
and do one of the following:

• In the System Identification app — Import data into the app, as described in
“Represent Data”.

• At the command line — Represent your data as an iddata object.

After importing the data, you can analyze data quality and preprocess data by
interpolating missing values, filtering to emphasize a specific frequency range, or
resampling using a different sample time. For more information, see “Ways to Prepare
Data for System Identification” on page 2-6. For most applications, you do not need to
remove offsets and linear trends from the data before nonlinear modeling. However, data
detrending can be useful in some cases, such as before modeling the relationship between
the change in input and output about an operating point.

After preparing your estimation data, you can configure your model structure, loss
function, and estimation algorithm, and then estimate the model using the estimation
data.

 Identifying Nonlinear ARX Models

11-21



Configure Nonlinear ARX Model Structure
A nonlinear ARX model consists of standard and custom regressors, and a nonlinearity
estimator. The block diagram represents the structure of a nonlinear ARX model on page
11-18 in a simulation scenario.

Regressors

Nonlinear
Function

u

y

u(t),u(t-1),y(t-1), ...
Linear

Function

Nonlinearity Estimator

To configure the structure of a nonlinear ARX model:

1 Configure the model regressors.

Choose the standard and custom regressors based on your knowledge of the physical
system you are trying to model.

a Specify standard regressors in one of the following ways:

• Specify model orders and delay to create the set of standard regressors. For
more information, see “Nonlinear ARX Model Orders and Delay” on page 11-
19.

• Initialize using a linear ARX model. You can perform this operation at the
command line only. The initialization configures the nonlinear ARX model to
use standard regressors of the linear model. For more information, see
“Initialize Nonlinear ARX Estimation Using Linear Model” on page 11-25.

b Specify custom regressors. Custom regressors are arbitrary functions of past
inputs and outputs, such as products, powers, and other MATLAB expressions of
input and output variables. Specify custom regressors in addition to, or instead
of, standard regressors for greater flexibility in modeling your data.

c Include only a subset of standard and custom regressors as inputs to the
nonlinear function of the nonlinear estimator block. Including only a subset of
regressors can help reduce model complexity and keep the estimation well-
conditioned.
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The choice of the subset to use can require multiple trials. You can examine a
nonlinear ARX plot on page 11-50 to help you gain insight into which regressors
have the strongest effect on the model output. Understanding the relative
importance of the regressors on the output can then help you decide which
regressors to include in the nonlinear function.

2 Configure the nonlinearity estimator block.

Specify and configure the nonlinearity estimator, F(x).

F x L x r d g Q x rT
( ) ( ) ( )= - + + -( )

Here, x is a vector of the regressors, and r is the mean of the regressors x. L x d
T

( ) +

is the output of the linear function block and is affine when d ≠ 0. d is a scalar offset.

g Q x r( )-( )  represents the output of the nonlinear function block. Q is a projection
matrix that makes the calculations well conditioned. The exact form of F(x) depends
on your choice of the nonlinearity estimator. The default nonlinearity is a wavelet
network. For information about the available nonlinearity estimators, see “Available
Nonlinearity Estimators for Nonlinear ARX Models” on page 11-27.

You can also perform one of the following tasks:

a Exclude the nonlinear function from the nonlinearity estimator such that F(x) =

L x d
T

( ) + .
b Exclude the linear function from the nonlinearity estimator such that F(x) =

g Q x r( )-( ) .

Note You cannot exclude the linear function from tree partitions and neural
networks.

For information about how to configure the model structure at the command line and in
the app, see “Estimate Nonlinear ARX Models at the Command Line” on page 11-32 and
“Estimate Nonlinear ARX Models in the App” on page 11-29.
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Specify Estimation Options for Nonlinear ARX Models
To configure the model estimation, specify the loss function to be minimized, and choose
the estimation algorithm and other estimation options to perform the minimization.

Configure Loss Function

The loss function or cost function is a function of the error between the model output and
the measured output. For more information about loss functions, see “Loss Function and
Model Quality Metrics” on page 1-64.

At the command line, use the nlarx option set, nlarxOptions to configure your loss
function. You can specify the following options:

• Focus — Specifies whether the simulation or prediction error is minimized during
parameter estimation. By default, the software minimizes one-step prediction errors,
which correspond to a Focus value of 'prediction'. If you want a model that is
optimized for reproducing simulation behavior, specify Focus as 'simulation'.
Minimization of simulation error requires differentiable nonlinear functions and takes
more time than one-step-ahead prediction error minimization. Thus, you cannot use
treepartition and neuralnet nonlinearities when minimizing the simulation error
because these nonlinearity estimators are not differentiable.

• OutputWeight — Specifies a weighting of the error in multi-output estimations.
• Regularization — Modifies the loss function to add a penalty on the variance of the

estimated parameters. For more information, see “Regularized Estimates of Model
Parameters” on page 1-48.

Specify Estimation Algorithm

To estimate a nonlinear ARX model, the software uses iterative search algorithms to
minimize the error between the simulated or predicted model output and the measured
output. At the command line, use nlarxOptions to specify the search algorithm and
other estimation options. Some of the options you can specify are:

• SearchMethod — Search method for minimization of prediction or simulation errors,
such as Gauss-Newton and Levenberg-Marquardt line search, and Trust-Region-
Reflective Newton approach.

• SearchOptions — Option set for the search algorithm, with fields that depend on the
value of SearchMethod, such as:
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• MaxIterations — Maximum number of iterations.
• Tolerance — Condition for terminating iterative search when the expected

improvement of the parameter values is less than a specified value.

To see a complete list of available estimation options, see nlarxOptions. For details
about how to specify these estimation options in the app, see “Estimate Nonlinear ARX
Models in the App” on page 11-29.

After preprocessing the estimation data and configuring the model structure and
estimation options, you can estimate the model in the System Identification app, or
using nlarx at the command line. The resulting model is an idnlarx object that stores
all model data, including model regressors and parameters of the nonlinearity estimator.
For more information about these model objects, see “Nonlinear Model Structures” on
page 11-7. You can validate the estimated model as described in “Validate Nonlinear ARX
Models” on page 11-49.

Initialize Nonlinear ARX Estimation Using Linear Model
At the command line, you can use an ARX structure polynomial model (idpoly with only
A and B as active polynomials) for nonlinear ARX estimation. To learn more about when to
use linear models, see “When to Fit Nonlinear Models” on page 11-2.

Typically, you create a linear ARX model using the arx command. You can provide the
linear model when constructing or estimating a nonlinear ARX model. For example, use
the following syntax to estimate a nonlinear ARX model using estimation data and a linear
ARX model LinARXModel.

m = nlarx(data,LinARXModel)

Here m is an idnlarx object, and data is a time-domain iddata object. The software
uses the linear model for initializing the nonlinear ARX estimation by:

• Assigning the linear ARX model orders and delays as initial values of the nonlinear
ARX model orders (na and nb properties of the idnlarx object) and delays (nk
property). The software uses these orders and delays to compute standard regressors
in the nonlinear ARX model structure on page 11-18.

• Using the A and B polynomials of the linear model to compute the linear function of
the nonlinearity estimators (LinearCoef parameter of the nonlinearity estimator
object), except if the nonlinearity estimator is a neural network.
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During estimation, the estimation algorithm uses these values to adjust the nonlinear
model to the data.

Note When you use the same data for estimation, a nonlinear ARX model initialized using
a linear ARX model produces a better fit to measured output than the linear ARX model
itself.

By default, the nonlinearity estimator is the wavelet network (wavenet object). You can
also specify different input and output nonlinearity estimators. For example, you can
specify a sigmoid network nonlinearity estimator.

m = nlarx(data,LinARXModel,'sigmoid')

For an example, see “Estimate Nonlinear ARX Models Initialized Using Linear ARX
Models” on page 11-44.

See Also
Functions
idnlarx | nlarx

Apps
System Identification

More About
• “What are Nonlinear ARX Models?” on page 11-17
• “Estimate Nonlinear ARX Models in the App” on page 11-29
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-32
• “Validate Nonlinear ARX Models” on page 11-49
• “Using Nonlinear ARX Models” on page 11-55
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Available Nonlinearity Estimators for Nonlinear ARX
Models

System Identification Toolbox software provides several nonlinearity estimators F(x) for
nonlinear ARX models. For more information about F(x), see “Structure of Nonlinear ARX
Models” on page 11-18.

Each nonlinearity estimator corresponds to an object class in this toolbox. When you
estimate nonlinear ARX models in the app, System Identification Toolbox creates and
configures objects based on these classes. You can also create and configure nonlinearity
estimators at the command line.

Most nonlinearity estimators represent the nonlinear function as a summed series of
nonlinear units, such as wavelet networks or sigmoid functions. You can configure the
number of nonlinear units n for estimation. For a detailed description of each estimator,
see the references page of the corresponding nonlinearity class.

Nonlinearity Class Structure Comments
Wavelet
network
(default)

wavenet
g x xk

k

n

k k( ) = -( )( )
=
Â a k b g

1

where k( )s  is the wavelet function.

By default, the
estimation algorithm
determines the
number of units n
automatically.

One layer
sigmoid
network

sigmoidnet
g x xk

k

n

k k( ) = -( )( )
=
Â a k b g

1

where k( )s e
s

= +( )
-

1
1

 is the sigmoid

function. bk  is a row vector such that

b gk kx( )-  is a scalar.

Default number of
units n is 10.
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Nonlinearity Class Structure Comments
Tree partition treepartition Piecewise linear function over partitions

of the regressor space defined by a binary
tree.

The estimation
algorithm
determines the
number of units
automatically.
Try using tree
partitions for
modeling data
collected over a
range of operating
conditions.

F is linear in x linear This estimator produces a model that is
similar to the linear ARX model, but offers
the additional flexibility of specifying
custom regressors.

Use to specify
custom regressors as
the nonlinearity
estimator and
exclude a
nonlinearity mapping
function.

Multilayered
neural network

neuralnet Uses as a network object created using
the Neural Network Toolbox™ software.

 

Custom
network
(user-defined)

customnet Similar to sigmoid network but you specify
k( )s .

(For advanced use)
Uses the unit
function that you
specify.

See Also

More About
• “What are Nonlinear ARX Models?” on page 11-17
• “Identifying Nonlinear ARX Models” on page 11-21
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Estimate Nonlinear ARX Models in the App
You can estimate nonlinear ARX models in the System Identification app after you
perform the following tasks:

• Import data into the System Identification app (see “Preparing Data for Nonlinear
Identification” on page 11-15).

• (Optional) Choose a nonlinearity estimator in “Available Nonlinearity Estimators for
Nonlinear ARX Models” on page 11-27.

To estimate a nonlinear ARX model using the imported estimation data and chosen
nonlinearity estimators:

1 In the System Identification app, select Estimate > Nonlinear models to open
the Nonlinear Models dialog box.

2 In the Configure tab, verify that Nonlinear ARX is selected in the Model type list.
3 (Optional) Edit the Model name by clicking . The name of the model should be

unique to all nonlinear ARX models in the System Identification app.
4 (Optional) If you want to refine the parameters of a previously estimated model or

configure the model structure to match that of an existing model:

a Click Initialize. A Initial Model Specification dialog box opens.
b In the Initial Model drop-down list, select a nonlinear ARX model.

The model must be in the Model Board of the System Identification app and the
input/output dimensions of this initial model must match that of the estimation
data, selected as Working Data in the app.

c Click OK.

The model structure as well as the parameter values are updated to match that
of the selected model.

Clicking Estimate causes the estimation to use the parameters of the initial model as
the starting point.

Note When you select an initial model, you can optionally update the estimation
algorithm settings to match those used for the initial model by selecting the Inherit
the model’s algorithm properties option.
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5 Keep the default settings in the Nonlinear Models dialog box that specify the model
structure and the algorithm, or modify these settings:

Note For more information about available options, click Help in the Nonlinear
Models dialog box to open the app help.

What to Configure Options in Nonlinear
Models GUI

Comment

Model order In the Regressors tab,
edit the No. of Terms
corresponding to each
input and output channel.

Model order na is the
output number of terms
and nb is the input
number of terms.

Input delay In the Regressors tab,
edit the Delay
corresponding to an input
channel.

If you do not know the
input delay value, click
Infer Input Delay. This
action opens the Infer
Input Delay dialog box to
suggest possible delay
values.

Regressors In the Regressors tab,
click Edit Regressors.

This action opens the
Model Regressors dialog
box. Use this dialog box
to create custom
regressors or to include
specific regressors in the
nonlinear block.

Nonlinearity estimator In the Model Properties
tab.

To use all standard and
custom regressors in the
linear block only, you can
exclude the nonlinear
block by setting
Nonlinearity to None.

Estimation algorithm In the Estimate tab,
click Algorithm
Options.
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6 To obtain regularized estimates of model parameters, in the Estimate tab, click
Estimation Options. Specify the regularization constants in the
Regularization_Tradeoff_Constant and Regularization_Weighting fields. To
learn more, see “Regularized Estimates of Model Parameters” on page 1-48.

7 Click Estimate to add this model to the System Identification app.

The Estimate tab displays the estimation progress and results.
8 Validate the model response by selecting the desired plot in the Model Views area of

the System Identification app. For more information about validating models, see
“Validate Nonlinear ARX Models” on page 11-49.

If you get a poor fit, try changing the model structure or algorithm configuration in
step 5.

You can export the model to the MATLAB workspace by dragging it to To Workspace in
the System Identification app.

See Also
Apps
System Identification

More About
• “What are Nonlinear ARX Models?” on page 11-17
• “Available Nonlinearity Estimators for Nonlinear ARX Models” on page 11-27
• “Identifying Nonlinear ARX Models” on page 11-21
• “Validate Nonlinear ARX Models” on page 11-49
• “Using Nonlinear ARX Models” on page 11-55
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Estimate Nonlinear ARX Models at the Command Line
You can estimate nonlinear ARX models after you perform the following tasks:

• Prepare your data, as described in “Preparing Data for Nonlinear Identification” on
page 11-15.

• (Optional) Estimate model orders and delays the same way you would for linear ARX
models. See “Preliminary Step – Estimating Model Orders and Input Delays” on page
6-10.

• (Optional) Choose a nonlinearity estimator in “Available Nonlinearity Estimators for
Nonlinear ARX Models” on page 11-27.

• (Optional) Estimate or construct a linear ARX model for initialization of nonlinear ARX
model. See “Initialize Nonlinear ARX Estimation Using Linear Model” on page 11-25.

Estimate Model Using nlarx
Use nlarx to both construct and estimate a nonlinear ARX model. After each estimation,
validate the model on page 11-49 by comparing it to other models and simulating or
predicting the model response.

Basic Estimation

Start with the simplest estimation using m = nlarx(data,[na nb nk]). For example:

load iddata1;
% na = nb = 2 and nk = 1 
m = nlarx(z1,[2 2 1])

m =
Nonlinear ARX model with 1 output and 1 input
 Inputs: u1
 Outputs: y1
 Standard regressors corresponding to the orders
   na = 2, nb = 2, nk = 1
 No custom regressor
 Nonlinear regressors:
   y1(t-1)
   y1(t-2)
   u1(t-1)
   u1(t-2)
 Nonlinearity: wavenet with 1 unit
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Sample time: 0.1 seconds

Status:                                          
Estimated using NLARX on time domain data "z1".  
Fit to estimation data: 68.83% (prediction focus)
FPE: 1.975, MSE: 1.885

The second input argument [na nb nk] specify the model orders and delays. By default,
the nonlinearity estimator is the wavelet network (see the wavenet reference page),
which takes all standard regressors as inputs to its linear and nonlinear functions. m is an
idnlarx object.

For MIMO systems, nb, nf, and nk are ny-by-nu matrices. See the nlarx reference page
for more information about MIMO estimation.

Specify a different nonlinearity estimator (for example, sigmoid network).

M = nlarx(z1,[2 2 1],'sigmoid');

Create an nlarxOptions option set and configure the Focus property to minimize
simulation error.

opt = nlarxOptions('Focus','simulation');
M = nlarx(z1,[2 2 1],'sigmoid',opt);

Configure Model Regressors
Standard Regressors

Change the model order to create a model structure with different model regressors,
which are delayed input and output variables that are inputs to the nonlinearity estimator.

Custom Regressors

Explore including custom regressors in the nonlinear ARX model structure. Custom
regressors are in addition to the standard model regressors (see “Nonlinear ARX Model
Orders and Delay” on page 11-19).

Use polyreg or customreg to construct custom regressors in terms of model input-
output variables. You can specify custom regressors using the CustomRegressors
property of the idnlarx class or addreg to append custom regressors to an existing
model.
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For example, generate regressors as polynomial functions of inputs and outputs:

load iddata1
m = nlarx(z1,[2 2 1],'sigmoidnet');
getreg(m) % displays all regressors

Regressors:
    y1(t-1)
    y1(t-2)
    u1(t-1)
    u1(t-2)

% Generate polynomial regressors up to order 2:
reg = polyreg(m)

4x1  array of Custom Regressors with fields: Function, Arguments, Delays, Vectorized.

Append polynomial regressors to CustomRegressors.

m = addreg(m,reg);
getreg(m)

Regressors:
    y1(t-1)
    y1(t-2)
    u1(t-1)
    u1(t-2)
    y1(t-1).^2
    y1(t-2).^2
    u1(t-1).^2
    u1(t-2).^2

m now includes polynomial regressors.

You can also specify arbitrary functions of input and output variables. For example:

load iddata1
m = nlarx(z1,[2 2 1],'sigmoidnet','CustomReg',{'y1(t-1)^2','y1(t-2)*u1(t-3)'});
getreg(m) % displays all regressors

Regressors:
    y1(t-1)
    y1(t-2)
    u1(t-1)
    u1(t-2)
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    y1(t-1)^2
    y1(t-2)*u1(t-3)

Append polynomial regressors to CustomRegressors.

m = addreg(m,reg);
getreg(m) % polynomial regressors

Regressors:
    y1(t-1)
    y1(t-2)
    u1(t-1)
    u1(t-2)
    y1(t-1)^2
    y1(t-2)*u1(t-3)
    y1(t-1).^2
    y1(t-2).^2
    u1(t-1).^2
    u1(t-2).^2

Manipulate custom regressors using the CustomRegressors property of the idnlarx
class. For example, to get the function handle of the first custom regressor in the array:

CReg1 = m.CustomReg(1).Function;

View the regressor expression.

m.CustomReg(1).Display

ans = 
'y1(t-1)^2'

You can exclude all standard regressors and use only custom regressors in the model
structure by setting na=nb=nk=0:

m = nlarx(z1,[0 0 0],'linear','CustomReg',{'y1(t-1)^2','y1(t-2)*u1(t-3)'});

In advanced applications, you can specify advanced estimation options for nonlinearity
estimators. For example, wavenet and treepartition classes provide the Options
property for setting such estimation options.

Specify Linear and Nonlinear Regressors
By default, all model regressors enter as inputs to both linear and nonlinear function
blocks of the nonlinearity estimator. To reduce model complexity and keep the estimation
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well-conditioned, use a subset of regressors as inputs to the nonlinear function of the
nonlinear estimator block. For example, specify a nonlinear ARX model to be linear in
past outputs and nonlinear in past inputs.

m = nlarx(z1,[2 2 1]); % all standard regressors are 
                        % inputs to the nonlinear function
getreg(m); % lists all standard regressors

Regressors:
    y1(t-1)
    y1(t-2)
    u1(t-1)
    u1(t-2)

m = nlarx(z1,[4 4 1],sigmoidnet,'nlreg',[5 6 7 8]);

This example uses getreg to determine the index of each regressor from the complete
list of all model regressors. Only regressor numbers 5 through 8 are inputs to the
nonlinear function - getreg shows that these regressors are functions of the input
variable u1. nlreg is an abbreviation for the NonlinearRegressors property of the
idnlarx class. Alternatively, include only input regressors in the nonlinear function block
using:

m = nlarx(z1,[4 4 1],sigmoidnet,'nlreg','input');

When you are not sure which regressors to include as inputs to the nonlinear function
block, specify to search during estimation for the optimum regressor combination:

m = nlarx(z1,[4 4 1],sigmoidnet,'nlreg','search');

This search typically takes a long time. You can display the search progress using:

opt = nlarxOptions('Display','on');
m = nlarx(z1,[4 4 1],sigmoidnet,'nlreg','search',opt);

After estimation, use m.NonlinearRegressors to view which regressors were selected
by the automatic regressor search.

m.NonlinearRegressors

ans = 1×4

     3     5     6     7
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Configure Nonlinearity Estimator
Specify the nonlinearity estimator directly in the estimation command as:

• A character vector of the nonlinearity name, which uses the default nonlinearity
configuration.

m = nlarx(z1, [2 2 1],'sigmoidnet');

• Nonlinearity object.

m = nlarx(z1,[2 2 1],wavenet('num',5));

This estimation uses a nonlinear ARX model with a wavelet nonlinearity that has 5 units.
To construct the nonlinearity object before providing it as an input to the nonlinearity
estimator:

w = wavenet('num', 5);
m = nlarx(z1,[2 2 1],w);
% or
w = wavenet;
w.NumberOfUnits = 5;
m = nlarx(z1,[2 2 1],w);

For MIMO systems, you can specify a different nonlinearity for each output. For example,
to specify sigmoidnet for the first output and wavenet for the second output:

load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];
M = nlarx(data,[[1 1;1 1] [2 1;1 1] [2 1;1 1]],[sigmoidnet wavenet]);

If you want the same nonlinearity for all output channels, specify one nonlinearity.

M = nlarx(data,[[1 1;1 1] [2 1;1 1] [2 1;1 1]],sigmoidnet);

The following table summarizes values that specify nonlinearity estimators.

Nonlinearity Value (Default Nonlinearity
Configuration)

Class

Wavelet network
(default)

'wavenet' or 'wave' wavenet
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Nonlinearity Value (Default Nonlinearity
Configuration)

Class

One layer sigmoid
network

'sigmoidnet' or 'sigm' sigmoidnet

Tree partition 'treepartition' or 'tree' treepartition
F is linear in x 'linear' or [ ] linear

Additional available nonlinearities include multilayered neural networks and custom
networks that you create.

Specify a multilayered neural network using:

m = nlarx(data,[na nb nk],NNet)

where NNet is the neural network object you create using the Neural Network Toolbox
software. See the neuralnet reference page.

Specify a custom network by defining a function called gaussunit.m, as described in the
customnet reference page. Define the custom network object CNetw and estimate the
model:

CNetw = customnet(@gaussunit);
m = nlarx(data,[na nb nk],CNetw)

Exclude Linear Function in Nonlinearity Estimator

If your model includes wavenet, sigmoidnet, and customnet nonlinearity estimators,
you can exclude the linear function using the LinearTerm property of the nonlinearity

estimator. The nonlinearity estimator becomes F(x)= g Q x r( )-( ) .

Regressors Nonlinear
Function

u

y

u(t),u(t-1),y(t-1), ...

Nonlinearity Estimator
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For example:

SNL = sigmoidnet('LinearTerm','off');
m = nlarx(z1,[2 2 1],SNL);

Note You cannot exclude the linear function from tree partition and neural network
nonlinearity estimators.

Exclude Nonlinear Function in Nonlinearity Estimator

Configure the nonlinear ARX structure to include only the linear function in the

nonlinearity estimator by setting the nonlinearity to linear. In this case, F(x)= L x d
T

( ) +

is a weighted sum of model regressors plus an offset. Such models provide a bridge
between purely linear ARX models and fully flexible nonlinear models.

Regressors

u

y

u(t),u(t-1),y(t-1), ...

Linear
Function

Nonlinearity Estimator

In the simplest case, a model with only standard regressors is linear (affine). For example,
this structure:

m = nlarx(z1,[2 2 1],'linear');

is similar to the linear ARX model:

lin_m = arx(z1,[2 2 1]);

However, the nonlinear ARX model m is more flexible than the linear ARX model lin_m
because it contains the offset term, d. This offset term provides the additional flexibility of
capturing signal offsets, which is not available in linear models.

A popular nonlinear ARX configuration in many applications uses polynomial regressors
to model system nonlinearities. In such cases, the system is considered to be a linear
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combination of products of (delayed) input and output variables. Use the polyreg
command to easily generate combinations of regressor products and powers.

For example, suppose that you know the output y(t) of a system to be a linear combination
of (y(t − 1))2 and y(t − 2)*u(t − 3). To model such a system, use:

M = nlarx(z1,[0 0 0],'linear','CustomReg',{'y1(t-1)^2','y1(t-2)*u1(t-3)'});

M has no standard regressors and the nonlinearity in the model is described only by the
custom regressors.

Iteratively Refine Model
If your model structure includes nonlinearities that support iterative search (see “Specify
Estimation Options for Nonlinear ARX Models” on page 11-24), you can use nlarx to
refine model parameters:

m1 = nlarx(z1,[2 2 1],'sigmoidnet');
m2 = nlarx(z1,m1); % can repeatedly run this command

You can also use pem to refine the original model:

m2 = pem(z1,m1);

Check the search termination criterion m.Report.Termination.WhyStop . If WhyStop
indicates that the estimation reached the maximum number of iterations, try repeating
the estimation and possibly specifying a larger value for the
nlarxOptions.SearchOptions.MaxIterations estimation option:

opt = nlarxOptions;
opt.SearchOptions.MaxIterations = 30;
m2 = nlarx(z1,m1,opt); % runs 30 more iterations
                               % starting from m1

When the m.Report.Termination.WhyStop value is Near (local) minimum,
(norm( g) < tol or No improvement along the search direction with line
search , validate your model to see if this model adequately fits the data. If not, the
solution might be stuck in a local minimum of the cost-function surface. Try adjusting the
SearchOptions.Tolerance value or the SearchMethod option in the nlarxOptions
option set, and repeat the estimation.

You can also try perturbing the parameters of the last model using init (called
randomization) and refining the model using nlarx:
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M1 = nlarx(z1, [2 2 1], 'sigm'); % original model
M1p = init(M1);    % randomly perturbs parameters about nominal values
M2 = nlarx(z1, M1p);  % estimates parameters of perturbed model

You can display the progress of the iterative search in the MATLAB Command Window
using the nlarxOptions.Display estimation option:

opt = nlarxOptions('Display','on');
M2= nlarx(z1,M1p,opt);

Troubleshoot Estimation
If you do not get a satisfactory model after many trials with various model structures and
algorithm settings, it is possible that the data is poor. For example, your data might be
missing important input or output variables and does not sufficiently cover all the
operating points of the system.

Nonlinear black-box system identification usually requires more data than linear model
identification to gain enough information about the system.

Use nlarx to Estimate Nonlinear ARX Models
This example shows how to use nlarx to estimate a nonlinear ARX model for measured
input/output data.

Prepare the data for estimation.

load twotankdata
z = iddata(y, u, 0.2);
ze = z(1:1000); zv = z(1001:3000);

Estimate several models using different model orders, delays, and nonlinearity settings.

m1 = nlarx(ze,[2 2 1]);
m2 = nlarx(ze,[2 2 3]);
m3 = nlarx(ze,[2 2 3],wavenet('num',8));
m4 = nlarx(ze,[2 2 3],wavenet('num',8),...
                      'nlr', [1 2]);

An alternative way to perform the estimation is to configure the model structure first, and
then to estimate this model.
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m5 = idnlarx([2 2 3],sigmoidnet('num',14),'nlr',[1 2]);
m5 = nlarx(ze,m5);

Compare the resulting models by plotting the model outputs with the measured output.

compare(zv, m1,m2,m3,m4,m5)

See Also
Functions
idnlarx | nlarx
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More About
• “Available Nonlinearity Estimators for Nonlinear ARX Models” on page 11-27
• “Identifying Nonlinear ARX Models” on page 11-21
• “Validate Nonlinear ARX Models” on page 11-49
• “Using Nonlinear ARX Models” on page 11-55
• “Estimate Nonlinear ARX Models Initialized Using Linear ARX Models” on page 11-
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Estimate Nonlinear ARX Models Initialized Using Linear
ARX Models

This example shows how to estimate nonlinear ARX models by using linear ARX models.

Load the estimation data.

load throttledata.mat

This command loads the data object ThrottleData into the workspace. The object
contains input and output samples collected from an engine throttle system, sampled at a
rate of 100 Hz.

A DC motor controls the opening angle of the butterfly valve in the throttle system. A step
signal (in volts) drives the DC motor. The output is the angular position (in degrees) of the
valve.

Plot the data to view and analyze the data characteristics.

plot(ThrottleData)
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In the normal operating range of 15-90 degrees, the input and output variables have a
linear relationship. You use a linear model of low order to model this relationship.

In the throttle system, a hard stop limits the valve position to 90 degrees, and a spring
brings the valve to 15 degrees when the DC motor is turned off. These physical
components introduce nonlinearities that a linear model cannot capture.

Estimate an ARX model to model the linear behavior of this single-input single-output
system in the normal operating range.

Detrend the data because linear models cannot capture offsets.
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Tr = getTrend(ThrottleData); 
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData,Tr);

Estimate a linear ARX model with na=2, nb=1, nk=1.

opt = arxOptions('Focus','simulation');
LinearModel = arx(DetrendedData,[2 1 1],opt);

Compare the simulated model response with the estimation data.

compare(DetrendedData, LinearModel)

The linear model captures the rising and settling behavior in the linear operating range
but does not account for output saturation at 90 degrees.
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Estimate a nonlinear ARX model to model the output saturation.

optNL = nlarxOptions('Focus','simulation');
NonlinearModel = nlarx(ThrottleData,LinearModel,'sigmoidnet',optNL);

The software uses the orders and delay of the linear model for the orders of the nonlinear
model. In addition, the software computes the linear function of sigmoidnet nonlinearity
estimator.

Compare the nonlinear model with the estimation data.

compare(ThrottleData, NonlinearModel)

The model captures the nonlinear effects (output saturation) and improves the overall fit
to data.
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See Also

More About
• “Identifying Nonlinear ARX Models” on page 11-21
• “Estimate Nonlinear ARX Models in the App” on page 11-29
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-32
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Validate Nonlinear ARX Models
After estimating a nonlinear ARX model on page 11-21 for your system, you can validate
whether it reproduces the system behavior within acceptable bounds. You can validate
your model in different ways. It is recommended that you use separate data sets for
estimating and validating your model. If the validation indicates low confidence in the
estimation, then see “Troubleshooting Model Estimation” on page 17-117 for next steps.
For general information about validating models, see “Model Validation”.

Compare Model Output to Measured Output
Plot simulated or predicted model output and measured output data for comparison, and
compute best fit values. At the command line, use compare command. You can also use
sim and predict to simulate and predict model response. For information about plotting
simulated and predicted output in the app, see “Simulation and Prediction in the App” on
page 17-12.

Check Iterative Search Termination Conditions
The estimation report that is generated after model estimation lists the reason the
software terminated the estimation. For example, suppose that the report indicates that
the estimation reached the maximum number of iterations. You can try repeating the
estimation by specifying a larger value for the maximum number of iterations. For
information about how to configure the maximum number of iterations and other
estimation options, see “Specify Estimation Options for Nonlinear ARX Models” on page
11-24.

To view the estimation report in the app, after model estimation is complete, view the
Estimation Report area of the Estimate tab. At the command line, use
M.Report.Termination to display the estimation termination conditions, where M is the
estimated Nonlinear ARX model. For example, check the
M.Report.Termination.WhyStop field that describes why the estimation was stopped.

For more information about the estimation report, see “Estimation Report” on page 1-29.

Check the Final Prediction Error and Loss Function Values
You can compare the performance of several estimated models by comparing the final
prediction error and loss function values that are shown in the estimation report.
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To view these values for an estimated model M at the command line, use the
M.Report.Fit.FPE (final prediction error) and M.Report.Fit.LossFcn (value of loss
function at estimation termination) properties. Smaller values typically indicate better
performance. However, M.Report.Fit.FPE values can be unreliable when the model
contains many parameters relative to the estimation data size. Use these indicators with
other validation techniques to draw reliable conclusions.

Perform Residual Analysis
Residuals are differences between the model output and the measured output. Thus,
residuals represent the portion of the output not explained by the model. You can analyze
the residuals using techniques such as the whiteness test and the independence test. For
more information about these tests, see “What Is Residual Analysis?” on page 17-43.

At the command line, use resid to compute, plot, and analyze the residuals. To plot
residuals in the app, see “How to Plot Residuals in the App” on page 17-47.

Examine Nonlinear ARX Plots
A nonlinear ARX plot displays the evaluated model nonlinearity for a chosen model output
as a function of one or two model regressors. For a model M, the model nonlinearity
(M.Nonlinearity) is a nonlinearity estimator function, such as wavenet, sigmoidnet,
or treepartition, that uses model regressors as its inputs.
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To understand what is plotted, suppose that {r1,r2,…,rN} are the N regressors used by
a nonlinear ARX model M with nonlinearity nl corresponding to a model output. You can
use getreg(M) to view these regressors. The expression Nonlin = evaluate(nl,
[v1,v2,...,vN]) returns the model output for given values of these regressors, that is,
r1 = v1, r2 = v2, ..., rN = vN. For plotting the nonlinearities, you select one or two of the
N regressors, for example, rsub = {r1,r4}. The software varies the values of these
regressors in a specified range, while fixing the value of the remaining regressors, and
generates the plot of Nonlin vs. rsub. By default, the software sets the values of the
remaining fixed regressors to their estimated means, but you can change these values.
The regressor means are stored in the Nonlinearity.Parameters.RegressorMean
property of the model.

Examining a nonlinear ARX plot can help you gain insight into which regressors have the
strongest effect on the model output. Understanding the relative importance of the
regressors on the output can help you decide which regressors to include in the nonlinear
function for that output. If the shape of the plot looks like a plane for all the chosen
regressor values, then the model is probably linear in those regressors. In this case, you
can remove the corresponding regressors from nonlinear block, and repeat the
estimation.
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Furthermore, you can create several nonlinear models for the same data using different
nonlinearity estimators, such a wavenet network and treepartition, and then
compare the nonlinear surfaces of these models. Agreement between plots for various
models increases the confidence that these nonlinear models capture the true dynamics
of the system.

Creating a Nonlinear ARX Plot

To create a nonlinear ARX plot in the System Identification app, select the Nonlinear
ARX check box in the Model Views area. To include or exclude a model on the plot, click
the corresponding model icon in the app. For general information about creating and
working with plots in the app, see “Working with Plots” on page 21-11.

At the command line, after you have estimated a nonlinear ARX model M, use plot to
view the shape of the nonlinearity.

plot(M)

You can use additional plot arguments to specify the following information:

• Include multiple nonlinear ARX models on the plot.
• Configure the regressor values for computing the nonlinearity values.

Configuring a Nonlinear ARX Plot

To configure the nonlinear ARX plot:

1 Select the output channel in the Select nonlinearity at output drop-down list. The
nonlinearity values that correspond to the selected output channel are displayed.

2 Select Regressor 1 from the list of available regressors. In the Range field, enter
the range of values to include on the plot for this regressor. The regressor values are
plotted on the Reg1 axis of the plot.

If the regressor selection options are not visible, click  to expand the Nonlinear
ARX Model Plot window.

3 Specify Regressor 2 as one of the following options:

• To display three axes on the plot, select Regressor 2. In the Range field, enter
the range of values to include on the plot for this regressor. The regressor values
are plotted on the Reg2 axis of the plot.
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• To display only two axes, select <none> in the Regressor 2 list.
4 Fix the values of the regressors that are not displayed by clicking Fix Values. In the

Fix Regressor Values dialog box, double-click the Value cell to edit the constant value
of the corresponding regressor. The default values are determined during model
estimation. Click OK.

If you generate the nonlinear ARX plot in the app, you can perform the following
additional tasks:

Action Procedure
Change the grid spacing of the regressors
along each axis.

In the plot window, select Options > Set
number of samples, and enter the number
of samples to use for each regressor. Click
Apply and then Close.

For example, if the number of samples is
20, each regressor variable contains 20
points in its specified range. For a 3-D
plots, this results in evaluating the
nonlinearity at 20 x 20 = 400 points.

Change axis limits. Select Options > Set axis limits to open
the Axis Limits dialog box, and edit the
limits. Click Apply.

Hide or show the plot legend. Select Style > Legend. Select this option
again to show the legend.

Rotate in three dimensions.

Note Available only when you have
selected two regressors as independent
variables.

Select Style > Rotate 3D and drag the
axes on the plot to a new orientation. To
disable three-dimensional rotation, select
Style > Rotate 3D again.

See Also
compare | predict | resid | sim
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More About
• “Identifying Nonlinear ARX Models” on page 11-21
• “Estimate Nonlinear ARX Models in the App” on page 11-29
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-32
• “Using Nonlinear ARX Models” on page 11-55
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Using Nonlinear ARX Models
After identifying a nonlinear ARX model, you can use the model for the following tasks:

• Simulation and prediction — At the command line, use sim and predict to
simulate and predict the model output. To compare models to measured output and to
each other, use compare. For information about plotting simulated and predicted
output in the app, see “Simulation and Prediction in the App” on page 17-12. You can
also specify the initial conditions for simulation and prediction. The toolbox provides
several options to facilitate how you specify initial states. For example, you can use
findstates and data2state to compute state values based on the requirement to
maximize fit to measured output or based on operating conditions. See the idnlarx
reference page for a definition of the nonlinear ARX model states. To learn more about
how sim and predict compute the model output, see “How the Software Computes
Nonlinear ARX Model Output” on page 11-57.

You can also forecast the response of a dynamic system by using the forecast
command. The command predicts future outputs of the system using past output
measurements. For more information, see “Forecasting Response of Nonlinear ARX
Models” on page 14-46.

• Linearization — Compute linear approximation of nonlinear ARX models using
linearize or linapp.

The linearize command provides a first-order Taylor series approximation of the
system about an operating point. linapp computes a linear approximation of a
nonlinear model for a given input data. For more information, see the “Linear
Approximation of Nonlinear Black-Box Models” on page 11-64. You can compute the
operating point for linearization using findop.

After computing a linear approximation of a nonlinear model, you can perform linear
analysis and control design on your model using Control System Toolbox commands.
For more information, see “Using Identified Models for Control Design Applications”
on page 19-2 and “Create and Plot Identified Models Using Control System Toolbox
Software” on page 19-6.

• Simulation and code generation using Simulink — You can import estimated
nonlinear ARX models into the Simulink software using the Nonlinear ARX block
(IDNLARX Model) from the System Identification Toolbox block library. Import the
idnlarx object from the workspace into Simulink using this block to simulate the
model output.
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The IDNLARX Model block supports code generation with Simulink Coder™ software,
using both generic and embedded targets. Code generation does not work when the
model contains customnet or neuralnet nonlinearity estimator, or custom
regressors. For more information, see “Simulating Identified Model Output in
Simulink” on page 20-5.

See Also

More About
• “What are Nonlinear ARX Models?” on page 11-17
• “Identifying Nonlinear ARX Models” on page 11-21
• “Linear Approximation of Nonlinear Black-Box Models” on page 11-64
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How the Software Computes Nonlinear ARX Model
Output

This topic describes how the software evaluates the output of nonlinearity estimators and
uses this output to compute the response of a nonlinear ARX model.

Evaluating Nonlinearities
Evaluating the predicted output of a nonlinearity for a specific regressor value x requires
that you first extract the nonlinearity F and regressors from the model:

F = m.Nonlinearity;
x = getreg(m,'all',data) % computes regressors

Evaluate F(x):

y = evaluate(F,x)

where x is a row vector of regressor values.

You can also evaluate predicted output values at multiple time instants by evaluating F for
several regressor vectors simultaneously:

y = evaluate(F,[x1;x2;x3])

Simulation and Prediction of Sigmoid Network
This example shows how the software computes the simulated and predicted output of a
nonlinear ARX model as a result of evaluating the output of its nonlinearity estimator for
given regressor values.

Estimating and Exploring a Nonlinear ARX Model

Estimate nonlinear ARX model with sigmoid network nonlinearity.

load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');

Inspect the model properties and estimation result.

present(M)
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M =                                                          
Nonlinear ARX model with 1 output and 1 input                
 Inputs: u1                                                  
 Outputs: y1                                                 
 Standard regressors corresponding to the orders             
   na = 1, nb = 1, nk = 0                                    
 No custom regressor                                         
 Nonlinear regressors:                                       
   y1(t-1)                                                   
   u1(t)                                                     
 Nonlinearity: sigmoidnet with 10 units                      
                                                             
Sample time: 0.2 seconds                                     
                                                             
Status:                                                      
Termination condition: Maximum number of iterations reached. 
Number of iterations: 20, Number of function evaluations: 243
                                                             
Estimated using NLARX on time domain data "estData".         
Fit to estimation data: 96.31% (prediction focus)            
FPE: 4.804e-05, MSE: 4.666e-05                               
More information in model's "Report" property.               

This command provides information about input and output variables, regressors, and
nonlinearity estimator.

Inspect the nonlinearity estimator.

NL = M.Nonlinearity; % equivalent to M.nl 
class(NL)   % nonlinearity class

ans = 
'sigmoidnet'

display(NL) % equivalent to NL

Sigmoid Network:
    NumberOfUnits: 10
       LinearTerm: 'on'
       Parameters: [1x1 struct]

Inspect the sigmoid network parameter values.

NL.Parameters;
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Prediction of Output

The model output is:

y1(t)= f(y1(t-1),u1(t))

where f is the sigmoid network function. The model regressors y1(t-1) and u1(t) are
inputs to the nonlinearity estimator. Time t is a discrete variable representing kT , where
k = 0, 1, ... , and T is the sampling interval. In this example, T=0.2 second.

The output prediction equation is:

yp(t)=f(y1_meas(t-1),u1_meas(t))

where yp(t) is the predicted value of the response at time t. y1_meas(t-1) and u1_meas(t)
are the measured output and input values at times t-1 and t, respectively.

Computing the predicted response includes:

• Computing regressor values from input-output data.
• Evaluating the nonlinearity for given regressor values.

To compute the predicted value of the response using initial conditions and current input:

Estimate model from data and get nonlinearity parameters.

load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');
NL = M.Nonlinearity;

Specify zero initial states.

x0 = 0;

The model has one state because there is only one delayed term y1(t-1). The number of
states is equal to sum(getDelayInfo(M)).

Compute the predicted output at time t=0.

RegValue = [0,estData.u(1)]; % input to nonlinear function f
yp_0 = evaluate(NL,RegValue);
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RegValue is the vector of regressors at t=0 . The predicted output is
yp(t=0)=f(y1_meas(t=-1),u1_meas(t=0)). In terms of MATLAB variables, this output is
f(0,estData.u(1)), where

• y1_meas(t=0) is the measured output value at t=0, which is to estData.y(1).
• u1_meas(t =1) is the second input data sample estData.u(2).

Perform one-step-ahead prediction at all time values for which data is available.

RegMat = getreg(M,[],estData,x0);
yp = evaluate(NL,RegMat);

This code obtains a matrix of regressors RegMat for all the time samples using getreg.
RegMat has as many rows as there are time samples, and as many columns as there are
regressors in the model - two, in this example.

These steps are equivalent to the predicted response computed in a single step using
predict:

yp = predict(M,estData,1,'InitialState',x0);

Simulation of Output

The model output is:

y1(t)=f(y1(t-1),u1(t))

where f is the sigmoid network function. The model regressors y1(t-1) and u1(t) are
inputs to the nonlinearity estimator. Time t is a discrete variable representing kT , where
k= 0, 1,.., and T is the sampling interval. In this example, T=0.2 second.

The simulated output is:

ys(t) = f(ys(t-1),u1_meas(t))

where ys(t) is the simulated value of the response at time t. The simulation equation is the
same as the prediction equation, except that the past output value ys(t-1) results from
the simulation at the previous time step, rather than the measured output value.

Computing the simulated response includes:

• Computing regressor values from input-output data using simulated output values.
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• Evaluating the nonlinearity for given regressor values.

To compute the simulated value of the response using initial conditions and current input:

Estimate model from data and get nonlinearity parameters.

load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');
NL = M.Nonlinearity;

Specify zero initial states.

x0 = 0;

The model has one state because there is only one delayed term y1(t-1). The number of
states is equal to sum(getDelayInfo(M)).

Compute the simulated output at time t =0, ys(t=0).

RegValue = [0,estData.u(1)];
ys_0 = evaluate(NL,RegValue);

RegValue is the vector of regressors at t=0. ys(t=0)=f(y1(t=-1),u1_meas(t=0)). In terms
of MATLAB variables, this output is f(0,estData.u(1)), where

• y1(t=-1) is the initial state x0 (=0).
• u1_meas(t=0) is the value of the input at t =0, which is the first input data sample

estData.u(1).

Compute the simulated output at time t=1, ys(t=1).

RegValue = [ys_0,estData.u(2)];
ys_1 = evaluate(NL,RegValue);

The simulated output ys(t=1)=f(ys(t=0),u1_meas(t=1)). In terms of MATLAB variables,
this output is f(ys_0,estData.u(2)), where

• ys(t=0) is the simulated value of the output at t=0.
• u1_meas(t=1) is the second input data sample estData.u(2).

Compute the simulated output at time t=2.
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RegValue = [ys_1,estData.u(3)];
ys_2 = evaluate(NL,RegValue);

Unlike for output prediction, you cannot use getreg to compute regressor values for all
time values. You must compute regressors values at each time sample separately because
the output samples required for forming the regressor vector are available iteratively, one
sample at a time.

These steps are equivalent to the simulated response computed in a single step using
sim(idnlarx):

ys = sim(M,estData,x0);

Nonlinearity Evaluation

This examples performs a low-level computation of the nonlinearity response for the
sigmoidnet network function:

where f is the sigmoid function, given by the following equation:

In F(x), the input to the sigmoid function is x-r. x is the regressor value and r is

regressor mean, computed from the estimation data.  , , and  are the network
parameters stored in the model property M.nl.par, where M is an idnlarx object.

Compute the output value at time t=1, when the regressor values are
x=[estData.y(1),estData.u(2)]:

Estimate model from sample data.

load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');
NL = M.Nonlinearity;

Assign values to the parameters in the expression for F(x).
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x = [estData.y(1),estData.u(2)]; % regressor values at t=1
r = NL.Parameters.RegressorMean;
P = NL.Parameters.LinearSubspace;
L = NL.Parameters.LinearCoef;
d = NL.Parameters.OutputOffset;
Q = NL.Parameters.NonLinearSubspace;
aVec = NL.Parameters.OutputCoef;   % [a_1; a_2; ...]
cVec = NL.Parameters.Translation;  % [c_1; c_2; ...]
bMat = NL.Parameters.Dilation;     % [b_1; b_2; ...]

Compute the linear portion of the response (plus offset).

yLinear = (x-r)*P*L+d;

Compute the nonlinear portion of the response.

f = @(z)1/(exp(-z)+1); % anonymous function for sigmoid unit
yNonlinear = 0;
for k = 1:length(aVec)
    fInput = (x-r)*Q* bMat(:,k)+cVec(k);
    yNonlinear = yNonlinear+aVec(k)*f(fInput);
end

Compute total response y = F(x) = yLinear + yNonlinear.

y = yLinear + yNonlinear;

y is equal to evaluate(NL,x).

See Also
evaluate

More About
• “What are Nonlinear ARX Models?” on page 11-17
• “Identifying Nonlinear ARX Models” on page 11-21
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Linear Approximation of Nonlinear Black-Box Models

Why Compute a Linear Approximation of a Nonlinear Model?
Control design and linear analysis techniques using Control System Toolbox software
require linear models. You can use your estimated nonlinear model in these applications
after you linear the model. After you linearize your model, you can use the model for
control design and linear analysis.

Choosing Your Linear Approximation Approach
System Identification Toolbox software provides two approaches for computing a linear
approximation of nonlinear ARX on page 11-21 and Hammerstein-Wiener on page 12-5
models.

To compute a linear approximation of a nonlinear model for a given input signal, use the
linapp command. The resulting model is only valid for the same input that you use to
compute the linear approximation. For more information, see “Linear Approximation of
Nonlinear Black-Box Models for a Given Input” on page 11-64.

If you want a tangent approximation of the nonlinear dynamics that is accurate near the
system operating point, use the linearize command. The resulting model is a first-order
Taylor series approximation for the system about the operating point, which is defined by
a constant input and model state values. For more information, see “Tangent
Linearization of Nonlinear Black-Box Models” on page 11-65.

Linear Approximation of Nonlinear Black-Box Models for a
Given Input
linapp computes the best linear approximation, in a mean-square-error sense, of a
nonlinear ARX or Hammerstein-Wiener model for a given input or a randomly generated
input. The resulting linear model might only be valid for the same input signal as you the
one you used to generate the linear approximation.

linapp estimates the best linear model that is structurally similar to the original
nonlinear model and provides the best fit between a given input and the corresponding
simulated response of the nonlinear model.
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To compute a linear approximation of a nonlinear black-box model for a given input, you
must have these variables:

• Nonlinear ARX model (idnlarx object) or Hammerstein-Wiener model (idnlhw
object)

• Input signal for which you want to obtain a linear approximation, specified as a real
matrix or an iddata object

linapp uses the specified input signal to compute a linear approximation:

• For nonlinear ARX models, linapp estimates a linear ARX model using the same
model orders na, nb, and nk as the original model.

• For Hammerstein-Wiener models, linapp estimates a linear Output-Error (OE) model
using the same model orders nb, nf, and nk.

To compute a linear approximation of a nonlinear black-box model for a randomly
generated input, you must specify the minimum and maximum input values for generating
white-noise input with a magnitude in this rectangular range, umin and umax.

For more information, see the linapp reference page.

Tangent Linearization of Nonlinear Black-Box Models
linearize computes a first-order Taylor series approximation for nonlinear system
dynamics about an operating point, which is defined by a constant input and model state
values. The resulting linear model is accurate in the local neighborhood of this operating
point.

To compute a tangent linear approximation of a nonlinear black-box model, you must have
these variables:

• Nonlinear ARX model (idnlarx object) or Hammerstein-Wiener model (idnlhw
object)

• Operating point

To specify the operating point of your system, you must specify the constant input and the
states. For more information about state definitions for each type of parametric model,
see these reference pages:

• idnlarx — Nonlinear ARX model
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• idnlhw — Nonlinear Hammerstein-Wiener model

If you do not know the operating point values for your system, see “Computing Operating
Points for Nonlinear Black-Box Models” on page 11-66.

For more information, see the idnlarx/linearize or idnlhw/linearize reference
page.

Computing Operating Points for Nonlinear Black-Box Models
An operating point is defined by a constant input and model state values.

If you do not know the operating conditions of your system for linearization, you can use
findop to compute the operating point from specifications.

Computing Operating Point from Steady-State Specifications

Use findop to compute an operating point from steady-state specifications:

• Values of input and output signals.
If either the steady-state input or output value is unknown, you can specify it as NaN to
estimate this value. This is especially useful when modeling MIMO systems, where
only a subset of the input and output steady-state values are known.

• More complex steady-state specifications.

Construct an object that stores specifications for computing the operating point,
including input and output bounds, known values, and initial guesses. For more
information, see idnlarx/operspec or idnlhw/operspec.

For more information, see the idnlarx/findop or idnlhw/findop reference page.

Computing Operating Points at a Simulation Snapshot

Compute an operating point at a specific time during model simulation (snapshot) by
specifying the snapshot time and the input value. To use this method for computing the
equilibrium operating point, choose an input that leads to a steady-state output value. Use
that input and the time value at which the output reaches steady state (snapshot time) to
compute the operating point.

It is optional to specify the initial conditions for simulation when using this method
because initial conditions often do not affect the steady-state values. By default, the initial
conditions are zero.
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However, for nonlinear ARX models, the steady-state output value might depend on initial
conditions. For these models, you should investigate the effect of initial conditions on
model response and use the values that produce the desired output. You can use
data2state to map the input-output signal values from before the simulation starts to
the model's initial states. Because the initial states are a function of the past history of the
model's input and output values, data2state generates the initial states by transforming
the data.

See Also
idnlarx/linearize | idnlhw/linearize

More About
• “Using Nonlinear ARX Models” on page 11-55
• “Using Hammerstein-Wiener Models” on page 12-10
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What are Hammerstein-Wiener Models?
When the output of a system depends nonlinearly on its inputs, sometimes it is possible to
decompose the input-output relationship into two or more interconnected elements. In
this case, you can represent the dynamics by a linear transfer function and capture the
nonlinearities using nonlinear functions of inputs and outputs of the linear system. The
Hammerstein-Wiener model achieves this configuration as a series connection of static
nonlinear blocks with a dynamic linear block. Hammerstein-Wiener model applications
span several areas, such as modeling electromechanical system and radio frequency
components, audio and speech processing, and predictive control of chemical processes.
These models have a convenient block representation, a transparent relationship to linear
systems, and are easier to implement than heavy-duty nonlinear models such as neural
networks and Volterra models.

You can use a Hammerstein-Wiener model as a black-box model structure because it
provides a flexible parameterization for nonlinear models. For example, you can estimate
a linear model and try to improve its fidelity by adding an input or output nonlinearity to
this model. You can also use a Hammerstein-Wiener model as a grey-box structure to
capture physical knowledge about process characteristics. For example, the input
nonlinearity can represent typical physical transformations in actuators and the output
nonlinearity can describe common sensor characteristics. For more information about
when to fit nonlinear models, see “About Identified Nonlinear Models” on page 11-2.

Structure of Hammerstein-Wiener Models
Hammerstein-Wiener models describe dynamic systems using one or two static nonlinear
blocks in series with a linear block. The linear block is a discrete transfer function that
represents the dynamic component of the model.

This block diagram represents the structure of a Hammerstein-Wiener model:

u(t) y(t)Input
Nonlinearity

f

Linear
Block
B/F

Output
Nonlinearity

h

w(t) x(t)

Where,

• f is a nonlinear function that transforms input data u(t) as w(t) = f(u(t)).
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w(t), an internal variable, is the output of the Input Nonlinearity block and has the
same dimension as u(t).

• B/F is a linear transfer function that transforms w(t) as x(t) = (B/F)w(t).

x(t), an internal variable, is the output of the Linear block and has the same dimension
as y(t).

B and F are similar to polynomials in a linear Output-Error model. For more
information about Output-Error models, see “What Are Polynomial Models?” on page
6-2.

For ny outputs and nu inputs, the linear block is a transfer function matrix containing
entries:

B q

F q

j i

j i

,

,

( )

( )

where j = 1,2,...,ny and i = 1,2,...,nu.
• h is a nonlinear function that maps the output of the linear block x(t) to the system

output y(t) as y(t) = h(x(t)).

Because f acts on the input port of the linear block, this function is called the input
nonlinearity. Similarly, because h acts on the output port of the linear block, this function
is called the output nonlinearity. If your system contains several inputs and outputs, you
must define the functions f and h for each input and output signal. You do not have to
include both the input and the output nonlinearity in the model structure. When a model
contains only the input nonlinearity f, it is called a Hammerstein model. Similarly, when
the model contains only the output nonlinearity h, it is called a Wiener model.

The software computes the Hammerstein-Wiener model output y in three stages:

1 Compute w(t) = f(u(t)) from the input data.

w(t) is an input to the linear transfer function B/F.

The input nonlinearity is a static (memoryless) function, where the value of the
output a given time t depends only on the input value at time t.

You can configure the input nonlinearity as a sigmoid network, wavelet network,
saturation, dead zone, piecewise linear function, one-dimensional polynomial, or a
custom network. You can also remove the input nonlinearity.
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2 Compute the output of the linear block using w(t) and initial conditions: x(t) = (B/
F)w(t).

You can configure the linear block by specifying the orders of numerator B and
denominator F.

3 Compute the model output by transforming the output of the linear block x(t) using
the nonlinear function h as y(t) = h(x(t)).

Similar to the input nonlinearity, the output nonlinearity is a static function. You can
configure the output nonlinearity in the same way as the input nonlinearity. You can
also remove the output nonlinearity, such that y(t) = x(t).

Resulting models are idnlhw objects that store all model data, including model
parameters and nonlinearity estimators. For more information about these objects, see
“Nonlinear Model Structures” on page 11-7.

You can estimate Hammerstein-Wiener models in the System Identification app or at
the command line using the nlhw command. You can use uniformly sampled time-domain
input-output data for estimating Hammerstein-Wiener models. Your data can have one or
more input and output channels. You cannot use time series data (output only) or
frequency-domain data for estimation. If you have time series data, to fit a nonlinear
model, identify nonlinear ARX models or nonlinear grey-box models. For more information
about these models, see “Identifying Nonlinear ARX Models” on page 11-21 and
“Estimate Nonlinear Grey-Box Models” on page 13-34.

See Also
idnlhw | nlhw

More About
• “About Identified Nonlinear Models” on page 11-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Available Nonlinearity Estimators for Hammerstein-Wiener Models” on page 12-12
• “Using Hammerstein-Wiener Models” on page 12-10
• “How the Software Computes Hammerstein-Wiener Model Output” on page 12-32
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Identifying Hammerstein-Wiener Models
Hammerstein-Wiener models describe dynamic systems using one or two static nonlinear
blocks in series with a linear block. The linear block is a discrete transfer function and
represents the dynamic component of the model. For more information about the
structure of these models, see “What are Hammerstein-Wiener Models?” on page 12-2

You can estimate Hammerstein-Wiener models in the System Identification app or at
the command line using the nlhw command. To estimate a Hammerstein-Wiener model,
you first prepare the estimation data. You then configure the model structure and
estimation algorithm, and then perform estimation. After estimation, you can validate the
estimated model as described in “Validating Hammerstein-Wiener Models” on page 12-
26.

Prepare Data for Identification
You can use only uniformly sampled time-domain input-output data for estimating
Hammerstein-Wiener models. Your data can have one or more input and output channels.
You cannot use time series data (output only) or frequency-domain data for estimation.
Use nonlinear ARX on page 11-21 or nonlinear grey-box models on page 13-34 for time
series data.

To prepare the data for model estimation, import your data into the MATLAB workspace,
and do one of the following:

• In the System Identification app — Import data into the app, as described in
“Represent Data”.

• At the command line — Represent your data as an iddata object.

After importing the data, you can analyze data quality and preprocess data by
interpolating missing values, filtering to emphasize a specific frequency range, or
resampling using a different sample time. For more information, see “Ways to Prepare
Data for System Identification” on page 2-6. For most applications, you do not need to
remove offsets and linear trends from the data before nonlinear modeling. However, data
detrending can be useful in some cases, such as before modeling the relationship between
the change in input and output about an operating point.

After preparing your estimation data, you can configure your model structure, loss
function, and estimation algorithm, and then estimate the model using the estimation
data.
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Configure Hammerstein-Wiener Model Structure
The Hammerstein-Wiener model structure consists of input and output nonlinear blocks in
series with a linear block. The linear block is a discrete transfer function and represents
the dynamic component of the model.

u(t) y(t)Input
Nonlinearity

f

Linear
Block
B/F

Output
Nonlinearity

h

w(t) x(t)

To configure the structure of a Hammerstein-Wiener model:

1 Configure the linear transfer function block.

Perform one of the following:

• Specify model order and input delay for the linear transfer function as:

• nb — Number of zeros plus one. nb is the length of the numerator (B)
polynomial.

• nf — Number of poles. nf is the order of the transfer function denominator (F
polynomial).

• nk — Delay from input to the output in terms of the number of samples.

For MIMO systems with Ny outputs and Nu inputs, nb, nf, and nk are Ny-by-Nu
matrices.

• Initialize the linear block using a discrete-time linear model — You can initialize
using linear models at the command line only. The initialization sets the transfer
function of the linear block to that of the specified linear model. For more
information, see “Initialize Hammerstein-Wiener Estimation Using Linear Model”
on page 12-8.

2 Configure the input and output nonlinearities, f and h respectively.

The default input and output nonlinearity estimators are piecewise linear functions.
See the pwlinear reference page for more information. To configure the input and
output nonlinearity estimators:

a Choose the type of input and output nonlinearity estimators, and configure their
properties.

12 Identify Hammerstein-Wiener Models

12-6



For a list of available nonlinearity estimators, see “Available Nonlinearity
Estimators for Hammerstein-Wiener Models” on page 12-12.

b Exclude the input or output nonlinear block.

You do not have to include both the input and the output nonlinearity in the
model structure. When a model contains only the input nonlinearity f, it is called
a Hammerstein model. Similarly, when the model contains only the output
nonlinearity h, it is called a Wiener model.

For information about how to configure the model structure at the command line and in
the app, see “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-
17 and “Estimate Hammerstein-Wiener Models in the App” on page 12-14.

Specify Estimation Options for Hammerstein-Wiener Models
To configure the model estimation, specify the loss function to be minimized, and choose
the estimation algorithm and other estimation options to perform the minimization.

Configure Loss Function

The loss function or cost function is a function of the error between the model output and
the measured output. For more information about loss functions, see “Loss Function and
Model Quality Metrics” on page 1-64.

At the command line, use the nlhw option set, nlhwOptions to configure your loss
function. You can specify the following options:

• OutputWeight — Specify a weighting of the error in multi-output estimations.
• Regularization — Modify the loss function to add a penalty on the variance of the

estimated parameters. For more information, see “Regularized Estimates of Model
Parameters” on page 1-48.

For details about how to specify these options in the app, see “Estimate Hammerstein-
Wiener Models in the App” on page 12-14.

Specify Estimation Algorithm

To estimate a Hammerstein-Wiener model, the software uses iterative search algorithms
to minimize the loss function. At the command line, use nlhwOptions to specify the
search algorithm and other estimation options. Some of the options you can specify are:
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• SearchMethod — Search method for minimization of prediction or simulation errors,
such as Gauss-Newton and Levenberg-Marquardt line search, and Trust-region
reflective Newton approach.

• SearchOptions — Option set for the search algorithm, with fields that depend on the
value of SearchMethod, such as:

• MaxIterations — Maximum number of iterations to perform.
• Tolerance — Condition for terminating iterative search when the expected

improvement of the parameter values is less than a specified value.
• InitialCondition — By default, the software treats the initial states of the model

as zero and does not estimate the states. You can choose to estimate initial states,
which sometimes can improve parameter estimates.

To see a complete list of available estimation options, see nlhwOptions. For details
about how to specify these estimation options in the app, see “Estimate Hammerstein-
Wiener Models in the App” on page 12-14.

After preprocessing the estimation data and configuring the model structure, loss
function, and estimation options, you can estimate the model in the System
Identification app, or using nlhw. The resulting model is an idnlhw object that stores
all model data, including model parameters and nonlinearity estimator. For more
information about these model objects, see “Nonlinear Model Structures” on page 11-7.
You can validate the estimated model as described in “Validating Hammerstein-Wiener
Models” on page 12-26.

Initialize Hammerstein-Wiener Estimation Using Linear Model
At the command line, you can use one of the following linear models to initialize the linear
block of a Hammerstein-Wiener model:

• Polynomial model of Output-Error (OE) structure (idpoly)
• State-space model with no disturbance component (idss model with K = 0)
• Transfer function (idtf model)

Typically, you use the oe, n4sid, or tfest commands to obtain the linear model. You can
provide the linear model when constructing or estimating a Hammerstein-Wiener model.
For example, use the following syntax to estimate a Hammerstein-Wiener model using
estimation data and a linear model LinModel.

m = nlhw(data,LinModel)
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Here m is an idnlhw object, and data is a time-domain iddata object. The software uses
the linear model for initializing the Hammerstein-Wiener estimation by:

• Assigning the linear model orders as initial values of nonlinear model orders (nb and
nf properties of the Hammerstein-Wiener (idnlhw) and delays (nk property).

• Setting the B and F polynomials of the linear transfer function in the Hammerstein-
Wiener model structure on page 12-2.

During estimation, the estimation algorithm uses these values to adjust the nonlinear
model to the data. By default, both the input and output nonlinearity estimators are
piecewise linear functions (see pwlinear).

You can also specify different input and output nonlinearity estimators. For example, a
sigmoid network input nonlinearity estimator and a dead-zone output nonlinearity
estimator.

m = nlhw(data,LinModel,'sigmoidnet','deadzone')

For an example, see “Estimate Hammerstein-Wiener Models Initialized Using Linear OE
Models” on page 12-36.

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Estimate Hammerstein-Wiener Models in the App” on page 12-14
• “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-17
• “Validating Hammerstein-Wiener Models” on page 12-26
• “Using Hammerstein-Wiener Models” on page 12-10
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Using Hammerstein-Wiener Models
After identifying a Hammerstein-Wiener model, you can use the model for the following
tasks:

• Simulation — At the command line, use sim to simulate the model output. To
compare models to measured output and to each other, use compare. Note that for
Hammerstein-Wiener models, the simulated and predicted model output are
equivalent because these models have a trivial noise component, that is disturbance in
these models is white noise. For information about plotting simulated output in the
app, see “Simulation and Prediction in the App” on page 17-12.

You can also specify the initial conditions for simulation. The toolbox provides various
options to facilitate how you specify initial states. For example, you can use
findstates to automatically search for state values in simulation and prediction
applications. You can also specify the states manually. See the idnlhw reference page
for a definition of the Hammerstein-Wiener model states.

To learn more about how sim computes the model output, see “How the Software
Computes Hammerstein-Wiener Model Output” on page 12-32.

• Linearization — Compute linear approximation of Hammerstein-Wiener models using
linearize or linapp.

The linearize command provides a first-order Taylor series approximation of the
system about an operating point. linapp computes a linear approximation of a
nonlinear model for a given input data. For more information, see the “Linear
Approximation of Nonlinear Black-Box Models” on page 11-64. You can compute the
operating point for linearization using findop.

After computing a linear approximation of a nonlinear model, you can perform linear
analysis and control design on your model using Control System Toolbox commands.
For more information, see “Using Identified Models for Control Design Applications”
on page 19-2 and “Create and Plot Identified Models Using Control System Toolbox
Software” on page 19-6.

• Simulation and code generation using Simulink — You can import the estimated
Hammerstein-Wiener model into Simulink software using the Hammerstein-Wiener
block (IDNLHW Model) from the System Identification Toolbox block library. After you
bring the idnlhw object from the workspace into Simulink, you can simulate the
model output.
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The IDNLHW Model block supports code generation with Simulink Coder software,
using both generic and embedded targets. Code generation does not work when the
model contains customnet as the input or output nonlinearity. For more information,
see “Simulating Identified Model Output in Simulink” on page 20-5.

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Linear Approximation of Nonlinear Black-Box Models” on page 11-64
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Available Nonlinearity Estimators for Hammerstein-
Wiener Models

System Identification Toolbox software provides several scalar nonlinearity estimators, for
Hammerstein-Wiener models. The nonlinearity estimators are available for both the input
and output nonlinearities f and h, respectively. For more information about f and h, see
“Structure of Hammerstein-Wiener Models” on page 12-2.

Each nonlinearity estimator corresponds to an object class in this toolbox. When you
estimate Hammerstein-Wiener models in the System Identification app, the toolbox
creates and configures objects based on these classes. You can also create and configure
nonlinearity estimators at the command line. For a detailed description of each estimator,
see the references page of the corresponding nonlinearity class.

Nonlinearity Class Structure Comments
Piecewise
linear
(default)

pwlinear A piecewise linear function parameterized
by breakpoint locations.

By default, the
number of
breakpoints is 10.

One layer
sigmoid
network

sigmoidnet
g x xk

k

n

k k( ) = -( )( )
=
Â a k b g

1

k( )s  is the sigmoid function

k( )s e
s

= +( )
-

1
1

. bk  is a row vector such

that b gk kx( )-  is a scalar.

Default number of
units n is 10.

Wavelet
network

wavenet
g x xk

k

n

k k( ) = -( )( )
=
Â a k b g

1

where k( )s  is the wavelet function.

By default, the
estimation algorithm
determines the
number of units n
automatically.

Saturation saturation Parameterize hard limits on the signal
value as upper and lower saturation limits.

Use to model known
saturation effects on
signal amplitudes.
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Nonlinearity Class Structure Comments
Dead zone deadzone Parameterize dead zones in signals as the

duration of zero response.
Use to model known
dead zones in signal
amplitudes.

One-
dimensional
polynomial

poly1d Single-variable polynomial of a degree
that you specify.

By default, the
polynomial degree is
1.

Unit gain unitgain Excludes the input or output nonlinearity
from the model structure to achieve a
Wiener or Hammerstein configuration,
respectively.

Note Excluding both the input and output
nonlinearities reduces the Hammerstein-
Wiener structure to a linear transfer
function.

Useful for
configuring multi-
input, multi-output
(MIMO) models to
exclude
nonlinearities from
specific input and
output channels.

Custom
network

(user-defined)

customnet Similar to sigmoid network but you specify
k( )s .

(For advanced use)

Uses the unit
function that you
specify.

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
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Estimate Hammerstein-Wiener Models in the App
You can estimate Hammerstein-Wiener models in the System Identification app after
performing the following tasks:

• Import data into the System Identification app (see “Preparing Data for Nonlinear
Identification” on page 11-15).

• (Optional) Choose a nonlinearity estimator in “Available Nonlinearity Estimators for
Hammerstein-Wiener Models” on page 12-12.

• (Optional) Estimate or construct an OE or state-space linear model to use for
initialization. See “Initialize Hammerstein-Wiener Estimation Using Linear Model” on
page 12-8.

To estimate a Hammerstein-Wiener model using the imported estimation data, chosen
nonlinearity estimators, and initial linear models:

1 In the System Identification app, select Estimate > Nonlinear models to open
the Nonlinear Models dialog box.

2 In the Configure tab, select Hammerstein-Wiener from the Model type list.
3 (Optional) Edit the Model name by clicking the pencil icon. The name of the model

should be unique to all Hammerstein-Wiener models in the System Identification app.
4 (Optional) If you want to refine a previously estimated model, click Initialize to

select a previously estimated model from the Initial Model list.

Note Refining a previously estimated model starts with the parameter values of the
initial model and uses the same model structure. You can change these settings.

The Initial Model list includes models that:

• Exist in the System Identification app.
• Have the same number of inputs and outputs as the dimensions of the estimation

data (selected as Working Data in the System Identification app).
5 Keep the default settings in the Nonlinear Models dialog box that specify the model

structure, or modify these settings:

Note For more information about available options, click Help in the Nonlinear
Models dialog box to open the app help.
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What to Configure Options in Nonlinear
Models GUI

Comment

Input or output
nonlinearity

In the I/O Nonlinearity
tab, select the
Nonlinearity and specify
the No. of Units.

If you do not know which
nonlinearity to try, use
the (default) piecewise
linear nonlinearity.

When you estimate from
binary input data, you
cannot reliably estimate
the input nonlinearity. In
this case, set
Nonlinearity for the
input channel to None.

For multiple-input and
multiple-output systems,
you can assign
nonlinearities to specific
input and output
channels.

Model order and delay In the Linear Block tab,
specify B Order, F
Order, and Input Delay.
For MIMO systems,
select the output channel
and specify the orders
and delays from each
input channel.

If you do not know the
input delay values, click
Infer Input Delay. This
action opens the Infer
Input Delay dialog box
which suggests possible
delay values.

Estimation algorithm In the Estimate tab,
click Estimation
Options.

You can specify to
estimate initial states.

6 To obtain regularized estimates of model parameters, in the Estimate tab, click
Estimation Options. Specify the regularization constants in the
Regularization_Tradeoff_Constant and Regularization_Weighting fields. To
learn more, see “Regularized Estimates of Model Parameters” on page 1-48.

7 Click Estimate to add this model to the System Identification app.
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The Estimate tab displays the estimation progress and results.
8 Validate the model response by selecting the desired plot in the Model Views area of

the System Identification app.

If you get a poor fit, try changing the model structure or algorithm configuration in
step 5.

You can export the estimated model to the MATLAB workspace by dragging it to To
Workspace in the System Identification app.

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Available Nonlinearity Estimators for Hammerstein-Wiener Models” on page 12-12
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Validating Hammerstein-Wiener Models” on page 12-26
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Estimate Hammerstein-Wiener Models at the Command
Line

You can estimate Hammerstein-Wiener models after performing the following tasks:

• Prepare your data, as described in “Preparing Data for Nonlinear Identification” on
page 11-15.

• (Optional) Choose a nonlinearity estimator in “Available Nonlinearity Estimators for
Hammerstein-Wiener Models” on page 12-12.

• (Optional) Estimate or construct an input-output polynomial model of Output-Error
(OE) structure (idpoly) or a state-space model with no disturbance component (idss
with K=0) for initialization of Hammerstein-Wiener model. See “Initialize
Hammerstein-Wiener Estimation Using Linear Model” on page 12-8.

Estimate Model Using nlhw
Use nlhw to both construct and estimate a Hammerstein-Wiener model. After each
estimation, validate the model on page 12-26 by comparing it to other models and
simulating or predicting the model response.

Basic Estimation

Start with the simplest estimation using m = nlhw(data,[nb nf nk]). For example:

load iddata3;
% nb = nf = 2 and nk = 1 
m = nlhw(z3,[2 2 1])

m =
Hammerstein-Wiener model with 1 output and 1 input
 Linear transfer function corresponding to the orders  nb = 2, nf = 2, nk = 1
 Input nonlinearity: pwlinear with 10 units
 Output nonlinearity: pwlinear with 10 units
Sample time: 1 seconds

Status:                                       
Estimated using NLHW on time domain data "z3".
Fit to estimation data: 75.31%                
FPE: 2.019, MSE: 1.472

The second input argument [nb nf nk] sets the order of the linear transfer function,
where nb is the number of zeros plus 1, nf is the number of poles, and nk is the input
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delay. By default, both the input and output nonlinearity estimators are piecewise linear
functions (see the pwlinear reference page). m is an idnlhw object.

For MIMO systems, nb, nf, and nk are ny-by-nu matrices. See the nlhw reference page
for more information about MIMO estimation.

Configure Nonlinearity Estimators
You can specify a different nonlinearity estimator than the default piecewise linear
estimators.

m = nlhw(data,[nb,nf,nk],InputNL,OutputNL)

InputNL and OutputNL are nonlinearity estimator objects. If your input signal is binary,
set InputNL to unitgain.

To use nonlinearity estimators with default settings, specify InputNL and OutputNL
using character vectors (such as 'wavenet' for wavelet network or 'sigmoidnet' for
sigmoid network).

load iddata3;
m = nlhw(z3,[2 2 1],'sigmoidnet','deadzone');

If you need to configure the properties of a nonlinearity estimator, use its object
representation. For example, to estimate a Hammerstein-Wiener model that uses
saturation as its input nonlinearity and one-dimensional polynomial of degree 3 as its
output nonlinearity:

m = nlhw(z3,[2 2 1],'saturation',poly1d('Degree',3));

The third input 'saturation' specifies the saturation nonlinearity with default property
values. poly1d('Degree',3) creates a one-dimensional polynomial object of degree 3.

For MIMO models, specify the nonlinearities using objects unless you want to use the
same nonlinearity with default configuration for all channels.

This table summarizes values that specify the nonlinearity estimators.
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Nonlinearity Value (Default Nonlinearity
Configuration)

Class

Piecewise linear
(default)

'pwlinear' pwlinear

One layer sigmoid
network

'sigmoidnet' sigmoidnet

Wavelet network 'wavenet' wavenet
Saturation 'saturation' saturation
Dead zone 'deadzone' deadzone
One-
dimensional polynomial

'poly1d' poly1d

Unit gain 'unitgain' or [ ] unitgain

Additional available nonlinearities include custom networks that you create. Specify a
custom network by defining a function called gaussunit.m, as described in the
customnet reference page. Define the custom network object CNetw as:

For more information, see “Available Nonlinearity Estimators for Hammerstein-Wiener
Models” on page 12-12.

Exclude Input or Output Nonlinearity
Exclude a nonlinearity for a specific channel by specifying the unitgain value for the
InputNonlinearity or OutputNonlinearity properties.

If the input signal is binary, set InputNL to unitgain.

For more information about model estimation and properties, see the nlhw and idnlhw
reference pages.

For a description of each nonlinearity estimator, see “Available Nonlinearity Estimators
for Hammerstein-Wiener Models” on page 12-12.

Iteratively Refine Model
Estimate a Hammerstein-Wiener model and then use nlhw command to iteratively refine
the model.
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load iddata3;
m1 = nlhw(z3,[2 2 1],'sigmoidnet','wavenet');
m2 = nlhw(z3,m1);

Alternatively, use pem to refine the model.

m2 = pem(z3,m1);

Check the search termination criterion in m.Report.Termination.WhyStop. If
WhyStop indicates that the estimation reached the maximum number of iterations, try
repeating the estimation and possibly specifying a larger value for the MaxIterations.

Run 30 more iterations starting at model m1.

opt = nlhwOptions;
opt.SearchOptions.MaxIterations = 30;
m2 = nlhw(z3,m1,opt);

When the m.Report.Termination.WhyStop value is Near (local) minimum,
(norm(g) < tol or No improvement along the search direction with line
search, validate your model to see if this model adequately fits the data. If not, the
solution might be stuck in a local minimum of the cost-function surface. Try adjusting the
SearchOptions.Tolerance or the SearchMethod option of the nlhw option set, and
repeat the estimation.

You can also try perturbing the parameters of the last model using init, and then refine
the model using nlhw command.

Randomly perturb parameters of original model m1 about nominal values.

m1p = init(m1);

Estimate the parameters of perturbed model.

M2 = nlhw(z3,m1p);

Note that using init does not guarantee a better solution on further refinement.

Improve Estimation Results Using Initial States
If your estimated Hammerstein-Wiener model provides a poor fit to measured data, you
can repeat the estimation using the initial state values estimated from the data. By

12 Identify Hammerstein-Wiener Models

12-20



default, the initial states corresponding to the linear block of the Hammerstein-Wiener
model are zero.

To specify estimating initial states during model estimation:

load iddata3;
opt = nlhwOptions('InitialCondition', 'estimate');
m = nlhw(z3,[2 2 1],sigmoidnet,[],opt);

Troubleshoot Estimation
If you do not get a satisfactory model after many trials with various model structures and
estimation options, it is possible that the data is poor. For example, your data might be
missing important input or output variables and does not sufficiently cover all the
operating points of the system.

Nonlinear black-box system identification usually requires more data than linear model
identification to gain enough information about the system. See also “Troubleshooting
Model Estimation” on page 17-117.

Estimate Multiple Hammerstein-Wiener Models
This example shows how to estimate and compare multiple Hammerstein-Wiener models
using measured input-output data.

Load estimation and validation data.

load twotankdata
z = iddata(y,u,0.2);
ze = z(1:1000); 
zv = z(1001:3000);

Estimate several models using the estimation data ze and different model orders, delays,
and nonlinearity settings.

m1 = nlhw(ze,[2 3 1]);
m2 = nlhw(ze,[2 2 3]);
m3 = nlhw(ze,[2 2 3],pwlinear('NumberofUnits',13),pwlinear('NumberofUnits',10));
m4 = nlhw(ze,[2 2 3],sigmoidnet('NumberofUnits',2),pwlinear('NumberofUnits',10));

An alternative way to perform the estimation is to configure the model structure first
using idnlhw, and then estimate the model.
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m5 = idnlhw([2 2 3],'deadzone','saturation');
m5 = nlhw(ze,m5);

Compare the resulting models by plotting the model outputs and the measured output in
validation data zv.

compare(zv,m1,m2,m3,m4,m5)

Improve a Linear Model Using Hammerstein-Wiener Structure
This example shows how to use the Hammerstein-Wiener model structure to improve a
previously estimated linear model.
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After estimating the linear model, insert it into the Hammerstein-Wiener structure that
includes input or output nonlinearities.

Estimate a linear model.

load iddata1
LM = arx(z1,[2 2 1]);

Extract the transfer function coefficients from the linear model.

[Num,Den] = tfdata(LM);

Create a Hammerstein-Wiener model, where you initialize the linear block properties B
and F using Num and Den, respectively.

nb = 1;       % In general, nb = ones(ny,nu)
              % ny is number of outputs and nu is number of inputs
nf = nb;
nk = 0;       % In general, nk = zeros(ny,nu)
              % ny is number of outputs and nu is number of inputs
M = idnlhw([nb nf nk],[],'pwlinear');
M.B = Num;
M.F = Den;

Estimate the model coefficients, which refines the linear model coefficients in Num and
Den .

M = nlhw(z1,M);

Compare responses of linear and nonlinear model against measured data.

compare(z1,LM,M);
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See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Validating Hammerstein-Wiener Models” on page 12-26
• “Estimate Hammerstein-Wiener Models Initialized Using Linear OE Models” on page

12-36
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• “Identifying Nonlinear ARX and Hammerstein-Wiener Models Using Measured Data”

 See Also
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Validating Hammerstein-Wiener Models
After estimating a Hammerstein-Wiener model on page 12-5 for your system, you can
validate whether it reproduces the system behavior within acceptable bounds. It is
recommended that you use separate data sets for estimating and validating your model. If
the validation indicates low confidence in the estimation, then see “Troubleshooting
Model Estimation” on page 17-117 for next steps. For general information about
validating models, see “Model Validation”.

Compare Simulated Model Output to Measured Output
Plot simulated model output and measured output data for comparison, and compute best
fit values. At the command line, use compare command. You can also use sim to simulate
model response. Note that for Hammerstein-Wiener models, the simulated and predicted
model output are equivalent because these models have a trivial noise-component, that is
the additive disturbance in these models is white noise. For information about plotting
simulated output in the app, see “Simulation and Prediction in the App” on page 17-12.

Check Iterative Search Termination Conditions
The estimation report that is generated after model estimation lists the reason the
software terminated the estimation. For example, suppose that the report indicates that
the estimation reached the maximum number of iterations. You can try repeating the
estimation by specifying a larger value for the maximum number of iterations. For
information about how to configure the maximum number of iterations and other
estimation options, see “Specify Estimation Algorithm” on page 12-7.

To view the estimation report in the app, after model estimation is complete, view the
Estimation Report area of the Estimate tab. At the command line, use
M.Report.Termination to display the estimation termination conditions, where M is the
estimated Hammerstein-Wiener model. For example, check the
M.Report.Termination.WhyStop field that describes why the estimation was stopped.

For more information about the estimation report, see “Estimation Report” on page 1-29.

Check the Final Prediction Error and Loss Function Values
You can compare the performance of several estimated models by comparing the final
prediction error and loss function values that are shown in the estimation report.
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To view these values for an estimated model M at the command line, use the
M.Report.Fit.FPE (final prediction error) and M.Report.Fit.LossFcn (value of loss
function at estimation termination) properties. Smaller values typically indicate better
performance. However, M.Report.Fit.FPE values can be unreliable when the model
contains many parameters relative to the estimation data size. Use these indicators with
other validation techniques to draw reliable conclusions.

Perform Residual Analysis
Residuals are differences between the model output and the measured output. Thus,
residuals represent the portion of the output not explained by the model. You can analyze
the residuals using techniques such as the whiteness test and the independence test. For
more information about these tests, see “What Is Residual Analysis?” on page 17-43

At the command line, use resid to compute, plot, and analyze the residuals. To plot
residuals in the app, see “How to Plot Residuals in the App” on page 17-47.

Examine Hammerstein-Wiener Plots
A Hammerstein-Wiener plot displays the static input and output nonlinearities and linear
responses of a Hammerstein-Wiener model.

Examining a Hammerstein-Wiener plot can help you determine whether you have selected
a complicated nonlinearity for modeling your system. For example, suppose you use a
piecewise-linear input nonlinearity to estimate your model, but the plot indicates
saturation behavior. You can estimate a new model using the simpler saturation
nonlinearity instead. For multivariable systems, you can use the Hammerstein-Wiener plot
to determine whether to exclude nonlinearities for specific channels. If the nonlinearity
for a specific input or output channel does not exhibit strong nonlinear behavior, you can
estimate a new model after setting the nonlinearity at that channel to unit gain.
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Hide or show
the top pane.

Supported plots
for linear block

Selected block
is highlighted.

You can generate these plots in the System Identification app and at the command line.
In the plot window, you can view the nonlinearities and linear responses by clicking one of
the three blocks that represent the model:

• uNL (input nonlinearity)— Click this block to view the static nonlinearity at the input to
the Linear Block. The plot displays evaluate(M.InputNonlinearity,u) where
M is the Hammerstein-Wiener model, and u is the input to the input nonlinearity block.
For information about the blocks, see “Structure of Hammerstein-Wiener Models” on
page 12-2.

• Linear Block — Click this block to view the Step, impulse, Bode, and pole-zero
response plots of the embedded linear model (M.LinearModel). By default, a step
plot of the linear model is displayed.
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• yNL (output nonlinearity) — Click this block to view the static nonlinearity at the output
of the Linear Block. The plot displays evaluate(M.OutputNonlinearity,x),
where x is the output of the linear block.

Creating a Hammerstein-Wiener Plot

To create a Hammerstein-Wiener plot in the System Identification app, after you have
estimated the model, select the Hamm-Wiener check box in the Model Views area. For
general information about creating and working with plots in the app, see “Working with
Plots” on page 21-11.

At the command line, after you have estimated a Hammerstein-Wiener model M, you can
access the objects representing the input and output nonlinearity estimators using
M.InputNonlinearity and M.OutputNonlinearity.

Use plot to view the shape of the nonlinearities and the properties of the linear block.

plot(M)

You can use additional plot arguments to specify the following information:

• Include several Hammerstein-Wiener models on the plot.
• Configure how to evaluate the nonlinearity at each input and output channel.
• Specify the time or frequency values for computing transient and frequency response

plots of the linear block.

Configuring a Hammerstein-Wiener Plot

To configure the plots of the nonlinear blocks:

1 In the Hammerstein-Wiener Model Plot window, select the nonlinear block you want
to plot.

• To plot the response of the input nonlinearity function, click the uNL block.
• To plot the response of the output nonlinearity function, click the yNL block.

The selected block is highlighted green.

Note The input to the output nonlinearity block yNL is the output from the Linear
Block and not the measured input data.
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2 If your model contains multiple inputs or outputs, select the channel in the Select
nonlinearity at channel list. Selecting the channel updates the plot and displays the
nonlinearity values versus the corresponding input to this nonlinear block.

3 Change the range of the horizontal axis of the plot. This feature is available only for
plots generated in the System Identification app.

In the plot window, select Options > Set input range to open the Range for Input to
Nonlinearity dialog box. This feature is only available in the System Identification
app.

Enter the range using the format [MinValue MaxValue]. Click Apply and then
Close to update the plot.

To configure the linear block response plot:

1 In the Hammerstein-Wiener Model Plot window, click the Linear Block.
2 Select the input-output data pair for which you want to view the response in the

Select I/O pair list.
3 Select the type of linear response plot. In the Choose plot type list, choose from the

following options:

• Step
• Impulse
• Bode
• Pole-Zero Map

4 Set the time span for a step or impulse response plot. This feature is available only
for plots generated in the System Identification app.

In the plot window, select Options > Time span. In the Time Range dialog box,
specify the time span in the units of time you specified for the model. For a time span
T, the resulting response is plotted from -T/4 to T. Click Apply and then Close.

5 Set the frequency range for a Bode plot. This feature is available only for plots
generated in the app.

The default frequency vector is 128 linearly distributed values, greater than zero and
less than or equal to the Nyquist frequency. To change the range, select Options >
Frequency range. In the Frequency Range dialog box, specify a new frequency
vector in units of rad per model time units using one of following methods:
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• MATLAB expression, such as (1:100)*pi/100 or logspace(-3,-1,200). The
expression cannot contain variables in the MATLAB workspace.

• Row vector of values, such as (1:0.1:100).

Click Apply and then Close.

See Also

More About
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Estimate Hammerstein-Wiener Models in the App” on page 12-14
• “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-17
• “Using Hammerstein-Wiener Models” on page 12-10
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How the Software Computes Hammerstein-Wiener
Model Output

This topic describes how the software evaluates the output of nonlinearity estimators and
uses this output to compute the response of a Hammerstein-Wiener model.

Evaluating Nonlinearities (SISO)
Evaluating the output of a nonlinearity for a input u requires that you first extract the
input or output nonlinearity from the model:

F = M.InputNonlinearity; 
H = M.OutputNonlinearity;

Evaluate F(u):

w = evaluate(F,u)

where u is a scalar representing the value of the input signal at a given time.

You can evaluate output at multiple time instants by evaluating F for several time values
simultaneously using a column vector of input values:

w = evaluate(F,[u1;u2;u3])

Similarly, you can evaluate the value of the nonlinearity H using the output of the linear
block x(t) as its input:

y = evaluate(H,x)

Evaluating Nonlinearities (MIMO)
For MIMO models, F and H are vectors of length nu and ny, respectively. nu is the
number of inputs and ny is the number of outputs. In this case, you must evaluate the
predicted output of each nonlinearity separately.

For example, suppose that you estimate a two-input model:

M = nlhw(data,[nb nf nk],[wavenet;poly1d],'saturation')

In the input nonlinearity:
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F = M.InputNonlinearity
F1 = F(1);
F2 = F(2);

F is a vector function containing two elements: F=[F1(u1_value);F2(u2_value)],
where F1 is a wavenet object and F2 is a poly1d object. u1_value is the first input
signal and u2_value is the second input signal.

Evaluate F by evaluating F1 and F2 separately:

w1 = evaluate(F(1),u1_value);
w2 = evaluate(F(2),u2_value);

The total input to the linear block, w, is a vector of w1 and w2 (w = [w1 w2]).

Similarly, you can evaluate the value of the nonlinearity H:

H = M.OutputNonlinearity;

Simulation of Hammerstein-Wiener Model
This example shows how the software evaluates the simulated output by first computing
the output of the input and output nonlinearity estimators.

Estimate a Hammerstein-Wiener model.

load twotankdata
estData = iddata(y,u,0.2);
M = nlhw(estData,[1 5 3],'pwlinear','poly1d');

Extract the input nonlinearity, linear model, and output nonlinearity as separate variables.

uNL = M.InputNonlinearity;
linModel = M.LinearModel;
yNL = M.OutputNonlinearity;

Simulate the output of the input nonlinearity estimator.

Input data for simulation

u = estData.u;

Compute output of input nonlinearity

w = evaluate(uNL,u);
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Compute response of linear model to input w and zero initial conditions.

x = sim(linModel,w);

Compute the output of the Hammerstein-Wiener model M as the output of the output
nonlinearity estimator to input x.

y = evaluate(yNL,x);

The previous set of commands are equivalent to directly simulating the output of M using
the sim command.

ysim = sim(M,u);

Plot y and ysim, the manual and direct simulation results, respectively.

time = estData.SamplingInstants;
plot(time,y,'b',time,ysim,'--r');
xlabel('Time');
ylabel('Simulated Output')
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The plot indicates that y and ysim are the same.

See Also
evaluate

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
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Estimate Hammerstein-Wiener Models Initialized Using
Linear OE Models

This example shows how to estimate Hammerstein-Wiener models using linear OE
models.

Load the estimation data.

load throttledata.mat

This command loads the data object ThrottleData into the workspace. The object
contains input and output samples collected from an engine throttle system, sampled at a
rate of 100Hz.

A DC motor controls the opening angle of the butterfly valve in the throttle system. A step
signal (in volts) drives the DC motor. The output is the angular position (in degrees) of the
valve.

Plot the data to view and analyze the data characteristics.

plot(ThrottleData)
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In the normal operating range of 15-90 degrees, the input and output variables have a
linear relationship. You use a linear model of low order to model this relationship.

In the throttle system, a hard stop limits the valve position to 90 degrees, and a spring
brings the valve to 15 degrees when the DC motor is turned off. These physical
components introduce nonlinearities that a linear model cannot capture.

Estimate a Hammerstein-Wiener model to model the linear behavior of this single-input
single-output system in the normal operating range.

% Detrend the data because linear models cannot capture offsets.
Tr = getTrend(ThrottleData); 
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData,Tr);

 Estimate Hammerstein-Wiener Models Initialized Using Linear OE Models

12-37



% Estimate a linear OE model with na=2, nb=1, nk=1.
opt = oeOptions('Focus','simulation');
LinearModel = oe(DetrendedData,[2 1 1],opt);

Compare the simulated model response with estimation data.

compare(DetrendedData, LinearModel)

The linear model captures the rising and settling behavior in the linear operating range
but does not account for output saturation at 90 degrees.

Estimate a Hammerstein-Wiener model to model the output saturation.

NonlinearModel = nlhw(ThrottleData, LinearModel, [], 'saturation');
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The software uses the orders and delay of the linear model for the orders of the nonlinear
model. In addition, the software uses the B and F polynomials of the linear transfer
function.

Compare the nonlinear model with data.

compare(ThrottleData, NonlinearModel)
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See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-17
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ODE Parameter Estimation (Grey-
Box Modeling)

• “Supported Grey-Box Models” on page 13-2
• “Data Supported by Grey-Box Models” on page 13-4
• “Choosing idgrey or idnlgrey Model Object” on page 13-5
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-12
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance”

on page 13-16
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-19
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-27
• “Estimate Nonlinear Grey-Box Models” on page 13-34
• “Creating IDNLGREY Model Files” on page 13-57
• “Identifying State-Space Models with Separate Process and Measurement Noise

Descriptions” on page 13-70
• “After Estimating Grey-Box Models” on page 13-75
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Supported Grey-Box Models
If you understand the physics of your system and can represent the system using ordinary
differential or difference equations (ODEs) with unknown parameters, then you can use
System Identification Toolbox commands to perform linear or nonlinear grey-box
modeling. Grey-box model ODEs specify the mathematical structure of the model
explicitly, including couplings between parameters. Grey-box modeling is useful when you
know the relationships between variables, constraints on model behavior, or explicit
equations representing system dynamics.

The toolbox supports both continuous-time and discrete-time linear and nonlinear models.
However, because most laws of physics are expressed in continuous time, it is easier to
construct models with physical insight in continuous time, rather than in discrete time.

In addition to dynamic input-output models, you can also create time-series models that
have no inputs and static models that have no states.

If it is too difficult to describe your system using known physical laws, you can use the
black-box modeling approach. For more information, see “Linear Model Identification”
and “Nonlinear Model Identification”.

You can also use the idss model object to perform structured model estimation by using
its Structure property to fix or free specific parameters. However, you cannot use this
approach to estimate arbitrary structures (arbitrary parameterization). For more
information about structure matrices, see “Estimate State-Space Models with Structured
Parameterization” on page 7-32.

See Also
idgrey | idnlgrey | idss

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Nonlinear Grey-Box Models” on page 13-34

More About
• “Data Supported by Grey-Box Models” on page 13-4
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• “Choosing idgrey or idnlgrey Model Object” on page 13-5

 See Also
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Data Supported by Grey-Box Models
You can estimate both continuous-time or discrete-time grey-box models for data with the
following characteristics:

• Time-domain or frequency-domain data, including time-series data with no inputs.

Note Nonlinear grey-box models support only time-domain data.
• Single-output or multiple-output data

You must first import your data into the MATLAB workspace. You must represent your
data as an iddata or idfrd object. For more information about preparing data for
identification, see “Data Preparation”.

See Also
idgrey | idnlgrey | idss

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Nonlinear Grey-Box Models” on page 13-34

More About
• “Supported Grey-Box Models” on page 13-2
• “Choosing idgrey or idnlgrey Model Object” on page 13-5

13 ODE Parameter Estimation (Grey-Box Modeling)

13-4



Choosing idgrey or idnlgrey Model Object
Grey-box models require that you specify the structure of the ODE model in a file. You use
this file to create the idgrey or idnlgrey model object. You can use both the idgrey
and the idnlgrey objects to model linear systems. However, you can only represent
nonlinear dynamics using the idnlgrey model object.

The idgrey object requires that you write a function to describe the linear dynamics in
the state-space form, such that this file returns the state-space matrices as a function of
your parameters. For more information, see “Specifying the Linear Grey-Box Model
Structure” on page 13-8.

The idnlgrey object requires that you write a function or MEX-file to describe the
dynamics as a set of first-order differential equations, such that this file returns the
output and state derivatives as a function of time, input, state, and parameter values. For
more information, see “Specifying the Nonlinear Grey-Box Model Structure” on page 13-
34.

The following table compares idgrey and idnlgrey model objects.
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Comparison of idgrey and idnlgrey Objects

Settings and Operations Supported by idgrey? Supported by idnlgrey?
Set bounds on parameter
values.

Yes Yes

Handle initial states individually. Yes Yes
Perform linear analysis. Yes

For example, use the bode
command.

No

Honor stability constraints. Yes

Specify constraints using the
Advanced.StabilityThresh
old estimation option. For more
information, see
greyestOptions.

No

Note You can use parameter
bounds to ensure stability of an
idnlgrey model, if these
bounds are known.

Estimate a disturbance model. Yes

The disturbance model is
represented by K in state-space
equations.

No

Optimize estimation results for
simulation or prediction.

Yes

Set the Focus estimation option
to 'simulation' or
'prediction'. For more
information, see
greyestOptions.

No

Because idnlgrey models are
Output-Error models, there is
no difference between
simulation and prediction
results.

See Also
idgrey | idnlgrey | idss

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Nonlinear Grey-Box Models” on page 13-34
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More About
• “Supported Grey-Box Models” on page 13-2
• “Data Supported by Grey-Box Models” on page 13-4

 See Also
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Estimate Linear Grey-Box Models

Specifying the Linear Grey-Box Model Structure
You can estimate linear discrete-time and continuous-time grey-box models for arbitrary
ordinary differential or difference equations using single-output and multiple-output time-
domain data, or time-series data (output-only).

You must represent your system equations in state-space form. State-space models use
state variables x(t) to describe a system as a set of first-order differential equations,
rather than by one or more nth-order differential equations.

The first step in grey-box modeling is to write a function that returns state-space matrices
as a function of user-defined parameters and information about the model.

Use the following format to implement the linear grey-box model in the file:

[A,B,C,D] = myfunc(par1,par2,...,parN,Ts,aux1,aux2,...)

where the output arguments are the state-space matrices and myfunc is the name of the
file. par1,par2,...,parN are the N parameters of the model. Each entry may be a
scalar, vector or matrix.Ts is the sample time. aux1,aux2,... are the optional input
arguments that myfunc uses to compute the state-space matrices in addition to the
parameters and sample time. aux contains auxiliary variables in your system. You use
auxiliary variables to vary system parameters at the input to the function, and avoid
editing the file.

You can write the contents of myfunc to parameterize either a continuous-time, or a
discrete-time state-space model, or both. When you create the linear grey-box model
using myfunc, you can specify the nature of the output arguments of myfunc. The
continuous-time state-space model has the form:

In continuous-time, the state-space description has the following form:

&x t Ax t Bu t Ke t

y t Cx t Du t e t

x x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

= + +

= + +

=0 0

where, A,B,C and D are matrices that are parameterized by the parameters
par1,par2,...,parN. The noise matrix K and initial state vector, x0, are not
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parameterized by myfunc. In some applications, you may want to express K and x0 as
quantities that are parameterized by chosen parameters, just as the A, B, C and D
matrices. To handle such cases, you can write the ODE file, myfunc, to return K and x0 as
additional output arguments:

[A,B,C,D,K,x0] = myfunc(par1,par2,...,parN,Ts,aux1,aux2,...)

K and x0 are thus treated in the same way as the A, B, C and D matrices. They are all
functions of the parameters par1,par2,...,parN. To configure the handling of initial
states, x0, and the disturbance component, K, during estimation, use the
greyestOptions option set.

In discrete-time, the state-space description has a similar form:

x k Ax k Bu k Ke t

y k Cx k Du k e t

x x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

+ = + +

= + +

=

1

0 0

where, A, B, C and D are now the discrete-time matrices that are parameterized by the
parameters par1,par2,...,parN. K and x0 are not directly parameterized, but can be
estimated if required by configuring the corresponding estimation options.

After creating the function or MEX-file with your model structure, you must define an
idgrey model object.

Create Function to Represent a Grey-Box Model
This example shows how to represent the structure of the following continuous-time
model:

This equation represents an electrical motor, where  is the angular position
of the motor shaft, and  is the angular velocity. The parameter  is the
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inverse time constant of the motor, and  is the static gain from the input to the
angular velocity.

The motor is at rest at t = 0, but its angular position  is unknown. Suppose that the
approximate nominal values of the unknown parameters are ,  and

. For more information about this example, see the section on state-space models in
System Identification: Theory for the User , Second Edition, by Lennart Ljung, Prentice
Hall PTR, 1999.

The continuous-time state-space model structure is defined by the following equation:

If you want to estimate the same model using a structured state-space representation, see
“Estimate Structured Continuous-Time State-Space Models” on page 7-36.

To prepare this model for estimation:

• Create the following file to represent the model structure in this example:

function [A,B,C,D,K,x0] = myfunc(par,T)
A = [0 1; 0 par(1)]; 
B = [0;par(2)];
C = eye(2);
D = zeros(2,1);
K = zeros(2,2);
x0 = [par(3);0];

Save the file such that it is in the MATLAB® search path.

• Use the following syntax to define an idgrey model object based on the myfunc file:

par = [-1; 0.25; 0];
aux = {};
T = 0;
m = idgrey('myfunc',par,'c',aux,T);

where par represents a vector of all the user-defined parameters and contains their
nominal (initial) values. In this example, all the scalar-valued parameters are grouped in
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the par vector. The scalar-valued parameters could also have been treated as
independent input arguments to the ODE function myfunc. 'c' specifies that the
underlying parameterization is in continuous time. aux represents optional arguments. As
myfunc does not have any optional arguments, use aux = {}. T specifies the sample
time; T = 0 indicates a continuous-time model.

Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
data = iddata(y,u,0.1);

Use greyest to estimate the grey-box parameter values:

m_est = greyest(data,m);

where data is the estimation data and m is an estimation initialization idgrey model.
m_est is the estimated idgrey model.

See Also
greyest | idgrey

Related Examples
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-12
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page

13-16
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-19
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-27
• “Estimate Nonlinear Grey-Box Models” on page 13-34

 See Also
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Estimate Continuous-Time Grey-Box Model for Heat
Diffusion

This example shows how to estimate the heat conductivity and the heat-transfer
coefficient of a continuous-time grey-box model for a heated-rod system.

This system consists of a well-insulated metal rod of length L and a heat-diffusion
coefficient k . The input to the system is the heating power u(t) and the measured output
y(t) is the temperature at the other end.

Under ideal conditions, this system is described by the heat-diffusion equation—which is a
partial differential equation in space and time.

∂

∂
=

∂

∂

x t

t

x t( , ) ( , )x
k

x

x

2

2

To get a continuous-time state-space model, you can represent the second-derivative
using the following difference approximation:

∂
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This transformation produces a state-space model of order n
L

L
=

D

, where the state

variables x t k L( , )◊ D  are lumped representations for x t( , )x  for the following range of
values:

k L k L◊ £ < +( )D Dx 1

The dimension of x depends on the spatial grid size DL  in the approximation.

The heat-diffusion equation is mapped to the following continuous-time state-space model
structure to identify the state-space matrices:
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The state-space matrices are parameterized by the heat diffusion coefficient κ and the
heat transfer coefficient at the far end of the rod htf. The expressions also depend upon
the grid size, Ngrid, and the length of the rod L. The initial conditions x0 are a function of
the initial room temperature, treated as a known quantity in this example.

1 Create a MATLAB file.

The following code describes the state-space equation for this model. The parameters
are κ and htf while the auxiliary variables are Ngrid, L and initial room temperature
temp. The grid size is supplied as an auxiliary variable so that the ODE function can
be easily adapted for various grid sizes.

function [A,B,C,D,K,x0] = heatd(kappa,htf,T,Ngrid,L,temp)
% ODE file parameterizing the heat diffusion model

% kappa (first parameter) - heat diffusion coefficient
% htf (second parameter) - heat transfer coefficient 
%                          at the far end of rod

% Auxiliary variables for computing state-space matrices:
% Ngrid: Number of points in the space-discretization
% L: Length of the rod
% temp: Initial room temperature (uniform)

% Compute space interval
deltaL = L/Ngrid;

% A matrix
A = zeros(Ngrid,Ngrid);
for kk = 2:Ngrid-1
  A(kk,kk-1) = 1;
  A(kk,kk) = -2;
  A(kk,kk+1) = 1;
end

% Boundary condition on insulated end
A(1,1) = -1; A(1,2) = 1;
A(Ngrid,Ngrid-1) = 1;
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A(Ngrid,Ngrid) = -1;
A = A*kappa/deltaL/deltaL;

% B matrix
B = zeros(Ngrid,1);
B(Ngrid,1) = htf/deltaL;

% C matrix
C = zeros(1,Ngrid);
C(1,1) = 1;

% D matrix (fixed to zero)
D = 0;

% K matrix: fixed to zero
K = zeros(Ngrid,1);

% Initial states: fixed to room temperature
x0 = temp*ones(Ngrid,1);

2 Use the following syntax to define an idgrey model object based on the heatd code
file:

m = idgrey('heatd',{0.27 1},'c',{10,1,22});

This command specifies the auxiliary parameters as inputs to the function, include
the model order (grid size) 10, the rod length of 1 meter, and an initial temperature
of 22 degrees Celsius. The command also specifies the initial values for heat
conductivity as 0.27, and for the heat transfer coefficient as 1.

3 For given data, you can use greyest to estimate the grey-box parameter values:

me = greyest(data,m)

The following command shows how you can specify to estimate a new model with
different auxiliary variables:

m.Structure.ExtraArguments = {20,1,22};
me = greyest(data,m);

This syntax uses the ExtraArguments model structure attribute to specify a finer grid
using a larger value for Ngrid. For more information about linear grey-box model
properties, see the idgrey reference page.
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See Also
greyest | idgrey

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page

13-16
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-19
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-27
• “Estimate Nonlinear Grey-Box Models” on page 13-34

 See Also

13-15



Estimate Discrete-Time Grey-Box Model with
Parameterized Disturbance

This example shows how to create a single-input and single-output grey-box model
structure when you know the variance of the measurement noise. The code in this
example uses the Control System Toolbox command kalman for computing the Kalman
gain from the known and estimated noise variance.

Description of the SISO System
This example is based on a discrete, single-input and single-output (SISO) system
represented by the following state-space equations:

x kT T
par par

x kT u kT w kT

y kT par
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where w and e are independent white-noise terms with covariance matrices R1 and R2,
respectively. R1=E{ww'} is a 2–by-2 matrix and R2=E{ee'} is a scalar. par1, par2, par3,
and par4 represent the unknown parameter values to be estimated.

Assume that you know the variance of the measurement noise R2 to be 1. R1(1,1) is
unknown and is treated as an additional parameter par5. The remaining elements of R1
are known to be zero.

Estimating the Parameters of an idgrey Model
You can represent the system described in “Description of the SISO System” on page 13-
16 as an idgrey (grey-box) model using a function. Then, you can use this file and the
greyest command to estimate the model parameters based on initial parameter guesses.

To run this example, you must load an input-output data set and represent it as an
iddata or idfrd object called data. For more information about this operation, see
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-50 or
“Representing Frequency-Response Data Using idfrd Objects” on page 2-84.

To estimate the parameters of a grey-box model:
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1 Create the file mynoise that computes the state-space matrices as a function of the
five unknown parameters and the auxiliary variable that represents the known
variance R2. The initial conditions are not parameterized; they are assumed to be
zero during this estimation.

Note R2 is treated as an auxiliary variable rather than assigned a value in the file to
let you change this value directly at the command line and avoid editing the file.

function [A,B,C,D,K] = mynoise(par,T,aux)
R2 = aux(1); % Known measurement noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C = [par(3) par(4)];
D = 0;
R1 = [par(5) 0;0 0];
[~,K] = kalman(ss(A,eye(2),C,0,T),R1,R2);

2 Specify initial guesses for the unknown parameter values and the auxiliary parameter
value R2:

par1 = 0.1; % Initial guess for A(1,1) 
par2 = -2;  % Initial guess for A(1,2) 
par3 = 1;   % Initial guess for C(1,1) 
par4 = 3;   % Initial guess for C(1,2) 
par5 = 0.2; % Initial guess for R1(1,1)
Pvec = [par1; par2; par3; par4; par5]
auxVal = 1; % R2=1

3 Construct an idgrey model using the mynoise file:

Minit = idgrey('mynoise',Pvec,'d',auxVal);

The third input argument 'd' specifies a discrete-time system.
4 Estimate the model parameter values from data:

opt = greyestOptions;
opt.InitialState = 'zero';
opt.Display = 'full';
Model = greyest(data,Minit,opt)

See Also
greyest | idgrey | kalman

 See Also
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Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-12
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-19
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-27
• “Estimate Nonlinear Grey-Box Models” on page 13-34

More About
• “Identifying State-Space Models with Separate Process and Measurement Noise

Descriptions” on page 13-70
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Estimate Coefficients of ODEs to Fit Given Solution
This example shows how to estimate model parameters using linear and nonlinear grey-
box modeling.

Use grey-box identification to estimate coefficients of ODEs that describe the model
dynamics to fit a given response trajectory.

• For linear dynamics, represent the model using a linear grey-box model (idgrey).
Estimate the model coefficients using greyest.

• For nonlinear dynamics, represent the model using a nonlinear grey-box model
(idnlgrey). Estimate the model coefficients using nlgreyest.

In this example, you estimate the value of the friction coefficient of a simple pendulum
using its oscillation data. The equation of motion of a simple pendulum is:

 is the angular displacement of the pendulum relative to its state of rest. g is the
gravitational acceleration constant. m is the mass of the pendulum and l is the length of
the pendulum. b is the viscous friction coefficient whose value is estimated to fit the given
angular displacement data. There is no external driving force that is contributing to the
pendulum motion.

Load measured data.

load(fullfile(matlabroot,'toolbox','ident', ...
     'iddemos','data','pendulumdata'));
data = iddata(y,[],0.1,'Name','Pendulum');
data.OutputName = 'Pendulum position';
data.OutputUnit = 'rad';
data.Tstart = 0;
data.TimeUnit = 's';

The measured angular displacement data is loaded and saved as data, an iddata object
with a sample time of 0.1 seconds. The set command is used to specify data attributes
such as the output name, output unit, and the start time and units of the time vector.

Perform linear grey-box estimation.

Assuming that the pendulum undergoes only small angular displacements, the equation
describing the pendulum motion can be simplified:

 Estimate Coefficients of ODEs to Fit Given Solution
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Using the angular displacement ( ) and the angular velocity ( ) as state variables, the
simplified equation can be rewritten in the form:

Here,

The B and D matrices are zero because there is no external driving force for the simple
pendulum.

1. Create an ODE file that relates the model coefficients to its state space representation.

function [A,B,C,D] = LinearPendulum(m,g,l,b,Ts)
A = [0 1; -g/l, -b/m/l^2];
B = zeros(2,0);
C = [1 0];
D = zeros(1,0);
end 

The function, LinearPendulum, returns the state space representation of the linear
motion model of the simple pendulum using the model coefficients m, g, l, and b. Ts is the
sample time. Save this function as LinearPendulum.m. The function LinearPendulum
must be on the MATLAB® path. Alternatively, you can specify the full path name for this
function.

2. Create a linear grey-box model associated with the LinearPendulum function.

m = 1;
g = 9.81;
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l = 1;
b = 0.2;
linear_model = idgrey('LinearPendulum',{m,g,l,b},'c');

m, g and, l specify the values of the known model coefficients. b specifies the initial guess
for the viscous friction coefficient. The 'c' input argument in the call to idgrey specifies
linear_model as a continuous-time system.

3. Specify m, g, and l as known parameters.

linear_model.Structure.Parameters(1).Free = false;
linear_model.Structure.Parameters(2).Free = false;
linear_model.Structure.Parameters(3).Free = false;

As defined in the previous step, m, g, and l are the first three parameters of
linear_model. Using the Structure.Parameters.Free field for each of the
parameters, m, g, and l are specified as fixed values.

4. Create an estimation option set that specifies the initial state to be estimated and turns
on the estimation progress display. Also force the estimation algorithm to return a stable
model. This option is available only for linear model (idgrey) estimation.

opt = greyestOptions('InitialState','estimate','Display','on');
opt.EnforceStability = true;

5. Estimate the viscous friction coefficient.

linear_model = greyest(data,linear_model,opt);

The greyest command updates the parameter of linear_model.

b_est = linear_model.Structure.Parameters(4).Value;
[linear_b_est,dlinear_b_est] = getpvec(linear_model,'free')

linear_b_est =

    0.1178

dlinear_b_est =

    0.0088
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getpvec returns, dlinear_b_est, the 1 standard deviation uncertainty associated with
b, the free estimation parameter of linear_model.The estimated value of b, the viscous
friction coefficient, using linear grey-box estimation is returned in linear_b_est.

6. Compare the response of the linear grey-box model to the measured data.

compare(data,linear_model)

The linear grey-box estimation model provides a 49.9% fit to measured data. The poor fit
is due to the assumption that the pendulum undergoes small angular displacements,
whereas the measured data shows large oscillations.
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Perform nonlinear grey-box estimation.

Nonlinear grey-box estimation requires that you express the differential equation as a set
of first order equations.

Using the angular displacement ( ) and the angular velocity ( ) as state variables, the
equation of motion can be rewritten as a set of first order nonlinear differential equations:

1. Create an ODE file that relates the model coefficients to its nonlinear representation.

function [dx,y] = NonlinearPendulum(t,x,u,m,g,l,b,varargin)

% Output equation.
y = x(1); % Angular position.

% State equations.
dx = [x(2);                             ... % Angular position
      -(g/l)*sin(x(1))-b/(m*l^2)*x(2)   ... % Angular velocity
     ];
end

The function, NonlinearPendulum, returns the state derivatives and output of the
nonlinear motion model of the pendulum using the model coefficients m, g, l, and b. Save
this function as NonlinearPendulum.m on the MATLAB® path. Alternatively, you can
specify the full path name for this function.

2. Create a nonlinear grey-box model associated with the NonlinearPendulum function.

m = 1;
g = 9.81;
l = 1;
b = 0.2;
order         = [1 0 2];
parameters    = {m,g,l,b};
initial_states = [1; 0];
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Ts            = 0;
nonlinear_model = idnlgrey('NonlinearPendulum',order,parameters,initial_states,Ts);

3. Specify m, g, and l as known parameters.

setpar(nonlinear_model,'Fixed',{true true true false});

As defined in the previous step, m, g, and l are the first three parameters of
nonlinear_model. Using the setpar command, m, g, and l are specified as fixed values
and b is specified as a free estimation parameter.

4. Estimate the viscous friction coefficient.

nonlinear_model = nlgreyest(data,nonlinear_model,'Display','Full');

The nlgreyest command updates the parameter of nonlinear_model.

b_est = nonlinear_model.Parameters(4).Value;
[nonlinear_b_est, dnonlinear_b_est] = getpvec(nonlinear_model,'free')

nonlinear_b_est =

    0.1002

dnonlinear_b_est =

    0.0149

getpvec returns, as dnonlinear_b_est, the 1 standard deviation uncertainty
associated with b, the free estimation parameter of nonlinear_model.The estimated
value of b, the viscous friction coefficient, using nonlinear grey-box estimation is returned
in nonlinear_b_est.

5. Compare the response of the linear and nonlinear grey-box models to the measured
data.

compare(data,linear_model,nonlinear_model)
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The nonlinear grey-box model estimation provides a closer fit to the measured data.

See Also
greyest | idgrey | idnlgrey | nlgreyest

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-12
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page

13-16
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• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-27
• “Estimate Nonlinear Grey-Box Models” on page 13-34
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Estimate Model Using Zero/Pole/Gain Parameters
This example shows how to estimate a model that is parameterized by poles, zeros, and
gains. The example requires Control System Toolbox™ software.

You parameterize the model using complex-conjugate pole/zero pairs. When you
parameterize a real, grey-box model using complex-conjugate pairs of parameters, the
software updates parameter values such that the estimated values are also complex
conjugate pairs.

Load the measured data.

load zpkestdata zd;

The variable zd, which contains measured data, is loaded into the MATLAB® workspace.

plot(zd);
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The output shows an input delay of approximately 3.14 seconds.

Estimate the model using the zero-pole-gain (zpk) form using the zpkestODE function. To
view this function, enter

type zpkestODE

function [a,b,c,d] = zpkestODE(z,p,k,Ts,varargin)
%zpkestODE ODE file that parameterizes a state-space model using poles and
%zeros as its parameters.
%
% Requires Control System Toolbox.

%   Copyright 2011 The MathWorks, Inc.
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sysc = zpk(z,p,k);
if Ts==0
   [a,b,c,d] = ssdata(sysc);
else
   [a,b,c,d] = ssdata(c2d(sysc,Ts,'foh'));
end

Create a linear grey-box model associated with the ODE function.

Assume that the model has five poles and four zeros. Assume that two of the poles and
two of the zeros are complex conjugate pairs.

z = [-0.5+1i, -0.5-1i, -0.5, -1]; 
p = [-1.11+2i, -1.11-2i, -3.01, -4.01, -0.02]; 
k = 10.1; 
parameters = {z,p,k};
Ts = 0;
odefun = @zpkestODE;
init_sys = idgrey(odefun,parameters,'cd',{},Ts,'InputDelay',3.14);

z, p, and k are the initial guesses for the model parameters.

init_sys is an idgrey model that is associated with the zpkestODE.m function. The
'cd' flag indicates that the ODE function, zpkestODE, returns continuous or discrete
models, depending on the sampling period.

Evaluate the quality of the fit provided by the initial model.

compareOpt = compareOptions('InitialCondition','zero'); 
compare(zd,init_sys,compareOpt);
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The initial model provides a poor fit.

Specify estimation options.

opt = greyestOptions('InitialState','zero','DisturbanceModel','none','SearchMethod','gna');

Estimate the model.

sys = greyest(zd,init_sys,opt);

sys, an idgrey model, contains the estimated zero-pole-gain model parameters.

Compare the estimated and initial parameter values.

[getpvec(init_sys) getpvec(sys)]

13 ODE Parameter Estimation (Grey-Box Modeling)

13-30



ans = 10×2 complex

  -0.5000 + 1.0000i  -1.6158 + 1.6173i
  -0.5000 - 1.0000i  -1.6158 - 1.6173i
  -0.5000 + 0.0000i  -0.9417 + 0.0000i
  -1.0000 + 0.0000i  -1.4099 + 0.0000i
  -1.1100 + 2.0000i  -2.4050 + 1.4340i
  -1.1100 - 2.0000i  -2.4050 - 1.4340i
  -3.0100 + 0.0000i  -2.3387 + 0.0000i
  -4.0100 + 0.0000i  -2.3392 + 0.0000i
  -0.0200 + 0.0000i  -0.0082 + 0.0000i
  10.1000 + 0.0000i   9.7881 + 0.0000i

The getpvec command returns the parameter values for a model. In the output above,
each row displays corresponding initial and estimated parameter values. All parameters
that were initially specified as complex conjugate pairs remain so after estimation.

Evaluate the quality of the fit provided by the estimated model.

compare(zd,init_sys,sys,compareOpt);
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sys provides a closer fit (98.35%) to the measured data.

See Also
c2d | getpvec | greyest | idgrey | ssdata

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-19
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• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-12
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page

13-16
• “Estimate Nonlinear Grey-Box Models” on page 13-34

 See Also
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Estimate Nonlinear Grey-Box Models

Specifying the Nonlinear Grey-Box Model Structure
You must represent your system as a set of first-order nonlinear difference or differential
equations:
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time representation with Ts as the sample time. F and H are arbitrary linear or nonlinear
functions with Nx and Ny components, respectively. Nx is the number of states and Ny is
the number of outputs.

After you establish the equations for your system, create a function or MEX-file. MEX-
files, which can be created in C or Fortran, are dynamically linked subroutines that can be
loaded and executed by the MATLAB. For more information about MEX-files, see “C MEX
File Applications” (MATLAB). This file is called an ODE file or a model file.

The purpose of the model file is to return the state derivatives and model outputs as a
function of time, states, inputs, and model parameters, as follows:

[dx,y] = MODFILENAME(t,x,u,p1,p2, ...,pN,FileArgument)

Tip The template file for writing the C MEX-file, IDNLGREY_MODEL_TEMPLATE.c, is
located in matlab/toolbox/ident/nlident.

The output variables are:

• dx — Represents the right side(s) of the state-space equation(s). A column vector with
Nx entries. For static models, dx=[].

For discrete-time models. dx is the value of the states at the next time step x(t
+Ts).

13 ODE Parameter Estimation (Grey-Box Modeling)

13-34



For continuous-time models. dx is the state derivatives at time t, or dx

dt
.

• y — Represents the right side(s) of the output equation(s). A column vector with Ny
entries.

The file inputs are:

• t — Current time.
• x — State vector at time t. For static models, equals [].
• u — Input vector at time t. For time-series models, equals [].
• p1,p2, ...,pN — Parameters, which can be real scalars, column vectors or two-

dimensional matrices. N is the number of parameter objects. For scalar parameters, N
is the total number of parameter elements.

• FileArgument — Contains auxiliary variables that might be required for updating the
constants in the state equations.

Tip After creating a model file, call it directly from the MATLAB software with reasonable
inputs and verify the output values. Also check that for the expected input and parameter
value ranges, the model output and derivatives remain finite.

For an example of creating grey-box model files and idnlgrey model object, see
Creating idnlgrey Model Files.

For examples of code files and MEX-files that specify model structure, see the toolbox/
ident/iddemos/examples folder. For example, the model of a DC motor is described in
files dcmotor_m and dcmotor_c.

Constructing the idnlgrey Object
After you create the function or MEX-file with your model structure, define an idnlgrey
object. This object shares many of the properties of the linear idgrey model object.

Use the following general syntax to define the idnlgrey model object:

m = idnlgrey('filename',Order,Parameters,InitialStates)

The idnlgrey arguments are defined as follows:
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• 'filename' — Name of the function or MEX-file storing the model structure. This file
must be on the MATLAB path when you use this model object for model estimation,
prediction, or simulation.

• Order — Vector with three entries [Ny Nu Nx], specifying the number of model
outputs Ny, the number of inputs Nu, and the number of states Nx.

• Parameters — Parameters, specified as struct arrays, cell arrays, or double arrays.
• InitialStates — Specified in the same way as parameters. Must be the fourth input

to the idnlgrey constructor.

You can also specify additional properties of the idnlgrey model, including simulation
method and related options. For detailed information about this object and its properties,
see the idnlgrey reference page.

Use nlgreyest or pem to estimate your grey-box model. Before estimating, it is
advisable to simulate the model to verify that the model file has been coded correctly. For
example, compute the model response to estimation data's input signal using sim:

y = sim(model,data)

where, model is the idnlgrey object, and data is the estimation data (iddata object).

Using nlgreyest to Estimate Nonlinear Grey-Box Models
You can use the nlgreyest command to estimate the unknown idnlgrey model
parameters and initial states using measured data.

The input-output dimensions of the data must be compatible with the input and output
orders you specified for the idnlgrey model.

Use the following general estimation syntax:

m2 = nlgreyest(data,m)

where data is the estimation data and m is the idnlgrey model object you constructed.
The output m2 is an idnlgrey model of same configuration as m, with parameters and
initial states updated to fit the data. More information on estimation can be retrieved
from the Report property. For more information on Report and how to use it, see
“Output Arguments” in the nlgreyest reference page, or type m2.Report on the
command line.
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You can specify additional estimation options using the nlgreyestOptions option set,
including SearchMethod and SearchOption.

For information about validating your models, see “Model Validation”.

Represent Nonlinear Dynamics Using MATLAB File for Grey-
Box Estimation
This example shows how to construct, estimate and analyze nonlinear grey-box models.

Nonlinear grey-box (idnlgrey) models are suitable for estimating parameters of systems
that are described by nonlinear state-space structures in continuous or discrete time. You
can use both idgrey (linear grey-box model) and idnlgrey objects to model linear
systems. However, you can only use idnlgrey to represent nonlinear dynamics. To learn
about linear grey-box modeling using idgrey, see “Building Structured and User-Defined
Models Using System Identification Toolbox™”.

About the Model

In this example, you model the dynamics of a linear DC motor using the idnlgrey object.

Figure 1: Schematic diagram of a DC-motor.

If you ignore the disturbances and choose y(1) as the angular position [rad] and y(2) as
the angular velocity [rad/s] of the motor, you can set up a linear state-space structure of
the following form (see Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hall PTR, 1999, 2nd ed., p. 95-97 for the derivation):
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   d         | 0      1   |        |   0   |
   -- x(t) = |            | x(t) + |       | u(t)
   dt        | 0   -1/tau |        | k/tau |

             | 1   0 |
      y(t) = |       | x(t)
             | 0   1 |

tau is the time-constant of the motor in [s] and k is the static gain from the input to the
angular velocity in [rad/(V*s)] . See Ljung (1999) for how tau and k relate to the physical
parameters of the motor.

About the Input-Output Data

1. Load the DC motor data.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));

2. Represent the estimation data as an iddata object.

z = iddata(y, u, 0.1, 'Name', 'DC-motor');

3. Specify input and output signal names, start time and time units.

z.InputName = 'Voltage';
z.InputUnit =  'V';
z.OutputName = {'Angular position', 'Angular velocity'};
z.OutputUnit = {'rad', 'rad/s'};
z.Tstart = 0;
z.TimeUnit = 's';

4. Plot the data.

The data is shown in two plot windows.

figure('Name', [z.Name ': Voltage input -> Angular position output']);
plot(z(:, 1, 1));   % Plot first input-output pair (Voltage -> Angular position).
figure('Name', [z.Name ': Voltage input -> Angular velocity output']);
plot(z(:, 2, 1));   % Plot second input-output pair (Voltage -> Angular velocity).
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Figure 2: Input-output data from a DC-motor.

Linear Modeling of the DC-Motor

1. Represent the DC motor structure in a function.

In this example, you use a MATLAB® file, but you can also use C MEX-files (to gain
computational speed), P-files or function handles. For more information, see “Creating
IDNLGREY Model Files”.

The DC-motor function is called dcmotor_m.m and is shown below.

  function [dx, y] = dcmotor_m(t, x, u, tau, k, varargin)
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  % Output equations.
  y = [x(1);                         ... % Angular position.
       x(2)                          ... % Angular velocity.
      ];

  % State equations.
  dx = [x(2);                        ... % Angular velocity.
        -(1/tau)*x(2)+(k/tau)*u(1)   ... % Angular acceleration.
       ];

The file must always be structured to return the following:

Output arguments:

• dx is the vector of state derivatives in continuous-time case, and state update values in
the discrete-time case.

• y is the output equation

Input arguments:

• The first three input arguments must be: t (time), x (state vector, [] for static
systems), u (input vector, [] for time-series).

• Ordered list of parameters follow. The parameters can be scalars, column vectors, or
2-dimensional matrices.

• varargin for the auxiliary input arguments

2. Represent the DC motor dynamics using an idnlgrey object.

The model describes how the inputs generate the outputs using the state equation(s).

FileName      = 'dcmotor_m';       % File describing the model structure.
Order         = [2 1 2];           % Model orders [ny nu nx].
Parameters    = [1; 0.28];         % Initial parameters. Np = 2.
InitialStates = [0; 0];            % Initial initial states.
Ts            = 0;                 % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'DC-motor');

In practice, there are disturbances that affect the outputs. An idnlgrey model does not
explicitly model the disturbances, but assumes that these are just added to the output(s).
Thus, idnlgrey models are equivalent to Output-Error (OE) models. Without a noise
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model, past outputs do not influence prediction of future outputs, which means that
predicted output for any prediction horizon k coincide with simulated outputs.

3. Specify input and output names, and units.

set(nlgr, 'InputName', 'Voltage', 'InputUnit', 'V',               ...
          'OutputName', {'Angular position', 'Angular velocity'}, ...
          'OutputUnit', {'rad', 'rad/s'},                         ...
          'TimeUnit', 's');

4. Specify names and units of the initial states and parameters.

nlgr = setinit(nlgr, 'Name', {'Angular position' 'Angular velocity'});
nlgr = setinit(nlgr, 'Unit', {'rad' 'rad/s'});
nlgr = setpar(nlgr, 'Name', {'Time-constant' 'Static gain'});
nlgr = setpar(nlgr, 'Unit', {'s' 'rad/(V*s)'});

You can also use setinit and setpar to assign values, minima, maxima, and estimation
status for all initial states or parameters simultaneously.

5. View the initial model.

a. Get basic information about the model.

The DC-motor has 2 (initial) states and 2 model parameters.

size(nlgr)

Nonlinear grey-box model with 2 outputs, 1 inputs, 2 states and 2 parameters (2 free).

b. View the initial states and parameters.

Both the initial states and parameters are structure arrays. The fields specify the
properties of an individual initial state or parameter. Type help
idnlgrey.InitialStates and help idnlgrey.Parameters for more information.

nlgr.InitialStates(1)
nlgr.Parameters(2)

ans = 

  struct with fields:

       Name: 'Angular position'
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       Unit: 'rad'
      Value: 0
    Minimum: -Inf
    Maximum: Inf
      Fixed: 1

ans = 

  struct with fields:

       Name: 'Static gain'
       Unit: 'rad/(V*s)'
      Value: 0.2800
    Minimum: -Inf
    Maximum: Inf
      Fixed: 0

c. Retrieve information for all initial states or model parameters in one call.

For example, obtain information on initial states that are fixed (not estimated) and the
minima of all model parameters.

getinit(nlgr, 'Fixed')
getpar(nlgr, 'Min')

ans =

  2x1 cell array

    {[1]}
    {[1]}

ans =

  2x1 cell array

    {[-Inf]}
    {[-Inf]}

d. Obtain basic information about the object:

 Estimate Nonlinear Grey-Box Models

13-43



nlgr

nlgr =
Continuous-time nonlinear grey-box model defined by 'dcmotor_m' (MATLAB file):

   dx/dt = F(t, u(t), x(t), p1, p2)
    y(t) = H(t, u(t), x(t), p1, p2) + e(t)

 with 1 input, 2 states, 2 outputs, and 2 free parameters (out of 2).

Name: DC-motor

Status:                                                         
Created by direct construction or transformation. Not estimated.

Use get to obtain more information about the model properties. The idnlgrey object
shares many properties of parametric linear model objects.

get(nlgr)

             FileName: 'dcmotor_m'
                Order: [1x1 struct]
           Parameters: [2x1 struct]
        InitialStates: [2x1 struct]
         FileArgument: {}
    SimulationOptions: [1x1 struct]
               Report: [1x1 idresults.nlgreyest]
         TimeVariable: 't'
        NoiseVariance: [2x2 double]
                   Ts: 0
             TimeUnit: 'seconds'
            InputName: {'Voltage'}
            InputUnit: {'V'}
           InputGroup: [1x1 struct]
           OutputName: {2x1 cell}
           OutputUnit: {2x1 cell}
          OutputGroup: [1x1 struct]
                Notes: [0x1 string]
             UserData: []
                 Name: 'DC-motor'
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Performance Evaluation of the Initial DC-Motor Model

Before estimating the parameters tau and k, simulate the output of the system with the
parameter guesses using the default differential equation solver (a Runge-Kutta 45 solver
with adaptive step length adjustment). The simulation options are specified using the
"SimulationOptions" model property.

1. Set the absolute and relative error tolerances to small values (1e-6 and 1e-5,
respectively).

nlgr.SimulationOptions.AbsTol = 1e-6;
nlgr.SimulationOptions.RelTol = 1e-5;

2. Compare the simulated output with the measured data.

compare displays both measured and simulated outputs of one or more models, whereas
predict, called with the same input arguments, displays the simulated outputs.

The simulated and measured outputs are shown in a plot window.

compare(z, nlgr);
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Figure 3: Comparison between measured outputs and the simulated outputs of the initial
DC-motor model.

Parameter Estimation

Estimate the parameters and initial states using nlgreyest, which is a prediction error
minimization method for nonlinear grey box models. The estimation options, such as the
choice of estimation progress display, are specified using the "nlgreyestOptions" option
set.

nlgr = setinit(nlgr, 'Fixed', {false false}); % Estimate the initial states.
opt = nlgreyestOptions('Display', 'on');
nlgr = nlgreyest(z, nlgr, opt);
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Performance Evaluation of the Estimated DC-Motor Model

1. Review the information about the estimation process.

This information is stored in the Report property of the idnlgrey object. The property
also contains information about how the model was estimated, such as solver and search
method, data set, and why the estimation was terminated.

nlgr.Report
fprintf('\n\nThe search termination condition:\n')
nlgr.Report.Termination

ans = 

         Status: 'Estimated using NLGREYEST'
         Method: 'Solver: ode45; Search: lsqnonlin'
            Fit: [1x1 struct]
     Parameters: [1x1 struct]
    OptionsUsed: [1x1 idoptions.nlgreyest]
      RandState: []
       DataUsed: [1x1 struct]
    Termination: [1x1 struct]

The search termination condition:

ans = 

  struct with fields:

                 WhyStop: 'Change in cost was less than the specified tolerance'
              Iterations: 5
    FirstOrderOptimality: 1.4013e-04
                FcnCount: 6
               Algorithm: 'trust-region-reflective'

2. Evaluate the model quality by comparing simulated and measured outputs.

The fits are 98% and 84%, which indicate that the estimated model captures the dynamics
of the DC motor well.

compare(z, nlgr);
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Figure 4: Comparison between measured outputs and the simulated outputs of the
estimated IDNLGREY DC-motor model.

3. Compare the performance of the idnlgrey model with a second-order ARX model.

na = [2 2; 2 2];
nb = [2; 2];
nk = [1; 1];
dcarx = arx(z, [na nb nk]);
compare(z, nlgr, dcarx);
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Figure 5: Comparison between measured outputs and the simulated outputs of the
estimated IDNLGREY and ARX DC-motor models.

4. Check the prediction errors.

The prediction errors obtained are small and are centered around zero (non-biased).

pe(z, nlgr);
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Figure 6: Prediction errors obtained with the estimated IDNLGREY DC-motor model.

5. Check the residuals ("leftovers").

Residuals indicate what is left unexplained by the model and are small for good model
quality. Use the resid command to view the correlations among the residuals. The first
column of plots shows the autocorrelations of the residuals for the two outputs. The
second column shows the cross-correlation of these residuals with the input "Voltage".
The correlations are within acceptable bounds (blue region).

figure('Name',[nlgr.Name ': residuals of estimated model']);
resid(z,nlgr);
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Figure 7: Residuals obtained with the estimated IDNLGREY DC-motor model.

6. Plot the step response.

A unit input step results in an angular position showing a ramp-type behavior and to an
angular velocity that stabilizes at a constant level.

figure('Name', [nlgr.Name ': step response of estimated model']);
step(nlgr);
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Figure 8: Step response with the estimated IDNLGREY DC-motor model.

7. Examine the model covariance.

You can assess the quality of the estimated model to some extent by looking at the
estimated covariance matrix and the estimated noise variance. A "small" value of the (i,
i) diagonal element of the covariance matrix indicates that the i:th model parameter is
important for explaining the system dynamics when using the chosen model structure.
Small noise variance (covariance for multi-output systems) elements are also a good
indication that the model captures the estimation data in a good way.

getcov(nlgr)
nlgr.NoiseVariance
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ans =

   1.0e-04 *

    0.1573    0.0021
    0.0021    0.0008

ans =

    0.0010   -0.0000
   -0.0000    0.0110

For more information about the estimated model, use present to display the initial states
and estimated parameter values, and estimated uncertainty (standard deviation) for the
parameters.

present(nlgr);

                                                                                     
nlgr =                                                                               
Continuous-time nonlinear grey-box model defined by 'dcmotor_m' (MATLAB file):       
                                                                                     
   dx/dt = F(t, u(t), x(t), p1, p2)                                                  
    y(t) = H(t, u(t), x(t), p1, p2) + e(t)                                           
                                                                                     
 with 1 input, 2 states, 2 outputs, and 2 free parameters (out of 2).                
                                                                                     
 Input:                                                                              
    u(1)  Voltage(t) [V]                                                             
 States:                                initial value                                
    x(1)  Angular position(t) [rad]     xinit@exp1   0.0302675   (est) in [-Inf, Inf]
    x(2)  Angular velocity(t) [rad/s]   xinit@exp1   -0.133777   (est) in [-Inf, Inf]
 Outputs:                                                                            
    y(1)  Angular position(t) [rad]                                                  
    y(2)  Angular velocity(t) [rad/s]                                                
 Parameters:                       value      standard dev                           
    p1   Time-constant [s]         0.243649    0.00396671   (est) in [-Inf, Inf]     
    p2   Static gain [rad/(V*s)]   0.249644   0.000284486   (est) in [-Inf, Inf]     
                                                                                     
Name: DC-motor                                                                       
                                                                                     
Status:                                                                              
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Termination condition: Change in cost was less than the specified tolerance.         
Number of iterations: 5, Number of function evaluations: 6                           
                                                                                     
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "DC-motor".     
Fit to estimation data: [98.34;84.47]%                                               
FPE: 0.001096, MSE: 0.1187                                                           
More information in model's "Report" property.                                       

Conclusions

This example illustrates the basic tools for performing nonlinear grey-box modeling. See
the other nonlinear grey-box examples to learn about:

• Using nonlinear grey-box models in more advanced modeling situations, such as
building nonlinear continuous- and discrete-time, time-series and static models.

• Writing and using C MEX model-files.

• Handling nonscalar parameters.

• Impact of certain algorithm choices.

For more information on identification of dynamic systems with System Identification
Toolbox, visit the System Identification Toolbox product information page.

Nonlinear Grey-Box Model Properties and Estimation Options
idnlgrey creates a nonlinear grey-box model based on the model structure and
properties. The parameters and initial states of the created idnlgrey object are
estimated using nlgreyest.

The following model properties and estimation options affect the model creation and
estimation results.

Simulation Method

You specify the simulation method using the SimulationOptions (struct) property of
idnlgrey.

System Identification Toolbox software provides several variable-step and fixed-step
solvers for simulating idnlgrey models.

For discrete-time systems, the default solver is 'FixedStepDiscrete'. For continuous-
time systems, the default solver is 'ode45'. By default, SimulationOptions.Solver is
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set to 'Auto', which automatically selects either 'ode45' or 'FixedStepDiscrete'
during estimation and simulation—depending on whether the system is continuous or
discrete in time.

To view a list of available solvers and their properties, see the SimulationOptions
model property in idnlgrey reference page.

Search Method

You specify the search method for estimating model parameters using the SearchMethod
option of the nlgreyestOptions option set. Two categories of methods are available for
nonlinear grey-box modeling.

One category of methods consists of the minimization schemes that are based on line-
search methods, including Gauss-Newton type methods, steepest-descent methods, and
Levenberg-Marquardt methods.

The Trust-Region Reflective Newton method of nonlinear least-squares (lsqnonlin),
where the cost is the sum of squares of errors between the measured and simulated
outputs, requires Optimization Toolbox™ software. When the parameter bounds differ
from the default +/- Inf, this search method handles the bounds better than the schemes
based on a line search. However, unlike the line-search-based methods, lsqnonlin
cannot handle automatic weighting by the inverse of estimated noise variance in multi-
output cases. For more information, see OutputWeight estimation option in the
nlgreyestOptions reference page.

By default, SearchMethod is set to Auto, which automatically selects a method from the
available minimizers. If the Optimization Toolbox product is installed, SearchMethod is
set to 'lsqnonlin'. Otherwise, SearchMethod is a combination of line-search based
schemes.

For detailed information about this and other nlgreyest estimation options, see
nlgreyestOptions.

Gradient Options

You specify the method for calculating gradients using the GradientOptions option of
the nlgreyestOptions option set. Gradients are the derivatives of errors with respect
to unknown parameters and initial states.

Gradients are calculated by numerically perturbing unknown quantities and measuring
their effects on the simulation error.
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Option for gradient computation include the choice of the differencing scheme (forward,
backward or central), the size of minimum perturbation of the unknown quantities, and
whether the gradients are calculated simultaneously or individually.

For detailed information about this and other nlgreyest estimation options, see
nlgreyestOptions.

See Also
idnlgrey | nlgreyest

Related Examples
• “Creating IDNLGREY Model Files” on page 13-57
• “Estimate Linear Grey-Box Models” on page 13-8

More About
• “Supported Grey-Box Models” on page 13-2
• “Data Supported by Grey-Box Models” on page 13-4
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Creating IDNLGREY Model Files
This example shows how to write ODE files for nonlinear grey-box models as MATLAB and
C MEX files.

Grey box modeling is conceptually different to black box modeling in that it involves a
more comprehensive modeling step. For IDNLGREY (the nonlinear grey-box model object;
the nonlinear counterpart of IDGREY), this step consists of creating an ODE file, also
called a "model file". The ODE file specifies the right-hand sides of the state and the
output equations typically arrived at through physical first principle modeling. In this
example we will concentrate on general aspects of implementing it as a MATLAB file or a
C MEX file.

IDNLGREY Model Files

IDNLGREY supports estimation of parameters and initial states in nonlinear model
structures written on the following explicit state-space form (so-called output-error, OE,
form, named so as the noise e(t) only affects the output of the model structure in an
additive manner):

xn(t) = F(t, x(t), u(t), p1, ..., pNpo); x(0) = X0;

y(t) = H(t, x(t), u(t), p1, ..., pNpo) + e(t)

For discrete-time structures, xn(t) = x(T+Ts) with Ts being the sample time, and for
continuous-time structures xn(t) = d/dt x(t). In addition, F(.) and H(.) are arbitrary linear
or nonlinear functions with Nx (number of states) and Ny (number of outputs)
components, respectively. Any of the model parameters p1, ..., pNpo as well as the initial
state vector X(0) can be estimated. Worth stressing is that

1 time-series modeling, i.e., modeling without an exogenous input signal u(t), and
2 static modeling, i.e., modeling without any states x(t)

are two special cases that are supported by IDNLGREY. (See the tutorials idnlgreydemo3
and idnlgreydemo5 for examples of these two modeling categories).

The first IDNLGREY modeling step to perform is always to implement a MATLAB or C
MEX model file specifying how to update the states and compute the outputs. More to the
point, the user must write a model file, MODFILENAME.m or MODFILENAME.c, defined
with the following input and output arguments (notice that this form is required for both
MATLAB and C MEX type of model files)
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[dx, y] = MODFILENAME(t, x, u, p1, p2, ..., pNpo, FileArgument)

MODFILENAME can here be any user chosen file name of a MATLAB or C MEX-file, e.g.,
see twotanks_m.m, pendulum_c.c etc. This file should be defined to return two outputs:

• dx: the right-hand side(s) of the state-space equation(s) (a column vector with Nx real
entries; [] for static models)

• y: the right-hand side(s) of the output equation(s) (a column vector with Ny real
entries)

and it should take 3+Npo(+1) input arguments specified as follows:

• t: the current time
• x: the state vector at time t ([] for static models)
• u: the input vector at time t ([] for time-series models)
• p1, p2, ..., pNpo: the individual parameters (which can be real scalars, column vectors

or 2-dimensional matrices); Npo is here the number of parameter objects, which for
models with scalar parameters coincide with the number of parameters Np

• FileArgument: optional inputs to the model file

In the onward discussion we will focus on writing model using either MATLAB language
or using C-MEX files. However, IDNLGREY also supports P-files (protected MATLAB files
obtained using the MATLAB command "pcode") and function handles. In fact, it is not only
possible to use C MEX model files but also Fortran MEX files. Consult the MATLAB
documentation on External Interfaces for more information about the latter.

What kind of model file should be implemented? The answer to this question really
depends on the use of the model.

Implementation using MATLAB language (resulting in a *.m file) has some distinct
advantages. Firstly, one can avoid time-consuming, low-level programming and
concentrate more on the modeling aspects. Secondly, any function available within
MATLAB and its toolboxes can be used directly in the model files. Thirdly, such files will
be smaller and, without any modifications, all built-in MATLAB error checking will
automatically be enforced. In addition, this is obtained without any code compilation.

C MEX modeling is much more involved and requires basic knowledge about the C
programming language. The main advantage with C MEX model files is the improved
execution speed. Our general advice is to pursue C MEX modeling when the model is
going to be used many times, when large data sets are employed, and/or when the model
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structure contains a lot of computations. It is often worthwhile to start with using a
MATLAB file and later on turn to the C MEX counterpart.

IDNLGREY Model Files Written Using MATLAB Language

With this said, let us next move on to MATLAB file modeling and use a nonlinear second
order model structure, describing a two tank system, as an example. See idnlgreydemo2
for the modeling details. The contents of twotanks_m.m are as follows.

type twotanks_m.m

function [dx, y] = twotanks_m(t, x, u, A1, k, a1, g, A2, a2, varargin)
%TWOTANKS_M  A two tank system.

%   Copyright 2005-2006 The MathWorks, Inc.

% Output equation.
y = x(2);                                              % Water level, lower tank.

% State equations.
dx = [1/A1*(k*u(1)-a1*sqrt(2*g*x(1)));             ... % Water level, upper tank.
      1/A2*(a1*sqrt(2*g*x(1))-a2*sqrt(2*g*x(2)))   ... % Water level, lower tank.
     ];

In the function header, we here find the required t, x, and u input arguments followed by
the six scalar model parameters, A1, k, a1, g, A2 and a2. In the MATLAB file case, the last
input argument should always be varargin to support the passing of an optional model file
input argument, FileArgument. In an IDNLGREY model object, FileArgument is stored as
a cell array that might hold any kind of data. The first element of FileArgument is here
accessed through varargin{1}{1}.

The variables and parameters are referred in the standard MATLAB way. The first state is
x(1) and the second x(2), the input is u(1) (or just u in case it is scalar), and the scalar
parameters are simply accessed through their names (A1, k, a1, g, A2 and a2). Individual
elements of vector and matrix parameters are accessed as P(i) (element i of a vector
parameter named P) and as P(i, j) (element at row i and column j of a matrix parameter
named P), respectively.

IDNLGREY C MEX Model Files

Writing a C MEX model file is more involved than writing a MATLAB model file. To
simplify this step, it is recommended that the available IDNLGREY C MEX model template
is copied to MODFILENAME.c. This template contains skeleton source code as well as
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detailed instructions on how to customize the code for a particular application. The
location of the template file is found by typing the following at the MATLAB command
prompt.

fullfile(matlabroot, 'toolbox', 'ident', 'nlident',
'IDNLGREY_MODEL_TEMPLATE.c')

For the two tank example, this template was copied to twotanks_c.c. After some initial
modifications and configurations (described below) the state and output equations were
entered, thereby resulting in the following C MEX source code.

type twotanks_c.c

/*   Copyright 2005-2015 The MathWorks, Inc. */
/*   Written by Peter Lindskog. */

/* Include libraries. */
#include "mex.h"
#include <math.h>

/* Specify the number of outputs here. */
#define NY 1

/* State equations. */
void compute_dx(double *dx, double t, double *x, double *u, double **p,
                const mxArray *auxvar)
{
    /* Retrieve model parameters. */
    double *A1, *k, *a1, *g, *A2, *a2;
    A1 = p[0];   /* Upper tank area.        */
    k  = p[1];   /* Pump constant.          */
    a1 = p[2];   /* Upper tank outlet area. */
    g  = p[3];   /* Gravity constant.       */
    A2 = p[4];   /* Lower tank area.        */
    a2 = p[5];   /* Lower tank outlet area. */
    
    /* x[0]: Water level, upper tank. */
    /* x[1]: Water level, lower tank. */
    dx[0] = 1/A1[0]*(k[0]*u[0]-a1[0]*sqrt(2*g[0]*x[0]));
    dx[1] = 1/A2[0]*(a1[0]*sqrt(2*g[0]*x[0])-a2[0]*sqrt(2*g[0]*x[1]));
}

/* Output equation. */
void compute_y(double *y, double t, double *x, double *u, double **p,
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               const mxArray *auxvar)
{
    /* y[0]: Water level, lower tank. */
    y[0] = x[1];
}

/*----------------------------------------------------------------------- *
   DO NOT MODIFY THE CODE BELOW UNLESS YOU NEED TO PASS ADDITIONAL
   INFORMATION TO COMPUTE_DX AND COMPUTE_Y
 
   To add extra arguments to compute_dx and compute_y (e.g., size
   information), modify the definitions above and calls below.
 *-----------------------------------------------------------------------*/

void mexFunction(int nlhs, mxArray *plhs[],
                 int nrhs, const mxArray *prhs[])
{
    /* Declaration of input and output arguments. */
    double *x, *u, **p, *dx, *y, *t;
    int     i, np;
    size_t  nu, nx;
    const mxArray *auxvar = NULL; /* Cell array of additional data. */
    
    if (nrhs < 3) {
        mexErrMsgIdAndTxt("IDNLGREY:ODE_FILE:InvalidSyntax",
        "At least 3 inputs expected (t, u, x).");
    }
    
    /* Determine if auxiliary variables were passed as last input.  */
    if ((nrhs > 3) && (mxIsCell(prhs[nrhs-1]))) {
        /* Auxiliary variables were passed as input. */
        auxvar = prhs[nrhs-1];
        np = nrhs - 4; /* Number of parameters (could be 0). */
    } else {
        /* Auxiliary variables were not passed. */
        np = nrhs - 3; /* Number of parameters. */
    }
    
    /* Determine number of inputs and states. */
    nx = mxGetNumberOfElements(prhs[1]); /* Number of states. */
    nu = mxGetNumberOfElements(prhs[2]); /* Number of inputs. */
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    /* Obtain double data pointers from mxArrays. */
    t = mxGetPr(prhs[0]);  /* Current time value (scalar). */
    x = mxGetPr(prhs[1]);  /* States at time t. */
    u = mxGetPr(prhs[2]);  /* Inputs at time t. */
    
    p = mxCalloc(np, sizeof(double*));
    for (i = 0; i < np; i++) {
        p[i] = mxGetPr(prhs[3+i]); /* Parameter arrays. */
    }
    
    /* Create matrix for the return arguments. */
    plhs[0] = mxCreateDoubleMatrix(nx, 1, mxREAL);
    plhs[1] = mxCreateDoubleMatrix(NY, 1, mxREAL);
    dx      = mxGetPr(plhs[0]); /* State derivative values. */
    y       = mxGetPr(plhs[1]); /* Output values. */
    
    /*
      Call the state and output update functions.
      
      Note: You may also pass other inputs that you might need,
      such as number of states (nx) and number of parameters (np).
      You may also omit unused inputs (such as auxvar).
      
      For example, you may want to use orders nx and nu, but not time (t)
      or auxiliary data (auxvar). You may write these functions as:
          compute_dx(dx, nx, nu, x, u, p);
          compute_y(y, nx, nu, x, u, p);
    */
    
    /* Call function for state derivative update. */
    compute_dx(dx, t[0], x, u, p, auxvar);
    
    /* Call function for output update. */
    compute_y(y, t[0], x, u, p, auxvar);
    
    /* Clean up. */
    mxFree(p);
}

Let us go through the contents of this file. As a first observation, we can divide the work
of writing a C MEX model file into four separate sub-steps, the last one being optional:

1 Inclusion of C-libraries and definitions of the number of outputs.
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2 Writing the function computing the right-hand side(s) of the state equation(s),
compute_dx.

3 Writing the function computing the right-hand side(s) of the output equation(s),
compute_y.

4 Optionally updating the main interface function which includes basic error checking
functionality, code for creating and handling input and output arguments, and calls to
compute_dx and compute_y.

Before we address these sub-steps in more detail, let us briefly comment upon a couple of
general features of the C programming language.

1 High-precision variables (all inputs, states, outputs and parameters of an IDNLGREY
object) should be defined to be of the data type "double".

2 The unary * operator placed just in front of the variable or parameter names is a so-
called dereferencing operator. The C-declaration "double *A1;" specifies that A1 is a
pointer to a double variable. The pointer construct is a concept within C that is not
always that easy to comprehend. Fortunately, if the declarations of the output/input
variables of compute_y and compute_dx are not changed and all unpacked model
parameters are internally declared with a *, then there is no need to know more
about pointers from an IDNLGREY modeling point of view.

3 Both compute_y and compute_dx are first declared and implemented, where after
they are called in the main interface function. In the declaration, the keyword "void"
states explicitly that no value is to be returned.

For further details of the C programming language we refer to the book

B.W. Kernighan and D. Ritchie. The C Programming Language, 2nd

edition, Prentice Hall, 1988.

In the first sub-step we first include the C-libraries "mex.h" (required) and "math.h"
(required for more advanced mathematics). The number of outputs is also declared per
modeling file using a standard C-define:

/* Include libraries. */

#include "mex.h"

#include "math.h"

/* Specify the number of outputs here. */
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#define NY 1

If desired, one may also include more C-libraries than the ones above.

The "math.h" library must be included whenever any state or output equation contains
more advanced mathematics, like trigonometric and square root functions. Below is a
selected list of functions included in "math.h" and the counterpart found within MATLAB:

C-function MATLAB function

========================================

sin, cos, tan sin, cos, tan

asin, acos, atan asin, acos, atan

sinh, cosh, tanh sinh, cosh, tanh

exp, log, log10 exp, log, log10

pow(x, y) x^y

sqrt sqrt

fabs abs

Notice that the MATLAB functions are more versatile than the corresponding C-functions,
e.g., the former handle complex numbers, while the latter do not.

Next, in the file we find the functions for updating the states, compute_dx, and the output,
compute_y. Both these functions hold argument lists, with the output to be computed (dx
or y) at position 1, after which follows all variables and parameters required to compute
the right-hand side(s) of the state and the output equations, respectively.

All parameters are contained in the parameter array p. The first step in compute_dx and
compute_y is to unpack and name the parameters to be used in the subsequent equations.
In twotanks_c.c, compute_dx declares six parameter variables whose values are
determined accordingly:

/* Retrieve model parameters. */

double *A1, *k, *a1, *g, *A2, *a2;
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A1 = p[0]; /* Upper tank area. */

k = p[1]; /* Pump constant. */

a1 = p[2]; /* Upper tank outlet area. */

g = p[3]; /* Gravity constant. */

A2 = p[4]; /* Lower tank area. */

a2 = p[5]; /* Lower tank outlet area. */

compute_y on the other hand does not require any parameter for computing the output,
and hence no model parameter is retrieved.

As is the case in C, the first element of an array is stored at position 0. Hence, dx[0] in C
corresponds to dx(1) in MATLAB (or just dx in case it is a scalar), the input u[0]
corresponds to u (or u(1)), the parameter A1[0] corresponds to A1, and so on.

In the example above, we are only using scalar parameters, in which case the overall
number of parameters Np equals the number of parameter objects Npo. If any vector or
matrix parameter is included in the model, then Npo < Np.

The scalar parameters are referenced as P[0] (P(1) or just P in a MATLAB file) and the i:th
vector element as P[i-1] (P(i) in a MATLAB file). The matrices passed to a C MEX model
file are different in the sense that the columns are stacked upon each other in the obvious
order. Hence, if P is a 2-by-2 matrix, then P(1, 1) is referred as P[0], P(2, 1) as P[1], P(1, 2)
as P[2] and P(2, 2) as P[3]. See "Tutorials on Nonlinear Grey Box Identification: An
Industrial Three Degrees of Freedom Robot : C MEX-File Modeling of MIMO System
Using Vector/Matrix Parameters", idnlgreydemo8, for an example where scalar, vector
and matrix parameters are used.

The state and output update functions may also include other computations than just
retrieving parameters and computing right-hand side expressions. For execution speed,
one might, e.g., declare and use intermediate variables, whose values are used several
times in the coming expressions. The robot tutorial mentioned above, idnlgreydemo8, is a
good example in this respect.

compute_dx and compute_y are also able to handle an optional FileArgument. The
FileArgument data is passed to these functions in the auxvar variable, so that the first
component of FileArgument (a cell array) can be obtained through

mxArray* auxvar1 = mxGetCell(auxvar, 0);
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Here, mxArray is a MATLAB-defined data type that enables interchange of data between
the C MEX-file and MATLAB. In turn, auxvar1 may contain any data. The parsing,
checking and use of auxvar1 must be handled solely within these functions, where it is up
to the model file designer to implement this functionality. Let us here just refer to the
MATLAB documentation on External Interfaces for more information about functions that
operate on mxArrays. An example of how to use optional C MEX model file arguments is
provided in idnlgreydemo6, "Tutorials on Nonlinear Grey Box Identification: A Signal
Transmission System : C MEX-File Modeling Using Optional Input Arguments".

The main interface function should almost always have the same content and for most
applications no modification whatsoever is needed. In principle, the only part that might
be considered for changes is where the calls to compute_dx and compute_y are made. For
static systems, one can leave out the call to compute_dx. In other situations, it might be
desired to only pass the variables and parameters referred in the state and output
equations. For example, in the output equation of the two tank system, where only one
state is used, one could very well shorten the input argument list to

void compute_y(double *y, double *x)

and call compute_y in the main interface function as

compute_y(y, x);

The input argument lists of compute_dx and compute_y might also be extended to include
further variables inferred in the interface function. The following integer variables are
computed and might therefore be passed on: nu (the number of inputs), nx (the number of
states), and np (here the number of parameter objects). As an example, nx is passed to
compute_y in the model investigated in the tutorial idnlgreydemo6.

The completed C MEX model file must be compiled before it can be used for IDNLGREY
modeling. The compilation can readily be done from the MATLAB command line as

mex MODFILENAME.c

Notice that the mex-command must be configured before it is used for the very first time.
This is also achieved from the MATLAB command line via

mex -setup

IDNLGREY Model Object

With an execution ready model file, it is straightforward to create IDNLGREY model
objects for which simulations, parameter estimations, and so forth can be carried out. We
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exemplify this by creating two different IDNLGREY model objects for describing the two
tank system, one using the model file written in MATLAB and one using the C MEX file
detailed above (notice here that the C MEX model file has already been compiled).

Order         = [1 1 2];               % Model orders [ny nu nx].
Parameters    = [0.5; 0.003; 0.019; ...
                 9.81; 0.25; 0.016];   % Initial parameter vector.
InitialStates = [0; 0.1];              % Initial values of initial states.
nlgr_m    = idnlgrey('twotanks_m', Order, Parameters, InitialStates, 0)

nlgr_m =
Continuous-time nonlinear grey-box model defined by 'twotanks_m' (MATLAB file):

   dx/dt = F(t, u(t), x(t), p1, ..., p6)
    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t)

 with 1 input, 2 states, 1 output, and 6 free parameters (out of 6).

Status:                                                         
Created by direct construction or transformation. Not estimated.

nlgr_cmex = idnlgrey('twotanks_c', Order, Parameters, InitialStates, 0)

nlgr_cmex =
Continuous-time nonlinear grey-box model defined by 'twotanks_c' (MEX-file):

   dx/dt = F(t, u(t), x(t), p1, ..., p6)
    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t)

 with 1 input, 2 states, 1 output, and 6 free parameters (out of 6).

Status:                                                         
Created by direct construction or transformation. Not estimated.

Conclusions

In this tutorial we have discussed how to write IDNLGREY MATLAB and C MEX model
files. We finally conclude the presentation by listing the currently available IDNLGREY
model files and the tutorial/case study where they are being used. To simplify further
comparisons, we list both the MATLAB (naming convention FILENAME_m.m) and the C
MEX model files (naming convention FILENAME_c.c), and indicate in the tutorial column
which type of modeling approach that is being employed in the tutorial or case study.

Tutorial/Case study MATLAB file C MEX-file
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====================================================================
==

idnlgreydemo1 (MATLAB) dcmotor_m.m dcmotor_c.c

idnlgreydemo2 (C MEX) twotanks_m.m twotanks_c.c

idnlgreydemo3 (MATLAB) preys_m.m preys_c.c

(C MEX) predprey1_m.m predprey1_c.c

(C MEX) predprey2_m.m predprey2_c.c

idnlgreydemo4 (MATLAB) narendrali_m.m narendrali_c.c

idnlgreydemo5 (MATLAB) friction_m.m friction_c.c

idnlgreydemo6 (C MEX) signaltransmission_m.m signaltransmission_c.c

idnlgreydemo7 (C MEX) twobodies_m.m twobodies_c.c

idnlgreydemo8 (C MEX) robot_m.m robot_c.c

idnlgreydemo9 (MATLAB) cstr_m.m cstr_c.c

idnlgreydemo10 (MATLAB) pendulum_m.m pendulum_c.c

idnlgreydemo11 (C MEX) vehicle_m.m vehicle_c.c

idnlgreydemo12 (C MEX) aero_m.m aero_c.c

idnlgreydemo13 (C MEX) robotarm_m.m robotarm_c.c

The contents of these model files can be displayed in the MATLAB command window
through the command "type FILENAME_m.m" or "type FILENAME_c.c". All model files
are found in the directory returned by the following MATLAB command.

fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'examples')

See Also
idgrey | idnlgrey | idss
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Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Nonlinear Grey-Box Models” on page 13-34

 See Also

13-69



Identifying State-Space Models with Separate Process
and Measurement Noise Descriptions

General Model Structure
An identified linear model is used to simulate and predict system outputs for given input
and noise signals. The input signals are measured while the noise signals are only known
via their statistical mean and variance. The general form of the state-space model, often
associated with Kalman filtering, is an example of such a model, and is defined as:

x t A x t B u t w t

y t C x t D u t v t

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),

+ = + +

= + +
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where, at time t:

• x(t) is the vector of model states.
• u(t) is the measured input data.
• y(t) is the measured output data.
• w(t) is the process noise.
• v(t) is the measurement noise.

The noise disturbances are independent random variables with zero mean and
covariances:
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The vector θ parameterizes the model, including the coefficients of the system matrices
and the noise covariances. However, all elements of the model are not necessarily free. If
you have physical insight into the states of the system and sources of noise, the model can
have a specific structure with few parameters in the vector θ.
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Innovations Form and One-Step Ahead Predictor
For a given value of θ, you want to predict the best estimates of x(t) and y(t) in the
presence of any disturbances. The required predictor model equations are derived from
the Kalman filtering technique:

ˆ ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ˆ ( , ) ( ) ( )x t A x t B u t K y t C x t D u t+ = + + - -[1 q q q q q q q ]]

= +ˆ ( , ) ( ) ˆ( ) ( ) ( ),y t C x t D u tq q q

where ˆ ( , )x t q  is the predicted value of the state vector x(t) at time instant t, and ˆ( , )y t q  is
the predicted value of output y(t). The variables u(t) and y(t) in the above equation
represent the measured input and output values at time t. The Kalman Gain matrix, K(θ),
is derived from the system matrices and noise covariances as follows:
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where G( )q  is the covariance of the state estimate error:
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G( )q  is the solution of an algebraic Riccati equation. For more information, see dare and
[1]

Denoting the output prediction error as e t y t y t( ) ( ) � ( , )= - q , you can write the general
state-space model in a simpler form:

x t A x t B u t K e t

y t C x t D u t

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

+ = + +

= + +
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q q ee t( ).

This simpler representation is the innovations form of the state-space model, and has only
one unique disturbance source, e(t). This form corresponds to choosing R2=I, R12=K, and
R1=KKT for the general model structure. System Identification Toolbox software uses the
innovations form as its primary representation of state-space models.
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Both the general and innovations form of the model lead to the same predictor model as
shown in “Equation 13-2” on page 13-71. Use the predict command to compute the
predicted model response and to generate this predictor system.

Model Identification
The identification task is to use input and output measurement data to determine the
parameterization vector, θ. The approach to take depends on the amount of prior
information available regarding the system and the noise disturbances.

Black Box Identification

When only input-output data measurements are available, and you have no knowledge of
the noise structure, you can only estimate the model in the innovations form. To do so, we
use the one-step ahead prediction error minimization approach (PEM) to compute the
best output predictor. For this approach, the matrix K is parameterized independently of
the other system matrices, and no prior information about the system states or output
covariances is considered for estimation. The estimated model can be cast back into the
general model structure in many nonunique ways, one of which is to assume R2=I, R12=K,
and R1=KKT. The innovations form is a system representation of the predictor in which
e(t) does not necessarily represent the actual measurement noise.

Estimate state-space models in the innovations form using the n4sid, ssest, and
ssregest commands. The system matrices A, B, C, D, and K are parameterized
independently and the identification minimizes the weighted norm of the prediction error,
e(t). For more information, see “Estimating State-Space Models Using ssest, ssregest and
n4sid” on page 7-24 and the estimation examples in ssest.

Note In this case, the estimation algorithm chooses the model states arbitrarily. As a
result, it is difficult to imagine physically meaningful descriptions of the states and the
sources for the disturbances affecting them.

Structured Identification

In some situations, in addition to the input-output data, you know something about the
state and measurement disturbances. To make the notion of state disturbances
meaningful, it is necessary that the states be well-defined, such as the positions and
velocities in a mechanical lumped-mass system. Well-defined states and known noise
sources result in a structured state-space model, which you can then parameterize using
the general model structure of “Equation 13-1” on page 13-70.
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To identify such models, use a grey-box modeling approach, which lets you use any prior
knowledge regarding the system parameters and noise covariances. For example, you
may know that only the first element of R1 is nonzero, or that all the off-diagonal terms of
R2 are zero. When using grey-box modeling, provide initial guess values for the
parameterization vector, θ. If the model states are physically meaningful, it should be
possible to determine initial estimates for the parameters in θ.

To estimate a grey-box model with parameterized disturbances:

• Create a MATLAB function, called the ODE file, that:

• Computes the parameterized state-space matrices, A, B, C, and D, using the
parameter vector θ, which is supplied as an input argument.

• Computes the noise covariance matrices R1, R2, and R12. Each of these matrices
can be completely or partially unknown. Any unknown matrix elements are defined
in terms of parameters in θ.

• Uses the system matrices A and C, and the noise covariances with the kalman
command to find the Kalman gain matrix, K.

[~,K] = kalman(ss(A,eye(nx),C,zeros(ny,nx),Ts),R1,R2,R12);

Here, nx is the number of model states, ny is the number of model outputs, and Ts
is the sample time. The kalman command requires Control System Toolbox
software.

• Returns A, B, C, D, and K as output arguments.
• Create an idgrey model that uses the ODE function and an initial guess value for the

parameter vector, θ.
• Configure any estimation options using the greyestOptions command.
• Estimate θ using greyest command.

For an example of using parameterized disturbances with grey-box modeling, see
“Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page 13-
16.

Summary
Use the innovations form if all you have is measured input-output data. It is worthwhile to
use the general form only if you can define a system parameterization with meaningful
states, and you have nontrivial knowledge about the noise covariances. In this case, use
grey-box estimation to identify the state-space model.
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Both the general form and the innovations form lead to the same predictor. So, if your end
goal is to deploy the model for predicting future outputs or to perform simulations, it is
more convenient to use the innovations form of the model.

References
[1] Ljung, L. “State-Space Models.” Section 4.3 in System Identification: Theory for the

User. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999, pp. 93–102.

See Also
greyest | idgrey | n4sid | predict | ssest | ssregest

Related Examples
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page

13-16
• “Estimate Linear Grey-Box Models” on page 13-8
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After Estimating Grey-Box Models
After estimating linear and nonlinear grey-box models, you can simulate the model output
using the sim command. For more information, see “Validating Models After Estimation”
on page 17-3.

The toolbox represents linear grey-box models using the idgrey model object. To convert
grey-box models to state-space form, use the idss command, as described in
“Transforming Between Linear Model Representations” on page 4-34. You must convert
your model to an idss object to perform input-output concatenation or to use sample
time conversion functions (c2d, d2c, d2d).

Note Sample-time conversion functions require that you convert idgrey models with
FunctionType ='cd' to idss models.

The toolbox represents nonlinear grey-box models as idnlgrey model objects. These
model objects store the parameter values resulting from the estimation. You can access
these parameters from the model objects to use these variables in computation in the
MATLAB workspace.

Note Linearization of nonlinear grey-box models is not supported.

You can import nonlinear and linear grey box models into a Simulink model using the
System Identification Toolbox Block Library. For more information, see “Simulating
Identified Model Output in Simulink” on page 20-5.

See Also
idgrey | idnlgrey

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-8
• “Estimate Nonlinear Grey-Box Models” on page 13-34
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Time Series Identification

• “What Are Time Series Models?” on page 14-2
• “Preparing Time-Series Data” on page 14-4
• “Estimate Time-Series Power Spectra” on page 14-5
• “Estimate AR and ARMA Models” on page 14-8
• “Estimate State-Space Time Series Models” on page 14-12
• “Identify Time-Series Models at the Command Line” on page 14-13
• “Estimate ARIMA Models” on page 14-19
• “Spectrum Estimation Using Complex Data - Marple's Test Case” on page 14-22
• “Analyze Time-Series Models” on page 14-32
• “Introduction to Forecasting of Dynamic System Response” on page 14-36
• “Forecast the Output of a Dynamic System” on page 14-49
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What Are Time Series Models?
A time series is one or more measured output channels with no measured input. A time
series model, also called a signal model, is a dynamic system that is identified to fit a
given signal or time series data. The time series can be multivariate, which leads to
multivariate models.

A time series is modeled by assuming it to be the output of a system that takes a white
noise signal e(t) of variance NV as its virtual input. The true measured input size of such
models is zero, and their governing equation takes the form y(t) = He(t), where y(t) is the
signal being modeled and H is the transfer function that represents the relationship
between y(t) and e(t). The power spectrum of the time series is given by H*(NV*Ts)*H',
where NV is the noise variance and Ts is the model sample time.

System Identification Toolbox software provides tools for modeling and forecasting time-
series data. You can estimate both linear and nonlinear black-box and grey-box models for
time series data. A linear time series model can be a polynomial (idpoly), state-space
(idss, or idgrey) model. Some particular types of models are parametric autoregressive
(AR), autoregressive and moving average (ARMA), and autoregressive models with
integrated moving average (ARIMA). For nonlinear time series models, the toolbox
supports nonlinear ARX models.

You can estimate time series spectra using both time- and frequency-domain data. Time-
series spectra describe time series variations using cyclic components at different
frequencies.

The following example illustrates a 4th order autoregressive model estimation for time
series data:

load iddata9
sys = ar(z9,4);

Because the model has no measured inputs, size(sys,2) returns zero. The governing
equation of sys is A(q)y(t) = e(t). You can access the A polynomial using sys.A and the
estimated variance of the noise e(t) using sys.NoiseVariance.
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See Also

Related Examples
• “Preparing Time-Series Data” on page 14-4
• “Estimate Time-Series Power Spectra” on page 14-5
• “Identifying Nonlinear ARX Models” on page 11-21
• “Estimate Nonlinear Grey-Box Models” on page 13-34

 See Also

14-3



Preparing Time-Series Data
Before you can estimate models for time series data, you must import your data into the
MATLAB software. You can only use time domain data. For information about which
variables you need to represent time series data, see “Time-Series Data Representation”
on page 2-10.

For more information about preparing data for modeling, see “Ways to Prepare Data for
System Identification” on page 2-6.

If your data is already in the MATLAB workspace, you can import it directly into the
System Identification app. If you prefer to work at the command line, you must represent
the data as a System Identification Toolbox data object instead.

In the System Identification app — When you import scalar or multiple-output time series
data into the app, leave the Input field empty. For more information about importing
data, see “Represent Data”.

At the command line — To represent a time series vector or a matrix s as an iddata
object, use the following syntax:

y = iddata(s,[],Ts);

s contains as many columns as there are measured outputs and Ts is the sample time.
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Estimate Time-Series Power Spectra

How to Estimate Time-Series Power Spectra Using the App
You must have already imported your data into the app, as described in “Preparing Time-
Series Data” on page 14-4.

To estimate time series spectral models in the System Identification app:

1 In the System Identification app, select Estimate > Spectral Models to open the
Spectral Model dialog box.

2 In the Method list, select the spectral analysis method you want to use. For
information about each method, see “Selecting the Method for Computing Spectral
Models” on page 9-9.

3 Specify the frequencies at which to compute the spectral model in either of the
following ways:

• In the Frequencies field, enter either a vector of values, a MATLAB expression
that evaluates to a vector, or a variable name of a vector in the MATLAB
workspace. For example, logspace(-1,2,500).

• Use the combination of Frequency Spacing and Frequencies to construct the
frequency vector of values:

• In the Frequency Spacing list, select Linear or Logarithmic frequency
spacing.

Note For etfe, only the Linear option is available.
• In the Frequencies field, enter the number of frequency points.

For time-domain data, the frequency ranges from 0 to the Nyquist frequency. For
frequency-domain data, the frequency ranges from the smallest to the largest
frequency in the data set.

4 In the Frequency Resolution field, enter the frequency resolution, as described in
“Controlling Frequency Resolution of Spectral Models” on page 9-11. To use the
default value, enter default or leave the field empty.

5 In the Model Name field, enter the name of the correlation analysis model. The
model name should be unique in the Model Board.

 Estimate Time-Series Power Spectra
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6 Click Estimate to add this model to the Model Board in the System Identification
app.

7 In the Spectral Model dialog box, click Close.
8 To view the estimated disturbance spectrum, select the Noise spectrum check box

in the System Identification app. For more information about working with this plot,
see “Noise Spectrum Plots” on page 17-73.

To export the model to the MATLAB workspace, drag it to the To Workspace rectangle in
the System Identification app. You can view the power spectrum and the confidence
intervals of the resulting idfrd model object using the bode command.

How to Estimate Time-Series Power Spectra at the Command
Line
You can use the etfe, spa, and spafdr commands to estimate power spectra of time
series for both time-domain and frequency-domain data. The following table provides a
brief description of each command.

You must have already prepared your data, as described in “Preparing Time-Series Data”
on page 14-4.

The resulting models are stored as an idfrd model object, which contains
SpectrumData and its variance. For multiple-output data, SpectrumData contains
power spectra of each output and the cross-spectra between each output pair.

Estimating Frequency Response of Time Series

Command Description
etfe Estimates a periodogram using Fourier analysis.
spa Estimates the power spectrum with its standard

deviation using spectral analysis.
spafdr Estimates the power spectrum with its standard

deviation using a variable frequency resolution.

For example, suppose y is time series data. The following commands estimate the power
spectrum g and the periodogram p, and plot both models with three standard deviation
confidence intervals:
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g = spa(y);
p = etfe(y);
spectrum(g,p);

For detailed information about these commands, see the corresponding reference pages.
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Estimate AR and ARMA Models

Definition of AR and ARMA Models
For a single-output signal y(t), the AR model is given by the following equation:

A q y t e t( ) ( ) ( )=

The AR model is a special case of the ARX model with no input.

The ARMA model for a single-output time series is given by the following equation:

A q y t C q e t( ) ( ) ( ) ( )=

The ARMA structure reduces to the AR structure for C(q)=1. The ARMA model is a
special case of the ARMAX model with no input.

For more information about polynomial models, see “What Are Polynomial Models?” on
page 6-2.

For information on models containing noise integration see “Estimate ARIMA Models” on
page 14-19

Estimating Polynomial Time-Series Models in the App
Before you begin, you must have accomplished the following:

• Prepared the data, as described in “Preparing Time-Series Data” on page 14-4
• Estimated model order, as described in “Preliminary Step – Estimating Model Orders

and Input Delays” on page 6-10
• (Multiple-output AR models only) Specified the model-order matrix in the MATLAB

workspace before estimation, as described in “Polynomial Sizes and Orders of Multi-
Output Polynomial Models” on page 6-27

To estimate AR and ARMA models using the System Identification app:

1 In the System Identification app, select Estimate > Polynomial Models to open the
Polynomial Models dialog box.
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2 In the Structure list, select the polynomial model structure you want to estimate
from the following options:

• AR:[na]
• ARMA:[na nc]

This action updates the options in the Polynomial Models dialog box to correspond
with this model structure. For information about each model structure, see
“Definition of AR and ARMA Models” on page 14-8.

Note OE and BJ structures are not available for time series models.
3 In the Orders field, specify the model orders, as follows:

• For single-output models, enter the model orders according to the sequence
displayed in the Structure field.

• For multiple-output ARX models, enter the model orders directly, as described in
“Polynomial Sizes and Orders of Multi-Output Polynomial Models” on page 6-27.
Alternatively, enter the name of the matrix NA in the MATLAB Workspace browser
that stores model orders, which is Ny-by-Ny.

Tip To enter model orders and delays using the Order Editor dialog box, click Order
Editor.

4 (AR models only) Select the estimation Method as ARX or IV (instrumental variable
method). For more information about these methods, see “Polynomial Model
Estimation Algorithms” on page 6-34.

Note IV is not available for multiple-output data.
5 Select the Add noise integration check box if you want to include an integrator in

noise source e(t). This selection changes an AR model into an ARI model

( Ay
e

q
=

-
-

1
1

) and an ARMA model into an ARIMA model ( Ay
C

q
e t=

-
-

1
1

( ) ).
6 In the Name field, edit the name of the model or keep the default. The name of the

model should be unique in the Model Board.
7 In the Initial state list, specify how you want the algorithm to treat initial states. For

more information about the available options, see “Specifying Initial States for
Iterative Estimation Algorithms” on page 6-32.
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Tip If you get an inaccurate fit, try setting a specific method for handling initial
states rather than choosing it automatically.

8 In the Covariance list, select Estimate if you want the algorithm to compute
parameter uncertainties. Effects of such uncertainties are displayed on plots as
model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty computation might
reduce computation time for complex models and large data sets.

9 Click Regularization to obtain regularized estimates of model parameters. Specify
regularization constants in the Regularization Options dialog box. For more
information, see “Regularized Estimates of Model Parameters” on page 1-48.

10 To view the estimation progress at the command line, select the Display progress
check box. During estimation, the following information is displayed for each
iteration:

• Loss function — Equals the determinant of the estimated covariance matrix of the
input noise.

• Parameter values — Values of the model structure coefficients you specified.
• Search direction — Changes in parameter values from the previous iteration.
• Fit improvements — Shows the actual versus expected improvements in the fit.

11 Click Estimate to add this model to the Model Board in the System Identification
app.

12 (Prediction-error method only) To stop the search and save the results after the
current iteration has been completed, click Stop Iterations. To continue iterations
from the current model, click the Continue iter button to assign current parameter
values as initial guesses for the next search and start a new search. For the multi-
output case, you can stop iterations for each output separately. Note that the
software runs independent searches for each output.

13 To plot the model, select the appropriate check box in the Model Views area of the
System Identification app.

You can export the model to the MATLAB workspace for further analysis by dragging it to
the To Workspace rectangle in the System Identification app.
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Estimating AR and ARMA Models at the Command Line
You can estimate AR and ARMA models at the command line. The estimated models are
represented by idpoly model objects. For more information about models objects, see
“What Are Model Objects?” on page 1-3.

The following table summarizes the commands and specifies whether single-output or
multiple-output models are supported.

Commands for Estimating Polynomial Time-Series Models

Method Name Description
ar Noniterative, least-squares method to estimate linear, discrete-time

single-output AR models.
armax Iterative prediction-error method to estimate linear ARMAX

models.
arx Noniterative, least-squares method for estimating linear AR

models.
ivar Noniterative, instrumental variable method for estimating single-

output AR models.

The following code shows usage examples for estimating AR models:

% For scalar signals
m = ar(y,na)
% For multiple-output vector signals
m = arx(y,na)
% Instrumental variable method
m = ivar(y,na)
% For ARMA, do not need to specify nb and nk
th = armax(y,[na nc])

The ar command provides additional options to let you choose the algorithm for
computing the least-squares from a group of several popular techniques from the
following methods:

• Burg (geometric lattice)
• Yule-Walker
• Covariance
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Estimate State-Space Time Series Models

Definition of State-Space Time Series Model
The discrete-time state-space model for a time series is given by the following equations:

x kT T Ax kT Ke kT

y kT Cx kT e kT

( ) ( ) ( )

( ) ( ) ( )

+ = +

= +

where T is the sample time and y(kT) is the output at time instant kT.

The time series structure corresponds to the general structure with empty B and D
matrices.

For information about general discrete-time and continuous-time structures for state-
space models, see “What Are State-Space Models?” on page 7-2.

Estimating State-Space Models at the Command Line
You can estimate single-output and multiple-output state-space models at the command
line for time-domain data (iddata object).

The following table provides a brief description of each command. The resulting models
are idss model objects. You can estimate either continuous-time, or discrete-time models
using these commands.

Commands for Estimating State-Space Time Series Models

Command Description
n4sid Noniterative subspace method for estimating linear state-

space models.
ssest Estimates linear time series models using an iterative

estimation method that minimizes the prediction error.
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Identify Time-Series Models at the Command Line
This example shows how to simulate a time-series model, compare the spectral estimates,
estimate covariance, and predict output of the model.

Generate time-series data.

ts0 = idpoly([1 -1.5 0.7],[]);
e = idinput(200,'rgs');
y = sim(ts0,e); 
y = iddata(y);
plot(y);

y is an iddata object with sample time 1.
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Estimate and plot the periodogram and power spectrum.

per = etfe(y);
speh = spa(y);
spectrum(per,speh,ts0);

Estimate a second-order AR model and compare the spectrum plots.

ts2 = ar(y,2);
spectrum(speh,ts2,ts0);
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Define the true covariance function.

ir = sim(ts0,[1;zeros(24,1)]);
Ry0 = conv(ir,ir(25:-1:1));
ir2 = sim(ts2,[1;zeros(24,1)]);
Ry2 = conv(ir2,ir2(25:-1:1));

Estimate the covariance.

z = [y.y;zeros(25,1)];
j = 1:200;
Ryh = zeros(25,1);
for k=1:25, 
a = z(j,:)'*z(j+k-1,:);  
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Ryh(k) = Ryh(k)+conj(a(:));
end
Ryh = Ryh/200; % biased estimate
Ryh = [Ryh(end:-1:2);Ryh];

Alternatively, you can use the Signal Processing Toolbox™ command xcorr.

Ryh = xcorr(y.y,24,'biased');

Plot and compare the covariance.

plot([-24:24]'*ones(1,3),[Ryh,Ry2,Ry0]);

Predict model output.
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compare(y,ts2,5);

See Also
etfe | spa | spectrum

Related Examples
• “Estimate Time-Series Power Spectra” on page 14-5

 See Also
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More About
• “What Are Time Series Models?” on page 14-2
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Estimate ARIMA Models
This example shows how to estimate Autoregressive Integrated Moving Average or
ARIMA models.

Models of time series containing non-stationary trends (seasonality) are sometimes
required. One category of such models are the ARIMA models. These models contain a
fixed integrator in the noise source. Thus, if the governing equation of an ARMA model is
expressed as A(q)y(t)=Ce(t), where A(q) represents the auto-regressive term and C(q) the
moving average term, the corresponding model of an ARIMA model is expressed as

where the term  represents the discrete-time integrator. Similarly, you can
formulate the equations for ARI and ARIX models.

Using time-series model estimation commands ar, arx and armax you can introduce
integrators into the noise source e(t). You do this by using the IntegrateNoise
parameter in the estimation command.

The estimation approach does not account any constant offsets in the time-series data.
The ability to introduce noise integrator is not limited to time-series data alone. You can
do so also for input-output models where the disturbances might be subject to seasonality.
One example is the polynomial models of ARIMAX structure:

See the armax reference page for examples.

Estimate an ARI model for a scalar time-series with linear trend.

load iddata9 z9
Ts = z9.Ts;
y = cumsum(z9.y);
model = ar(y,4,'ls','Ts',Ts,'IntegrateNoise', true);
% 5 step ahead prediction
compare(y,model,5)
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Estimate a multivariate time-series model such that the noise integration is present in
only one of the two time series.

load iddata9 z9
Ts = z9.Ts;
y = z9.y;
y2 = cumsum(y);
% artificially construct a bivariate time series
data = iddata([y, y2],[],Ts); na = [4 0; 0 4];
nc = [2;1];
model1 = armax(data, [na nc], 'IntegrateNoise',[false; true]);
% Forecast the time series 100 steps into future
yf = forecast(model1,data(1:100), 100);
plot(data(1:100),yf)
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If the outputs were coupled ( na was not a diagonal matrix), the situation will be more
complex and simply adding an integrator to the second noise channel will not work.
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Spectrum Estimation Using Complex Data - Marple's Test
Case

This example shows how to perform spectral estimation on time series data. We use
Marple's test case (The complex data in L. Marple: S.L. Marple, Jr, Digital Spectral
Analysis with Applications, Prentice-Hall, Englewood Cliffs, NJ 1987.)

Test Data

Let us begin by loading the test data:

load marple

Most of the routines in System Identification Toolbox™ support complex data. For plotting
we examine the real and imaginary parts of the data separately, however.

First, take a look at the data:

subplot(211),plot(real(marple)),title('Real part of data.')
subplot(212),plot(imag(marple)),title('Imaginary part of data.')
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As a preliminary analysis step, let us check the periodogram of the data:

per = etfe(marple);
w = per.Frequency;
clf
h = spectrumplot(per,w);
opt = getoptions(h);
opt.FreqScale = 'linear';
opt.FreqUnits = 'Hz';
setoptions(h,opt)

 Spectrum Estimation Using Complex Data - Marple's Test Case
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Since the data record is only 64 samples, and the periodogram is computed for 128
frequencies, we clearly see the oscillations from the narrow frequency window. We
therefore apply some smoothing to the periodogram (corresponding to a frequency
resolution of 1/32 Hz):

sp = etfe(marple,32);
spectrumplot(per,sp,w);
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Let us now try the Blackman-Tukey approach to spectrum estimation:

ssm = spa(marple); % Function spa performs spectral estimation
spectrumplot(sp,'b',ssm,'g',w,opt);    
legend({'Smoothed periodogram','Blackman-Tukey estimate'});
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The default window length gives a very narrow lag window for this small amount of data.
We can choose a larger lag window by:

ss20 = spa(marple,20);
spectrumplot(sp,'b',ss20,'g',w,opt);
legend({'Smoothed periodogram','Blackman-Tukey estimate'});
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Estimating an Autoregressive (AR) Model

A parametric 5-order AR-model is computed by:

t5 = ar(marple,5);

Compare with the periodogram estimate:

spectrumplot(sp,'b',t5,'g',w,opt); 
legend({'Smoothed periodogram','5th order AR estimate'});

 Spectrum Estimation Using Complex Data - Marple's Test Case

14-27



The AR-command in fact covers 20 different methods for spectrum estimation. The above
one was what is known as 'the modified covariance estimate' in Marple's book.

Some other well known ones are obtained with:

tb5 = ar(marple,5,'burg');      % Burg's method
ty5 = ar(marple,5,'yw');        % The Yule-Walker method
spectrumplot(t5,tb5,ty5,w,opt);
legend({'Modified covariance','Burg','Yule-Walker'})
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Estimating AR Model using Instrumental Variable Approach

AR-modeling can also be done using the Instrumental Variable approach. For this, we use
the function ivar:

ti = ivar(marple,4); 
spectrumplot(t5,ti,w,opt);
legend({'Modified covariance','Instrumental Variable'})
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Autoregressive-Moving Average (ARMA) Model of the Spectra

Furthermore, System Identification Toolbox covers ARMA-modeling of spectra:

ta44 = armax(marple,[4 4]); % 4 AR-parameters and 4 MA-parameters
spectrumplot(t5,ta44,w,opt);
legend({'Modified covariance','ARMA'})
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Additional Information

For more information on identification of dynamic systems with System Identification
Toolbox visit the System Identification Toolbox product information page.

 Spectrum Estimation Using Complex Data - Marple's Test Case
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Analyze Time-Series Models
This example shows how to analyze time-series models.

A time-series model has no inputs. However, you can use many response computation
commands on such models. The software treats (implicitly) the noise source e(t) as a
measured input. Thus, step(sys) plots the step response assuming that the step input
was applied to the noise channel e(t).

To avoid ambiguity in how the software treats a time-series model, you can transform it
explicitly into an input-output model using noise2meas. This command causes the noise
input e(t) to be treated as a measured input and transforms the linear time series model
with Ny outputs into an input-output model with Ny outputs and Ny inputs. You can use
the resulting model with commands, such as, bode, nyquist, and iopzmap to study the
characteristics of the H transfer function.

Estimate a time-series model.

load iddata9
sys = ar(z9,4);

Convert the time-series model to an input-output model.

iosys = noise2meas(sys);

Plot the step response of H.

step(iosys);
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Plot the poles and zeros of H.

iopzmap(iosys);
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Calculate and plot the time-series spectrum directly without converting to an input-output
model.

spectrum(sys);
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The command plots the time-series spectrum amplitude .

See Also
noise2meas | step

More About
• “What Are Time Series Models?” on page 14-2
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Introduction to Forecasting of Dynamic System
Response

Forecasting the response of a dynamic system is the prediction of future outputs of the
system using past output measurements. In other words, given observations y(t) = {y(1),
…, y(N)} of the output of a system, forecasting is the prediction of the outputs y(N+1), …,
y(N+H) until a future time horizon H.

When you perform forecasting in System Identification Toolbox software, you first identify
a model that fits past measured data from the system. The model can be a linear time
series model such as AR, ARMA, and state-space models, or a nonlinear ARX model. If
exogenous inputs influence the outputs of the system, you can perform forecasting using
input-output models such as ARX and ARMAX. After identifying the model, you then use
the forecast command to compute y(N+1), …, y(N+H). The command computes the
forecasted values by:

• Generating a predictor model using the identified model.
• Computing the final state of the predictor using past measured data.
• Simulating the identified model until the desired forecasting horizon, H, using the final

state as initial conditions.

This topic illustrates these forecasting steps for linear and nonlinear models. Forecasting
the response of systems without external inputs (time series data) is illustrated, followed
by forecasting for systems with an exogenous input. For information about how to
perform forecasting in the toolbox, see “Forecast the Output of a Dynamic System” on
page 14-49.

Forecasting Time Series Using Linear Models
The toolbox lets you forecast time series (output only) data using linear models such as
AR, ARMA, and state-space models. Here is an illustration of forecasting the response of
an autoregressive model, followed by the forecasting steps for more complex models such
as moving-average and state-space models.

Autoregressive Models

Suppose that you have collected time series data y(t) = {y(1), …, y(N)} of a stationary
random process. Assuming the data is a second-order autoregressive (AR) process, you
can describe the dynamics by the following AR model:
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y t a y t a y t e t( ) ( ) ( ) ( )+ - + - =1 21 2

Where a1 and a2 are the fit coefficients and e(t) is the noise term.

You can identify the model using the ar command. The software computes the fit
coefficients and variance of e(t) by minimizing the 1-step prediction errors between the
observations {y(1), …, y(N)} and model response.

Assuming that the innovations e(t) are a zero mean white sequence, you can compute the

predicted output ˆ( )y t  using the formula:

ˆ( ) ( ) ( )y t a y t a y t= - - - -1 21 2

Where y(t-1) and y(t-2) are either measured data, if available, or previously predicted
values. For example, the forecasted outputs five steps in the future are:
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Note that the computation of ˆ( )y N + 2  uses the previously predicted value ˆ( )y N +1

because measured data is not available beyond time step N. Thus, the direct contribution
of measured data diminishes as you forecast further into the future.

The forecasting formula is more complex for time series processes that contain moving-
average terms.

Moving-Average Models

In moving-average (MA) models, the output depends on current and past innovations
(e(t),e(t-1), e(t-2), e(t-3)....). Thus, forecasting the response of MA models requires
knowledge of the initial conditions of the measured data.

Suppose that time series data y(t) from your system can be fit to a second-order moving-
average model:
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Suppose that y(1) and y(2) are the only available observations, and their values equal 5
and 10, respectively. You can estimate the model coefficients c1 and c2 using the armax
command. Assume that the estimated c1 and c2 values are 0.1 and 0.2, respectively. Then
assuming as before that e(t) is a random variable with zero mean, you can predict the
output value at time t using the following formula:

ˆ( ) ( ) ( )y t c e t c e t= - + -1 21 2

Where e(t-1) and e(t-2) are the differences between the measured and the predicted
response at times t-1 and t-2, respectively. If measured data does not exist for these
times, a zero value is used because the innovations process e(t) is assumed to be zero-
mean white Gaussian noise.

Therefore, forecasted output at time t = 3 is:

ˆ( ) . ( ) . ( )y e e3 0 1 2 0 2 1= +

Where, the innovations e(1) and e(2) are the difference between the observed and
forecasted values of output at time t equal to 1 and 2, respectively:
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Because the data was measured from time t equal to 1, the values of e(0) and e(-1) are
unknown. Thus, to compute the forecasted outputs, the value of these initial conditions
e(0) and e(-1) is required. You can either assume zero initial conditions, or estimate
them.

• Zero initial conditions: If you specify that e(0) and e(-1) are equal to 0, the error
values and forecasted outputs are:

e

e

y

( ) - ( . * . * )

( ) - ( . * . * ) .

� ( ) . *

1 5 0 1 0 0 2 0 5

2 10 0 1 5 0 2 0 9 5

3 0 1 9

= + =

= + =

= .. . * .5 0 2 5 1 95+ =

The forecasted values at times t = 4 and 5 are:
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Here e(3) and e(4) are assumed to be zero as there are no measurements beyond

time t = 2. This assumption yields, ˆ( ) . * ( ) . * . .y e4 0 2 2 0 2 9 5 1 9= = = , and ˆ( )y 5 0= .

Thus, for this second-order MA model, the forecasted outputs that are more than two
time steps beyond the last measured data point (t = 2) are all zero. In general, when
zero initial conditions are assumed, the forecasted values beyond the order of a pure
MA model with no autoregressive terms are all zero.

• Estimated initial conditions: You can estimate the initial conditions by minimizing
the squared sum of 1-step prediction errors of all the measured data.

For the MA model described previously, estimation of the initial conditions e(0) and
e(-1) requires minimization of the following least-squares cost function:

V e e= + =( ) ( )1 22 2 2 (y(1) - [0.1 e(0) + 0.2 e(-1)])  + (y(2) - [[0.1 e(1) + 0.2 e(0)])2

Substituting a = e(0) and b = e(-1), the cost function is:

V a b a b a b a( , ) ( -[ . . ]) ( - [ . ( - [ . . ]) . ])= + + + +5 0 1 0 2 10 0 1 5 0 1 0 2 0 22 2

Minimizing V yields e(0) = 50 and e(-1) = 0, which gives:

e

e

y

( ) - ( . * . * )

( ) - ( . * . * )

�( )

�

1 5 0 1 50 0 2 0 0

2 10 0 1 0 0 2 50 0

3 0

= + =

= + =

=

y(4)) = 0

Thus, for this system, if the prediction errors are minimized over the available two
samples, all future predictions are equal to zero, which is the mean value of the
process. If there were more than two observations available, you would estimate
e(-1) and e(0) using a least-squares approach to minimize the 1-step prediction
errors over all the available data.

This example shows how to reproduce these forecasted results using the forecast
command.
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Load the measured data.

PastData = [5;10];

Create an MA model with A and C polynomial coefficients equal to 1 and [1 0.1 0.2],
respectively.

model = idpoly(1,[],[1 0.1 0.2]);

Specify zero initial conditions, and forecast the output five steps into the future.

opt = forecastOptions('InitialCondition','z');
yf_zeroIC = forecast(model,PastData,5,opt)

yf_zeroIC = 5×1

    1.9500
    1.9000
         0
         0
         0

Specify that the software estimate initial conditions, and forecast the output.

opt = forecastOptions('InitialCondition','e');
yf_estimatedIC = forecast(model,PastData,5,opt)

yf_estimatedIC = 5×1
10-15 ×

   -0.3553
   -0.3553
         0
         0
         0

For arbitrary structure models, such as models with autoregressive and moving-average
terms, the forecasting procedure can be involved and is therefore best described in the
state-space form.

State-Space Models

The discrete-time state-space model of time series data has the form:
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x t Ax t Ke t

y t Cx t e t

( ) ( ) ( )

( ) ( ) ( )

+ = +

= +

1

Where, x(t) is the state vector, y(t) are the outputs, e(t) is the noise-term. A, C, and K are
fixed-coefficient state-space matrices.

You can represent any arbitrary structure linear model in state-space form. For example,
it can be shown that the ARMA model described previously is expressed in state-space
form using A = [0 0;1 0], K = [0.5;0] and C = [0.2 0.4]. You can estimate a
state-space model from observed data using commands such as ssest and n4sid. You
can also convert an existing polynomial model such as AR, MA, ARMA, ARX, and ARMAX
into the state-space form using the idss command.

The advantage of state-space form is that any autoregressive or moving-average model
with multiple time lag terms (t-1,t-2,t-3,...) only has a single time lag (t-1) in state
variables when the model is converted to state-space form. As a result, the required initial
conditions for forecasting translate into a single value for the initial state vector X(0).
The forecast command converts all linear model to state-space form and then performs
forecasting.

To forecast the response of a state-space model:

1 Generate a 1-step ahead predictor model for the identified model. The predictor
model has the form:

ˆ( ) ( - * ) ˆ( ) ( )

ˆ( ) * ˆ( )

x t A K C x t Ky t

y t C x t

+ = +

=

1  

Where y(t) is the measured output and ˆ( )y t  is the predicted value. The measured
output is available until time step N and is used as an input in the predictor model.

The initial state vector is ˆ( )x x0 0= .
2 Assign a value to the initial state vector x0.

The initial states are either specified as zero, or estimated by minimizing the
prediction error over the measured data time span.

Specify a zero initial condition if the system was in a state of rest before the
observations were collected. You can also specify zero initial conditions if the
predictor model is sufficiently stable because stability implies the effect of initial
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conditions diminishes rapidly as the observations are gathered. The predictor model
is stable if the eigenvalues of A-K*C are inside the unit circle.

3 Compute ˆ( )x N +1 , the value of the states at the time instant t = N+1, the time
instant following the last available data sample.

To do so, simulate the predictor model using the measured observations as inputs:

ˆ( ) ( - * ) ( )

ˆ( ) ( - * ) ˆ( ) ( )

ˆ( ) ( -

x A K C Ky

x A K C x Ky

x N A

1 0

2 1 1

1

0=

= +

+ =

 x +

M

KK C x N Ky N* ) ˆ( ) ( )+

4 Simulate the response of the identified model for H steps using ˆ( )x N +1  as initial
conditions, where H is the prediction horizon. This response is the forecasted
response of the model.

Reproduce the Output of forecast Command

This example shows how to manually reproduce forecasting results that are obtained
using the forecast command. You first use the forecast command to forecast time
series data into the future. You then compare the forecasted results to a manual
implementation of the forecasting algorithm.

Load time series data.

load iddata9 z9

z9 is an iddata object that stores time series data (no inputs).

Specify data to use for model estimation.

observed_data = z9(1:128); 
Ts = observed_data.Ts;
t = observed_data.SamplingInstants;
y = observed_data.y;

Ts is the sample time of the measured data, t is the time vector, and y is the vector of
measured data.

Estimate a discrete-time state space model of 4th order.
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sys = ssest(observed_data,4,'Ts',Ts);

Forecast the output of the state-space model 100 steps into the future using the
forecast command.

H = 100;
yh1 = forecast(sys,observed_data,H);

yh1 is the forecasted output obtained using the forecast command. Now reproduce the
output by manually implementing the algorithm used by the forecast command.

Retrieve the estimated state-space matrices to create the predictor model.

A = sys.A;
K = sys.K;
C = sys.C;

Generate a 1-step ahead predictor where the A matrix of the Predictor model is A-K*C
and the B matrix is K.

Predictor = idss((A-K*C),K,C,0,'Ts',Ts);

Estimate initial states that minimize the difference between the observed output y and
the 1-step predicted response of the identified model sys.

x0 = findstates(sys,observed_data,1);

Propagate the state vector to the end of observed data. To do so, simulate the predictor
using y as input and x0 as initial states.

Input = iddata([],y,Ts);
opt = simOptions('InitialCondition',x0);
[~,~,x] = sim(Predictor,Input,opt);
xfinal = x(end,:)';

xfinal is the state vector value at time t(end), the last time instant when observed
data is available. Forecasting 100 time steps into the future starts at the next time step,
t1 = t(end)+Ts.

To implement the forecasting algorithm, the state vector value at time t1 is required.
Compute the state vector by applying the state update equation of the Predictor model
to xfinal.

x0_for_forecasting = Predictor.A*xfinal + Predictor.B*y(end);
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Simulate the identified model for H steps using x0_for_forecasting as initial
conditions.

opt = simOptions('InitialCondition',x0_for_forecasting);

Because sys is a time series model, specify inputs for simulation as an H-by-0 signal,
where H is the wanted number of simulation output samples.

Input = iddata([],zeros(H,0),Ts,'Tstart',t(end)+Ts);
yh2 = sim(sys,Input,opt);

Compare the results of the forecast command yh1 with the manually computed results
yh2.

plot(yh1,yh2,'r.')
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The plot shows that the results match.

Forecasting Response of Linear Models with Exogenous Inputs
When there are exogenous stimuli affecting the system, the system cannot be considered
stationary. However, if these stimuli are measurable then you can treat them as inputs to
the system and account for their effects when forecasting the output of the system. The
workflow for forecasting data with exogenous inputs is similar to that for forecasting time
series data. You first identify a model to fit the measured input-output data. You then
specify the anticipated input values for the forecasting time span, and forecast the output
of the identified model using the forecast command. If you do not specify the
anticipated input values, they are assumed to be zero.

This example shows how to forecast an ARMAX model with exogenous inputs in the
toolbox:

Load input-output data.

load iddata1 z1

z1 is an iddata object with input-output data at 300 time points.

Use the first half of the data as past data for model identification.

past_data = z1(1:150);

Identify an ARMAX model Ay(t) = Bu(t-1) + Ce(t), of order [2 2 2 1].

na = 2; % A polynomial order
nb = 2; % B polynomial order
nc = 2; % C polynomial order
nk = 1; % input delay
sys = armax(past_data,[na nb nc nk]);

Forecast the response 100 time steps into the future, beyond the last sample of observed
data past_data. Specify the anticipated inputs at the 100 future time points.

H = 100;
FutureInputs = z1.u(151:250);
forecast(sys,past_data,H,FutureInputs)
legend('Past Outputs','Future Outputs')

 Introduction to Forecasting of Dynamic System Response

14-45



Forecasting Response of Nonlinear Models
The toolbox also lets you forecast data using nonlinear ARX, Hammerstein-Wiener, and
nonlinear grey-box models.

Hammerstein-Wiener, and nonlinear grey-box models have a trivial noise-component, that
is disturbance in the model is described by white noise. As a result, forecasting using the
forecast command is the same as performing a pure simulation.

Forecasting Response of Nonlinear ARX Models

A time series nonlinear ARX model has the following structure:
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y t f y t y t y t N e t( ) ( ( - ), ( - ), ... , ( - )) ( )= +1 2    

Where f is a nonlinear function with inputs R(t), the model regressors. The regressors can
be the time-lagged variables y(t-1), y(t-2),... , y(t-N) and their nonlinear expressions, such
as y(t-1)2,y(t-1)y(t-2), abs(y(t-1)). When you estimate a nonlinear ARX model from the
measured data, you specify the model regressors. You can also specify the structure of f
using different structures such as wavelet networks and tree partitions. For more
information, see the reference page for the nlarx estimation command.

Suppose that time series data from your system can be fit to a second-order linear-in-
regressor model with the following polynomial regressors:

R t y t y t y t y t y t y t T( ) [ ( ), ( ), ( ) , ( ) , ( ) ( )]= - - - - - -1 2 1 2 1 22 2

Then f(R)=W'*R+c, where W=[w1 w2 w3 w4 w5] is a weighting vector, and c is the
output offset.

The nonlinear ARX model has the form:

y t w y t w y t w y t w y t w y t y t( ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )= + + + + +1 2 3
2

4
2

51 2 1 2 1 2 cc e t+ ( )

When you estimate the model using the nlarx command, the software estimates the
model parameters W and c.

When you use the forecast command, the software computes the forecasted model
outputs by simulating the model H time steps into the future, using the last N measured
output samples as initial conditions. Where N is the largest lag in the regressors, and H is
the forecast horizon you specify.

For the linear-in-regressor model, suppose that you have measured 100 samples of the
output y, and you want to forecast four steps into the future (H = 4). The largest lag in
the regressors of the model is N = 2 . Therefore, the software takes the last two samples
of the data y(99) and y(100) as initial conditions, and forecasts the outputs as:

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ

y w y w y w y w y w y y101 100 99 100 99 100 991 2 3
2

4
2

5= + + + +

yy w y w y w y w y w y y( ) ˆ ( ) ( ) ˆ ( ) ( ) ˆ( )102 101 100 101 100 1011 2 3
2

4
2

5= + + + + (( )

ˆ( ) ˆ ( ) ˆ( ) ˆ ( ) ˆ( )
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103 102 101 102 1011 2 3
2

4
2

5y w y w y w y w y w= + + + + ˆ̂ ( ) ˆ ( )

ˆ( ) ˆ( ) ˆ ( ) ˆ( ) ˆ

y y

y w y w y w y w y

102 101

104 103 102 1031 2 3
2

4= + + + (( ) ˆ ( ) ˆ ( )102 103 102
2

5+ w y y
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If your system has exogenous inputs, the nonlinear ARX model also includes regressors
that depend on the input variables. The forecasting process is similar to that for time
series data. You first identify the model, sys, using input-output data, past_data. When
you forecast the data, the software simulates the identified model H time steps into the
future, using the last N measured output samples as initial conditions. You also specify
the anticipated input values for the forecasting time span, FutureInputs. The syntax for
forecasting the response of nonlinear models with exogenous inputs is the same as that
for linear models, forecast(sys,past_data,H,FutureInputs).

See Also
forecast | predict | sim

Related Examples
• “Forecast the Output of a Dynamic System” on page 14-49
• “Perform Multivariate Time Series Forecasting” on page 17-25
• “Time Series Prediction and Forecasting for Prognosis” on page 22-2

More About
• “Simulating and Predicting Model Output” on page 17-9
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Forecast the Output of a Dynamic System
To forecast the output of a dynamic system, you first identify a model that fits past
measured data from the system, and then forecast the future outputs of the identified
model. Suppose that you have a set Y of N measurements of the output of a system (Y =
{y1, y2, ...yN}). To forecast the outputs into the future:

1 Identify a model of the system using time series estimation commands such as ar,
arx, armax, and ssest.

The software estimates the models by minimizing the squared sum of one-step ahead
prediction errors. You can identify linear models such as AR, ARMA, and state-space
models. You can also estimate nonlinear ARX and nonlinear grey-box models.

2 Validate the identified model using predict command.

The predict command predicts the output of an identified model over the time span
of measured data (Yp = yp1, yp2, ...ypN). Use predict to determine if the predicted
results Yp match the observed outputs Y for a desired prediction horizon. If the
predictions are good over the time span of available data, use the model for
forecasting.

3 Specify forecasting options such as how the software computes initial conditions of
the measured data. To specify the options, use the forecastOptions option set.

4 Compute the output of the identified model until a future time horizon H, (yN+1, yN
+2,..., yN+H) using the forecast command. Unlike the predict command, the
forecast command performs prediction into the future, in a time range beyond the
last instant of measured data.

The software computes the forecasted values by:

• Generating a predictor model using the identified model.
• Computing the final state of the predictor using measured (available) data.
• Simulating the identified model using the final state as initial conditions.

For more information, see “Introduction to Forecasting of Dynamic System Response”
on page 14-36.

You can also forecast outputs for systems where measurable exogenous inputs u(t)
influence the output observations. In this case, you first identify an input-output model
using measured y(t) and u(t), and then use the forecast command.
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Forecast Time Series Data Using an ARMA Model
This example shows how to forecast time series data from a system using an ARMA
model. Load the time series data that is to be forecasted.

load iddata9 z9
past_data = z9.OutputData(1:50);

Fit an ARMA model of order [4 3] to the measured data.

sys = armax(past_data,[4 3]);

Perform a 10-step ahead prediction to validate the model over the time-span of the
measured data.

yp = predict(sys,past_data,10);

Plot the predicted response and the measured data.

t = z9.SamplingInstants;
t1 = t(1:50);
plot(t1,past_data,'k',t1,yp,'*b')
legend('Past Data','Predicted Data')
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The plot shows that sys is a good prediction model that can be used for forecasting.

Specify zero initial conditions for the measured data.

opt = forecastOptions('InitialCOndition','z');

Forecast model output 100 steps beyond the estimation data.

H = 100;
yf = forecast(sys,past_data,H,opt);

Plot the past and forecasted data.
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t2 = t(51:150)';
plot(t1,past_data,'k',t2,yf,'--r')
legend('Past Data','Forecasted Data')

See Also

More About
• “Perform Multivariate Time Series Forecasting” on page 17-25
• “Time Series Prediction and Forecasting for Prognosis” on page 22-2
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• “Introduction to Forecasting of Dynamic System Response” on page 14-36
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Recursive Model Identification

• “Data Segmentation” on page 15-2
• “Detect Abrupt System Changes Using Identification Techniques” on page 15-3
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Data Segmentation
For systems that exhibit abrupt changes while the data is being collected, you might want
to develop models for separate data segments such that the system does not change
during a particular data segment. Such modeling requires identification of the time
instants when the changes occur in the system, breaking up the data into segments
according to these time instants, and identification of models for the different data
segments.

The following cases are typical applications for data segmentation:

• Segmentation of speech signals, where each data segment corresponds to a phoneme.
• Detection of trend breaks in time series.
• Failure detection, where the data segments correspond to operation with and without

failure.
• Estimating different working modes of a system.

Use segment to build polynomial models, such as ARX, ARMAX, AR, and ARMA, so that
the model parameters are piece-wise constant over time. For detailed information about
this command, see the corresponding reference page.

See Also

Related Examples
• “Detect Abrupt System Changes Using Identification Techniques” on page 15-3
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Detect Abrupt System Changes Using Identification
Techniques

This example shows how to detect abrupt changes in the behavior of a system using
online estimation and automatic data segmentation techniques.

Problem Description

Consider a linear system whose transport delay changes from two to one second.
Transport delay is the time taken for the input to affect the measured output. In this
example, you detect the change in transport delay using online estimation and data
segmentation techniques. Input-output data measured from the system is available in the
data file iddemo6m.mat.

Load and plot the data.

load iddemo6m.mat
z = iddata(z(:,1),z(:,2));
plot(z)
grid on
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The transport delay change takes place around 20 seconds, but is not easy to see in the
plot.

Model the system using an ARX structure with one A polynomial coefficient, two B
polynomial coefficients, and one delay.

Here, A = [1 a] and B = [0 b1 b2].

The leading coefficient of the B polynomial is zero because the model has no feedthrough.
As the system dynamics change, the values of the three coefficients a, b1, and b2 change.
When b1 is close to zero, the effective transport delay will be 2 samples because the B
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polynomial has 2 leading zeros. When b1 is larger, the effective transport delay will be 1
sample.

Thus, to detect changes in transport delay you can monitor changes in the B polynomial
coefficients.

Use Online Estimation for Change Detection

Online estimation algorithms update model parameters and state estimates in a recursive
manner, as new data becomes available. You can perform online estimation using
Simulink blocks from the System Identification Toolbox library or at the command line
using recursive identification routines such as recursiveARX. Online estimation can be
used to model time varying dynamics such as aging machinery and changing weather
patterns, or to detect faults in electromechanical systems.

As the estimator updates the model parameters, a change in system dynamics (delay) will
be indicated by a larger than usual change in the values of the parameters b1 and b2.
Changes in the B polynomial coefficients will be tracked by computing:

Use the recursiveARX object for online parameter estimation of the ARX model.

na = 1;
nb = 2;
nk = 1;
Estimator = recursiveARX([na nb nk]);

Specify the recursive estimation algorithm as NormalizedGradient and the adaptation
gain as 0.9.

Estimator.EstimationMethod = 'NormalizedGradient';
Estimator.AdaptationGain = .9;

Extract the raw data from the iddata object, z.

Output = z.OutputData;
Input = z.InputData;
t = z.SamplingInstants;
N = length(t);

Use animated lines to plot the estimated parameter values and L. Initialize these
animated lines prior to estimation. To simulate streaming data, feed the data to the
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estimator one sample at a time. Initialize the model parameters before estimation, and
then perform online estimation.

Initialize plot

Colors = {'r','g','b'};
ax = gca;
cla(ax)
for k = 1:3
   h(k) = animatedline('Color',Colors{k}); % lines for a, b1 and b2 parameters
end
h(4) =  animatedline('Marker','.','Color',[0 0 0]); % line for L
legend({'a','b1','b2','Deviation'},'location','southeast')
title('ARX Recursive Parameter Estimation')
xlabel('Time (seconds)')
ylabel('Parameter value')
ax.XLim = [t(1),t(end)];
ax.YLim = [-2, 2];
grid on
box on
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Now perform recursive estimation and show results

n0 = 6;
L = NaN(N,nk);
B_old = NaN(1,3);
for ct = 1:N
   [A,B] = step(Estimator,Output(ct),Input(ct));
   if ct>n0
      L(ct) = norm(B-B_old);
      B_old = B;
   end
   addpoints(h(1),t(ct),A(2))
   addpoints(h(2),t(ct),B(2))
   addpoints(h(3),t(ct),B(3))
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   addpoints(h(4),t(ct),L(ct))
   pause(0.1)
end

The first n0 = 6 samples of the data are not used for computing the change-detector, L.
During this interval the parameter changes are large owing to the unknown initial
conditions.

Find the location of all peaks in L by using the findpeaks command from Signal
Processing Toolbox.

[v,Loc] = findpeaks(L);
[~,I] = max(v);
line(t(Loc(I)),L(Loc(I)),'parent',ax,'Marker','o','MarkerEdgeColor','r',...
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   'MarkerFaceColor','y','MarkerSize',12)
fprintf('Change in system delay detected at %g:th sample.\n',t(Loc(I)-1));

Change in system delay detected at 20:th sample.

The location of the largest peak corresponds to the largest change in the B polynomial
coefficients, and is thus the location of a change in transport delay.

While online estimation techniques provide more options for choosing estimation methods
and model structure, the data segmentation method can help automate detection of
abrupt and isolated changes.
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Use Data Segmentation for Change Detection

A data segmentation algorithm automatically segments the data into regions of different
dynamic behavior. This is useful for capturing abrupt changes arising from a failure or
change of operating conditions. The segment command facilitates this operation for
single-output data. segment is an alternative to online estimation techniques when you
do not need to capture the time-varying behavior during system operation.

Applications of data segmentation include segmentation of speech signals (each segment
corresponds to a phoneme), failure detection (the segments correspond to operation with
and without failures), and estimation of different working modes of a system.

Inputs to the segment command include the measured data, the model orders, and a
guess for the variance, r2, of the noise that affects the system. If the variance is entirely
unknown, it can be estimated automatically. Perform data segmentation using an ARX
model of the same orders as used for online estimation. Set the variance to 0.1.

[seg,V,tvmod] = segment(z,[na nb nk],0.1);

The method for segmentation is based on AFMM (adaptive forgetting through multiple
models). For details about the method, see Andersson, Int. J. Control Nov 1985.

A multi-model approach is used to track the time-varying system. The resulting tracking
model is an average of the multiple models and is returned as the third output argument
of segment, tvmod.

Plot the parameters of the tracking model.

plot(tvmod)
legend({'a','b_1','b_2'},'Location','best')
xlabel('Samples'), ylabel('Parameter value')
title('Time-varying estimates')
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Note the similarity between these parameter trajectories and those estimated using
recursiveARX.

segment determines the time points when changes have occurred using tvmod and q,
the probability that a model exhibits abrupt changes. These time points are used to
construct the segmented model by employing a smoothing procedure over the tracking
model.

The parameter values of the segmented model are returned in seg, the first output
argument of segment. The values in each successive row are the parameter values of the
underlying segmented model at the corresponding time instants. These values remain
constant over successive rows and change only when the system dynamics are
determined to have changed. Thus, values in seg are piecewise constant.
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Plot the estimated values for parameters a, b1, and b2.

plot(seg)
title('Parameter value segments')
legend({'a','b1','b2'},'Location','best')
xlabel('Time (seconds)')
ylabel('Parameter value')

A change is seen in the parameter values around sample number 19. The value of b1
changes from a small (close to zero) to large (close to 1) value. The value of b2 shows the
opposite pattern. This change in the values of the B parameters indicates a change in the
transport delay.
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The second output argument of segment, V, is the loss function for the segmented model
(i.e. the estimated prediction error variance for the segmented model). You can use V to
asses the quality of the segmented model.

Note that the two most important inputs for the segmentation algorithm are r2 and q, the
fourth input argument to segment. In this example, q was not specified because the
default value, 0.01, was adequate. A smaller value of r2 and a larger value of q will result
in more segmentation points. To find appropriate values, you can vary r2 and q and use
the ones that work the best. Typically, the segmentation algorithm is more sensitive to r2
than q.

Conclusions

The use of online estimation and data segmentation techniques for detecting abrupt
changes in system dynamics was evaluated. Online estimation techniques offer more
flexibility and more control over the estimation process. However, for changes that are
infrequent or abrupt, segment facilitates an automatic detection technique based on
smoothing of time-varying parameter estimates.

Copyright 1986-2017 The MathWorks, Inc.
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Online Estimation

• “What Is Online Estimation?” on page 16-2
• “How Online Parameter Estimation Differs from Offline Estimation” on page 16-6
• “Preprocess Online Parameter Estimation Data in Simulink” on page 16-8
• “Validate Online Parameter Estimation Results in Simulink” on page 16-9
• “Validate Online Parameter Estimation at the Command Line” on page 16-11
• “Troubleshoot Online Parameter Estimation” on page 16-14
• “Generate Online Parameter Estimation Code in Simulink” on page 16-17
• “Recursive Algorithms for Online Parameter Estimation” on page 16-19
• “Perform Online Parameter Estimation at the Command Line” on page 16-25
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-29
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation”

on page 16-33
• “Validate Online State Estimation at the Command Line” on page 16-42
• “Validate Online State Estimation in Simulink” on page 16-45
• “Generate Code for Online State Estimation in MATLAB” on page 16-49
• “Troubleshoot Online State Estimation” on page 16-53
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-55
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What Is Online Estimation?
Online estimation algorithms estimate the parameters and states of a model when new
data is available during the operation of the physical system. The System Identification
Toolbox software uses linear, extended, and unscented Kalman filter, or particle filter
algorithms for online state estimation. The toolbox uses recursive prediction error
minimization algorithms for online parameter estimation.

Consider a heating and cooling system that does not have prior information about the
environment in which it operates. Suppose that this system must heat or cool a room to
achieve a certain temperature in a given amount of time. To fulfill its objective, the system
must obtain knowledge of the temperature and insulation characteristics of the room. You
can estimate the insulation characteristics of the room while the system is online
(operational). For this estimation, use the system effort as the input and the room
temperature as the output. You can use the estimated model to improve system behavior.
Online estimation is ideal for estimating small deviations in the parameter values of a
system at a known operating point.

Common applications of online estimation include:

• Adaptive control — Estimate a plant model to modify the controller based on changes
in the plant model.

• Fault detection — Compare the online plant model with the idealized or reference
plant model to detect a fault (anomaly) in the plant.

• Soft sensing — Generate a “measurement” based on the estimated plant model, and
use this measurement for feedback control or fault detection.

• Verification of the experiment-data quality before starting offline estimation — Before
using the measured data for offline estimation, perform online estimation for a few
iterations. The online estimation provides a quick check of whether the experiment
used excitation signals that captured the relevant system dynamics.

Online Parameter Estimation
Online parameter estimation is typically performed using a recursive algorithm. To
estimate the parameter values at a time step, recursive algorithms use the current
measurements and previous parameter estimates. Therefore, recursive algorithms are
efficient in terms of memory usage. Also, recursive algorithms have smaller
computational demands. This efficiency makes them suited to online and embedded
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applications. For more information about the algorithms, see “Recursive Algorithms for
Online Parameter Estimation” on page 16-19.

In System Identification Toolbox you can perform online parameter estimation in Simulink
or at the command line:

• In Simulink, use the Recursive Least Squares Estimator and Recursive Polynomial
Model Estimator blocks to perform online parameter estimation. You can also estimate
a state-space model online from these models by using the Recursive Polynomial
Model Estimator and Model Type Converter blocks together. You can generate C/C++
code and Structured Text for these blocks using Simulink Coder and Simulink PLC
Coder™ software.

• At the command line, use recursiveAR, recursiveARMA, recursiveARX,
recursiveARMAX, recursiveOE, recursiveBJ, and recursiveLS commands to
estimate model parameters for your model structure. Unlike estimation in Simulink,
you can change the properties of the recursive estimation algorithm during online
estimation. You can generate code and standalone applications using MATLAB Coder
and MATLAB Compiler™ software.

When you perform online parameter estimation in Simulink or at the command line, the
following requirements apply:

• Model must be discrete-time linear or nearly linear with parameters that vary slowly
with time.

• Structure of the estimated model must be fixed during estimation.
• iddata object is not supported during online parameter estimation. Specify

estimation output data as a real scalar and input data as a real scalar or vector.

Online State Estimation
You can perform online state estimation of systems at the command line and in Simulink:

• In Simulink, use the Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter
or Particle Filter blocks to perform online state estimation of discrete-time linear and
nonlinear systems. You can generate C/C++ code for these blocks using Simulink
Coder software. For the Kalman Filter block, you can also generate Structured Text
using Simulink PLC Coder software.

• At the command line, use extendedKalmanFilter, unscentedKalmanFilter and
particleFilter commands to estimate states of discrete-time nonlinear systems.
These commands implement discrete-time extended Kalman filter (EKF), unscented
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Kalman filter (UKF) and particle filter algorithms. For more information about the
algorithms, see “Extended and Unscented Kalman Filter Algorithms for Online State
Estimation” on page 16-33. You can generate code and standalone applications using
MATLAB Coder and MATLAB Compiler software.

When you perform online state estimation in Simulink or at the command line, the
following requirements apply:

• System must be discrete-time. If you are using the Kalman Filter block, the system can
also be continuous-time.

• iddata object is not supported during online state estimation. Specify estimation
input-output data as real scalars or vectors.

References
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-

Hall PTR, 1999, pp. 428–440.

[2] Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.
John Wiley and Sons Inc., 2006.
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• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-55

16 Online Estimation

16-4



• “State Estimation Using Time-Varying Kalman Filter” on page 16-108
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on

page 16-123
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How Online Parameter Estimation Differs from Offline
Estimation

Online estimation algorithms estimate the parameters of a model when new data is
available during the operation of the model. In offline estimation, you first collect all the
input/output data and then estimate the model parameters . Parameter values estimated
using online estimation can vary with time, but parameters estimated using offline
estimation do not.

To perform offline estimation, use commands such as arx, pem, ssest, tfest, nlarx,
and the System Identification app.

To perform online parameter estimation in Simulink, use the Recursive Least Squares
Estimator and Recursive Polynomial Model Estimator blocks. For online estimation at the
command line on page 16-25, use commands such as recursiveARX to create a System
object™, and then use step command to update the model parameters.

Online estimation differs from offline estimation in the following ways:

• Model delays — You can estimate model delays in offline estimation using tools such as
delayest (see “Determining Model Order and Delay” on page 4-47). Online
estimation provides limited ability to estimate delays. For polynomial model estimation
using the Recursive Polynomial Model Estimation block or the online estimation
commands, you can specify a known value of the input delay (nk). If nk is unknown,
choose a sufficiently large value for the number of coefficients of B (nb). The number
of leading coefficients of the estimated B polynomial that are close to zero represent
the input delay.

• Data preprocessing — For offline estimation data preprocessing, you can use functions
such as detrend, retrend, idfilt, and the System Identification app.

For online estimation using Simulink, use the tools available in the Simulink
environment. For more information, see “Preprocess Online Parameter Estimation
Data in Simulink” on page 16-8.

For online parameter estimation at the command line, you cannot use preprocessing
tools in System Identification Toolbox. These tools support only data specified as
iddata objects. Implement preprocessing code as required by your application. To be
able to generate C and C++ code, use commands supported by MATLAB Coder. For a
list of these commands, see “Functions and Objects Supported for C/C++ Code
Generation — Category List” (MATLAB Coder).
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• Resetting of estimation — You cannot reset offline estimation. Online estimation lets
you reset the estimation at a specific time step during estimation. For example, reset
the estimation when the system changes modes or if you are not satisfied with the
estimation. The reset operation sets the model states, estimated parameters, and
estimated parameter covariance to their initial values.

To reset online estimation in Simulink, in the online estimation block dialog box, on the
Algorithm and Block Options tab, select the appropriate External reset option. At
the command line, use the reset command.

• Enabling or disabling of estimation — You cannot selectively enable or disable offline
estimation. You can use preprocessing tools to remove or filter certain portions of the
data before the estimation. Online estimation lets you enable or disable estimation for
chosen time spans. For example, suppose that the measured data is especially noisy or
faulty (contains many outliers) for a specific time interval. Disable online estimation
for this interval.

To enable or disable estimation in Simulink, in the online estimation block dialog box,
on the Algorithm and Block Options tab, select the Add enable port check box.

At the command line, use the EnableAdaptation property of the System object
created using online estimation commands, such as recursiveARMAX and
recursiveLS. Even if you set EnableAdaptation to false, execute the step
command. Do not skip step to keep parameter values constant because parameter
estimation depends on current and past input/output measurements. step ensures
that past input-output data is stored, even when it does not update the parameters.

See Also

More About
• “What Is Online Estimation?” on page 16-2
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Preprocess Online Parameter Estimation Data in
Simulink

Estimation data that contains deficiencies, such as drift, offset, missing samples,
seasonalities, equilibrium behavior, and outliers, can adversely affect the quality of the
estimation. Therefore, it is recommended that you preprocess your estimation data as
needed.

Use the tools in the Simulink software to preprocess data for online estimation. Common
tools to perform data preprocessing in Simulink are:

• Blocks in the Math Operations (Simulink) library. Use these blocks, for example, to
subtract or add an offset or normalize a signal.

• Blocks in the “Continuous” (Simulink) and “Discrete” (Simulink) library. Use these
blocks, for example, to filter a signal.

• Rate Transition block, which allows you to handle the transfer of data between blocks
operating at different rates. Use this block, for example, to resample your data from a
source that is operating at a different sampling rate than the online estimation block.

• MATLAB Function block, which allows you to include MATLAB code in your model.
Use this block, for example, to implement a custom preprocessing algorithm.

See “Online ARMAX Polynomial Model Estimation” on page 16-91 for an example of how
you can preprocess an estimation input signal by removing its mean.

See Also
Kalman Filter | Recursive Least Squares Estimator | Recursive Polynomial Model
Estimator

More About
• “What Is Online Estimation?” on page 16-2
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Validate Online Parameter Estimation Results in
Simulink

Use the following approaches to validate an online estimation performed using the
Recursive Least Squares Estimator or Recursive Polynomial Model Estimator block:

• Examine the estimation error (residuals), which is the difference between the
measured and estimated outputs. The estimation error can be large at the beginning
of the estimation or when there are large parameter variations. The error should get
smaller as the parameter estimates converge. Small errors with respect to the size of
the outputs give confidence in the estimated values.

You can also analyze the residuals using techniques such as the whiteness test and the
independence test. For such analysis, use the measured data and estimation error
collected after the parameter values have settled to approximately constant values.
For more information regarding these tests, see “What Is Residual Analysis?” on page
17-43

To obtain the estimation error, in the Algorithm and Block Options tab of the online
estimation block’s dialog, select the Output estimation error check box. The
software adds an Error outport to the block, which you can monitor using a Scope
block. This outport provides the one-step-ahead estimation error, e(t) = y(t)–yest(t). For
the time step, t, y and yest are the measured and estimated outputs, respectively.

• The parameter covariance is a measure of estimated uncertainty in the parameters,
and is calculated when the forgetting factor or Kalman filter estimation algorithms are
used.

Parameter covariance is computed assuming that the residuals are white noise, and
the variance of these residuals is 1. To obtain the parameter covariance, in the
Algorithm and Block Options tab of the online estimation block’s dialog, select the
Output parameter covariance matrix check box. The software adds a Covariance
outport to the block, which you can monitor using a Display block. This outport
provides the parameter covariance matrix, P.

The estimated parameters can be considered as random variables with variance equal
to the corresponding diagonal of the parameter covariance matrix, scaled by the
variance of the residuals (residualVariance) at each time step. You use prior
knowledge, or calculate residualVariance from the residuals, e. Where, e is the
vector of estimation errors, e(t).
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 residualVariance = var(e);

Scale the parameter covariance to calculate the variance of the estimated parameters.

paramVariance = diag(P)*residualVariance;

A smaller variance value gives confidence in the estimated values.
• Simulate the estimated model and compare the simulated and measured outputs. To

do so, feed the measured input into a model that uses the estimated time-varying
parameter values. Then, compare the model output with the measured output. The
simulated output closely matching the measured output gives confidence in the
estimated values.

For examples of such validation, see “Online Recursive Least Squares Estimation” on
page 16-80 and “Online ARMAX Polynomial Model Estimation” on page 16-91.

If the validation indicates low confidence in the estimation, then refer to the
Troubleshooting topics on the “Online Estimation” page.

See Also
Kalman Filter | Recursive Least Squares Estimator | Recursive Polynomial Model
Estimator
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Validate Online Parameter Estimation at the Command
Line

This topic shows how to validate online parameter estimation at the command line. If the
validation indicates low confidence in the estimation, then see “Troubleshoot Online
Parameter Estimation” on page 16-14. After you have validated the online estimation
results, you can generate C/C++ code or a standalone application using MATLAB Coder
or MATLAB Compiler.

Examine the Estimation Error
The estimation error is the difference between measured output, y, and the estimated
output, EstimatedOutput at each time step.

obj = recursiveARX;
[A,B,EstimatedOutput] = step(obj,y,u);
estimationError = y-EstimatedOutput;

Here, u is the input data at that time step.

The estimation errors (residuals) can be large at the beginning of the estimation or when
there are large parameter variations. The error should get smaller as the parameter
estimates converge. Small errors relative to the size of the outputs increase confidence in
the estimated values.

Simulate the Estimated Model
Simulate the estimated model and compare the simulated and measured outputs. To do
so, feed the measured input into a model that uses the estimated time-varying parameter
values. Then compare the model output with the measured output. A close match between
the simulated output and the measured output gives confidence in the estimated values.

Examine Parameter Covariance
Parameter covariance is a measure of estimated uncertainty in the parameters. The
covariance is calculated when the forgetting factor or Kalman filter estimation algorithms
are used.
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Parameter covariance is computed assuming that the residuals are white noise, and the
variance of these residuals is 1. You view the parameter covariance matrix using the
ParameterCovariance property of your System object.

P = obj.ParameterCovariance;

The estimated parameters can be considered as random variables with variance equal to
the corresponding diagonal of the parameter covariance matrix, scaled by the variance of
the residuals (residualVariance) at each time step. You use prior knowledge, or
calculate residualVariance from the residuals, e. Where, e is the vector of estimation
errors, estimationError.

 residualVariance = var(e);

Scale the parameter covariance to calculate the variance of the estimated parameters.

paramVariance = diag(P)*residualVariance;

A smaller variance value gives confidence in the estimated values.

Use Validation Commands from System Identification Toolbox
You can validate a snapshot of the estimated model using validation commands for offline
estimation. This validation only captures the behavior of a time-invariant model. For
available offline validation techniques in System Identification Toolbox, see “Model
Validation”.

To use offline commands, convert your online estimation System object, obj, into an
idpoly model object. Also convert your stream of input-output validation data, Output(t)
and Input(t), into an iddata object.

sys = idpoly(obj);
sys.Ts = Ts;
z = iddata(Output,Input,Ts)

Here, Ts is the sample time.

Note This conversion and any subsequent analysis are not supported by MATLAB Coder.

The validation techniques include:
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• Analysis of the residuals using techniques such as the whiteness test and the
independence test using offline commands such as resid. For example, use
resid(z,sys). For information about these tests, see “What Is Residual Analysis?”
on page 17-43.

• Comparison of model output and measured output. For example, use
compare(z,sys).

• Comparison of different online estimation System objects.

You can create multiple versions of a System object with different object properties,
convert each of them to idpoly model objects, and use compare to choose the best
one.

If you want to copy an existing System object and then modify properties of the copied
object, use the clone command. Do not create additional objects using syntax obj2 =
obj. Any changes made to the properties of the new System object created this way
(obj2) also change the properties of the original System object (obj).

See Also
recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX | recursiveBJ |
recursiveLS | recursiveOE

Related Examples
• “Perform Online Parameter Estimation at the Command Line” on page 16-25
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-29
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-55
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on

page 16-65
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Troubleshoot Online Parameter Estimation
To troubleshoot online parameter estimation, check the following:

Model Structure
Check that you are using the simplest model structure that adequately captures the
system dynamics.

AR and ARX model structures are good first candidates for estimating linear models. The
underlying estimation algorithms for these model structures are simpler than those for
ARMA, ARMAX, Output-Error, and Box-Jenkins model structures. In addition, these
simpler AR and ARX algorithms are less sensitive to initial parameter guesses.

The more generic recursive least squares (RLS) estimation also has the advantage of
algorithmic simplicity like AR and ARX model estimation. RLS lets you estimate
parameters for a wider class of models than ARX and AR and can include nonlinearities.
However, configuring an AR or ARX structure is simpler.

Consider the following when choosing a model structure:

• AR and ARX model structures — If you are estimating a time-series model (no inputs),
try the AR model structure. If you are estimating an input-output model, try the ARX
model structure. Also try different model orders with these model structures. These
models estimate the system output based on time-shifted versions of the output and
inputs signals. For example, the a and b parameters of the system y(t) = b1u(t)
+b2u(t-1)-a1y(t-1) can be estimated using ARX models.

For more information regarding AR and ARX models, see “What Are Polynomial
Models?” on page 6-2.

• RLS estimation— If you are estimating a system that is linear in the estimated
parameters, but does not fit into AR or ARX model structures, try RLS estimation. You
can estimate the system output based on the time-shifted versions of input-outputs
signals like the AR and ARX, and can also add nonlinear functions. For example, you
can estimate the parameters p1, p2, and p3 of the system y(t) = p1y(t-1) + p2u(t-1) +
p3u(t-1)2 . You can also estimate static models, such as the line-fit problem of
estimating parameters a and b in y(t) = au(t)+b.

• ARMA, ARMAX, Output-Error, Box-Jenkins model structures — These model structures
provide more flexibility compared to AR and ARX model structures to capture the
dynamics of linear systems. For instance, an ARMAX model has more dynamic
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elements (C polynomial parameters) compared to ARX for estimating noise models.
This flexibility can help when AR and ARX are not sufficient to capture the system
dynamics of interest.

Specifying initial parameter and parameter covariance values are especially
recommended for these model structures. This is because the estimation method used
for these model structures can get stuck at a local optima. For more information about
these models, see “What Are Polynomial Models?” on page 6-2.

Model Order
Check the order of your specified model structure. You can under-fit (model order is too
low) or over-fit (model order is too high) data by choosing an incorrect model order.

Ideally, you want the lowest-order model that adequately captures your system dynamics.
Under-fitting prevents algorithms from finding a good fit to the model, even if all other
estimation settings are good, and there is good excitation of system dynamics. Over-fitting
typically leads to high sensitivity of parameters to the measurement noise or the choice of
input signals.

Estimation Data
Use inputs that excite the system dynamics adequately. Simple inputs, such as a step
input, typically does not provide sufficient excitation and are good for estimating only a
very limited number of parameters. One solution is to inject extra input perturbations.

Estimation data that contains deficiencies can lead to poor estimation results. Data
deficiencies include drift, offset, missing samples, equilibrium behavior, seasonalities, and
outliers. It is recommended that you preprocess the estimation data as needed.

For information on how to preprocess estimation data in Simulink, see “Preprocess Online
Parameter Estimation Data in Simulink” on page 16-8.

For online parameter estimation at the command line, you cannot use preprocessing tools
in System Identification Toolbox. These tools support only data specified as iddata
objects. Implement preprocessing code as required by your application. To be able to
generate C and C++ code, use commands supported by MATLAB Coder. For a list of
these commands, see “Functions and Objects Supported for C/C++ Code Generation —
Category List” (MATLAB Coder).
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Initial Guess for Parameter Values
Check the initial guesses you specify for the parameter values and initial parameter
covariance matrix. Specifying initial parameter guesses and initial parameter covariance
matrix is recommended. These initial guesses could be based on your knowledge of the
system or be obtained via offline estimation.

Initial parameter covariance represents the uncertainty in your guess for the initial
values. When you are confident about your initial parameter guesses, and if the initial
parameter guesses are much smaller than the default initial parameter covariance value,
10000, specify a smaller initial parameter covariance. Typically, the default initial
parameter covariance is too large relative to the initial parameter values. The result is
that initial guesses are given less importance during estimation.

Initial parameter and parameter covariance guesses are especially important for ARMA,
ARMAX, Output-Error, and Box-Jenkins models. Poor or no guesses can result in the
algorithm finding a local minima of the objective function in the parameter space, which
can lead to a poor fit.

Estimation Settings
Check that you have specified appropriate settings for the estimation algorithm. For
example, for the forgetting factor algorithm, choose the forgetting factor, λ, carefully. If λ
is too small, the estimation algorithm assumes that the parameter value is varying quickly
with time. Conversely, if λ is too large, the estimation algorithm assumes that the
parameter value does not vary much with time. For more information regarding the
estimation algorithms, see “Recursive Algorithms for Online Parameter Estimation” on
page 16-19.

See Also

Related Examples
• “What Is Online Estimation?” on page 16-2
• “Validate Online Parameter Estimation Results in Simulink” on page 16-9
• “Validate Online Parameter Estimation at the Command Line” on page 16-11
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Generate Online Parameter Estimation Code in Simulink
You can generate C/C++ code and Structured Text for Recursive Least Squares Estimator
and other online estimation blocks using products such as Simulink Coder and Simulink
PLC Coder. The Model Type Converter block, which you can use with the Recursive
Polynomial Model Estimator block, also supports code generation. Use the generated
code to deploy online model estimation to an embedded target. For example, you can
estimate the coefficients of a time-varying plant from measured input-output data and
feed the coefficients to an adaptive controller. After validating the online estimation in
simulation, you can generate code for your Simulink model and deploy that code to the
target.

To generate code for online estimation, use the following workflow:

1 Develop a Simulink model that simulates the online model estimation. For example,
create a model that simulates the input/output data, performs online estimation for
this data, and uses the estimated parameter values.

2 After validating the online estimation performance in simulation, create a subsystem
for the online estimation block. If you preprocess the inputs or postprocess the
parameter estimates, include the relevant blocks in the subsystem.

3 Convert the subsystem to a referenced model. You generate code for this referenced
model, so ensure that it uses only the blocks that support code generation. For a list
of blocks that support code generation, see “Simulink Built-In Blocks That Support
Code Generation” (Simulink Coder).

The original model, which now contains a model reference, is now referred to as the
top model.

4 In the top model, replace the model source and sink blocks with their counterpart
hardware blocks. For example, replace the simulated inputs/output blocks with the
relevant hardware source block. You generate code for this model, which includes the
online estimation. So, ensure that it uses only blocks that support code generation.

5 Generate code for the top model.

For details on configuring the subsystem and converting it to a referenced model, see the
“Generate Code for Referenced Models” (Simulink Coder) example.
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See Also
Kalman Filter | Model Type Converter | Recursive Least Squares Estimator | Recursive
Polynomial Model Estimator

Related Examples
• “Generate Code for Referenced Models” (Simulink Coder)

More About
• “Code Generation of Referenced Models” (Simulink Coder)
• “Simulink Built-In Blocks That Support Code Generation” (Simulink Coder)
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Recursive Algorithms for Online Parameter Estimation
General Form of Recursive Estimation
The general form of the recursive estimation algorithm is as follows:

ˆ ˆ ˆq qt t K t y t y t( ) = -( ) + ( ) ( ) - ( )( )1

q̂ t( )  is the parameter estimate at time t. y(t) is the observed output at time t and ŷ t( )  is
the prediction of y(t) based on observations up to time t-1. The gain, K(t), determines how

much the current prediction error y t y t( ) - ( )ˆ  affects the update of the parameter

estimate. The estimation algorithms minimize the prediction-error term y t y t( ) - ( )ˆ .

The gain has the following form:

K t Q t t( ) = ( ) ( )y

The recursive algorithms supported by the System Identification Toolbox product differ

based on different approaches for choosing the form of Q(t) and computing y t( ) , where

y t( )  represents the gradient of the predicted model output ˆ |y t q( )  with respect to the
parameters q .

The simplest way to visualize the role of the gradient y t( )  of the parameters, is to
consider models with a linear-regression form:

y t t t e tT( ) = ( ) ( ) + ( )y q
0

In this equation, y t( )  is the regression vector that is computed based on previous values

of measured inputs and outputs. q
0

t( )  represents the true parameters. e(t) is the noise

source (innovations), which is assumed to be white noise. The specific form of y t( )
depends on the structure of the polynomial model.
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For linear regression equations, the predicted output is given by the following equation:

ˆ ˆy t t tT( ) = ( ) -( )y q 1

For models that do not have the linear regression form, it is not possible to compute

exactly the predicted output and the gradient y t( )  for the current parameter estimate

q̂ t -( )1 . To learn how you can compute approximation for y t( )  and q̂ t -( )1  for general
model structures, see the section on recursive prediction-error methods in [1].

Types of Recursive Estimation Algorithms
The System Identification Toolbox software provides the following recursive estimation
algorithms for online estimation:

• “Forgetting Factor” on page 16-20
• “Kalman Filter” on page 16-21
• “Normalized and Unnormalized Gradient” on page 16-23

The forgetting factor and Kalman Filter formulations are more computationally intensive
than gradient and unnormalized gradient methods. However, they typically have better
convergence properties.

Forgetting Factor

The following set of equations summarizes the forgetting factor adaptation algorithm:

ˆ ˆ ˆq qt t K t y t y t( ) = -( ) + ( ) ( ) - ( )( )1

ˆ ˆy t t tT( ) = ( ) -( )y q 1

K t Q t t( ) = ( ) ( )y

Q t
P t

t P t tT
( ) =

-( )
+ ( ) -( ) ( )

1

1l y y
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The software ensures P(t) is a positive-definite matrix by using a square-root algorithm to
update it [2]. The software computes P assuming that the residuals (difference between
estimated and measured outputs) are white noise, and the variance of these residuals is 1.
R2/2 * P is approximately equal to the covariance matrix of the estimated parameters,
where R2 is the true variance of the residuals.

Q(t) is obtained by minimizing the following function at time t:

l
t k

k

t
y k y k-

=
-Â ( ( ) � ( ))

2

1

See section 11.2 in [1] for details.

This approach discounts old measurements exponentially such that an observation that is

t  samples old carries a weight that is equal to l
t  times the weight of the most recent

observation. t
l

=
-

1
1

 represents the memory horizon of this algorithm. Measurements

older than t
l

=
-

1
1

 typically carry a weight that is less than about 0.3.

l  is called the forgetting factor and typically has a positive value between 0.98 and
0.995. Set l = 1  to estimate time-invariant (constant) parameters. Set l < 1  to estimate
time-varying parameters.

Note The forgetting factor algorithm for l  = 1 is equivalent to the Kalman filter
algorithm with R1=0 and R2=1. For more information about the Kalman filter algorithm,
see “Kalman Filter” on page 16-21.

Kalman Filter

The following set of equations summarizes the Kalman filter adaptation algorithm:

ˆ ˆ ˆq qt t K t y t y t( ) = -( ) + ( ) ( ) - ( )( )1
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ˆ ˆy t t tT( ) = ( ) -( )y q 1

K t Q t t( ) = ( ) ( )y

Q t
P t

R t P t tT
( ) =

-( )

+ ( ) -( ) ( )

1

12 y y

P t P t R
P t t t P t

R t P t t

T

T
( ) = -( ) + -

-( ) ( ) ( ) -( )

+ ( ) -( ) ( )
1

1 1

1
1

2

y y

y y

The software ensures P(t) is a positive-definite matrix by using a square-root algorithm to
update it [2]. The software computes P assuming that the residuals (difference between
estimated and measured outputs) are white noise, and the variance of these residuals is 1.
R2* P is the covariance matrix of the estimated parameters, and R1 /R2 is the covariance
matrix of the parameter changes. Where, R1 is the covariance matrix of parameter
changes that you specify.

This formulation assumes the linear-regression form of the model:

y t t t e tT( ) = ( ) ( ) + ( )y q
0

Q(t) is computed using a Kalman filter.

This formulation also assumes that the true parameters q
0

t( )  are described by a random
walk:

q q
0 0

1t t w t( ) = -( ) + ( )

w(t) is Gaussian white noise with the following covariance matrix, or drift matrix R1:

Ew t w t R
T( ) ( ) =

1

R2 is the variance of the innovations e(t) in the following equation:

y t t t e tT( ) = ( ) ( ) + ( )y q
0
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The Kalman filter algorithm is entirely specified by the sequence of data y(t), the gradient

y t( ) , R1, R2, and the initial conditions q t =( )0  (initial guess of the parameters) and

P t =( )0  (covariance matrix that indicates parameters errors).

Note It is assumed that R1 and P(t = 0) matrices are scaled such that R2 = 1. This scaling
does not affect the parameter estimates.

Normalized and Unnormalized Gradient

In the linear regression case, the gradient methods are also known as the least mean
squares (LMS) methods.

The following set of equations summarizes the unnormalized gradient and normalized
gradient adaptation algorithm:

ˆ ˆ ˆq qt t K t y t y t( ) = -( ) + ( ) ( ) - ( )( )1

ˆ ˆy t t tT( ) = ( ) -( )y q 1

K t Q t t( ) = ( ) ( )y

In the unnormalized gradient approach, Q(t) is given by:

Q t( ) = g

In the normalized gradient approach, Q(t) is given by:

Q t

t Bias
( ) =

( ) +

g

y
2

The normalized gradient algorithm scales the adaptation gain, γ, at each step by the
square of the two-norm of the gradient vector. If the gradient is close to zero, this can
cause jumps in the estimated parameters. To prevent these jumps, a bias term is
introduced in the scaling factor.
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These choices of Q(t) for the gradient algorithms update the parameters in the negative
gradient direction, where the gradient is computed with respect to the parameters. See
pg. 372 in [1] for details.
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See Also
Recursive Least Squares Estimator | Recursive Polynomial Model Estimator |
recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX | recursiveBJ |
recursiveLS | recursiveOE

More About
• “What Is Online Estimation?” on page 16-2
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Perform Online Parameter Estimation at the Command
Line

This topic shows how to perform online parameter estimation at the command line. The
online estimation commands create a System object on page 16-25 for your model
structure.

Online Estimation System Object
A System object is a specialized MATLAB object designed specifically for implementing
and simulating dynamic systems with inputs that change over time. System objects use
internal states to store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain
information from or about the object. System objects use a minimum of two commands to
process data — a constructor to create the object and the step command to update
object parameters using real-time data. This separation of declaration from execution lets
you create multiple, persistent, reusable objects, each with different settings.

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-
time data.

step puts the object into a locked state. In
a locked state, you cannot change any
nontunable properties or input
specifications, such as model order, data
type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this
command to enable setting of nontunable
parameters.
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Command Description
reset Reset the internal states of a locked System

object to the initial values, and leave the
object locked.

clone Create another System object with the
same object property values.

Do not create additional objects using
syntax obj2 = obj. Any changes made to
the properties of the new object created
this way (obj2) also change the properties
of the original object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Note If all data necessary for estimation is available at once, and you are estimating a
time-invariant model, use the offline estimation commands for model parameter
estimation. For example, use arx instead of recursiveARX.

Workflow for Online Parameter Estimation at the Command
Line
1 Choose a model structure for your application.

Ideally, you want the simplest model structure that adequately captures the system
dynamics. For considerations to keep in mind, see “Model Structure” on page 16-14.

2 Create an online estimation System object for your model structure by using one of
the following commands:

• recursiveAR — Time-series AR model
• recursiveARMA — Time-series ARMA model
• recursiveARX — SISO or MISO ARX model
• recursiveARMAX — SISO ARMAX model
• recursiveOE — SISO output-error polynomial model
• recursiveBJ — SISO Box-Jenkins polynomial model
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• recursiveLS — Single-output system that is linear in estimated parameters

obj = recursiveARX;

You can specify additional object properties such as the recursive estimation
algorithm and initial parameter guesses. For information about the algorithms used,
see “Recursive Algorithms for Online Parameter Estimation” on page 16-19.

3 Acquire input-output data in real time.

Specify estimation output data, y, as a real scalar, and input data, u, as a real scalar
or vector. Data specified as an iddata object is not supported for online estimation.

4 Preprocess the estimation data.

Estimation data that contains deficiencies can lead to poor estimation results. Data
deficiencies include drift, offset, missing samples, equilibrium behavior, seasonalities,
and outliers. Preprocess the estimation data as needed. For considerations to keep in
mind, see “Estimation Data” on page 16-15.

For online parameter estimation at the command line, you cannot use preprocessing
tools in System Identification Toolbox. These tools support only data specified as
iddata objects. Implement preprocessing code as required by your application. To
be able to generate C and C++ code, use commands supported by MATLAB Coder.
For a list of these commands, see “Functions and Objects Supported for C/C++ Code
Generation — Category List” (MATLAB Coder).

5 Update the parameters of the model using incoming input-output data.

Use the step command to execute the specified recursive algorithm over each
measurement of input-output data.

[A,B,yhat] = step(obj,y,u);

The output of the step command gives the estimated parameters (A and B), and
estimated model output (yhat), at each set of input-output data.

Calling step on an object puts that object into a locked state. You can check the
locked status of a System object using isLocked. When the object is locked, you
cannot change any nontunable properties or input specifications such as model order,
data type, or estimation algorithm. To change a nontunable property, use the
release command to unlock the System object. You can use release on a System
object in code generated from MATLAB, but once you release its resources, you
cannot use that System object again.
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6 Post-process estimated parameters.

If necessary, you can post-process the estimated parameters. For instance, you can
use a low-pass filter to smooth out noisy parameter estimates. To be able to generate
C and C++ code, use commands supported by MATLAB Coder. For a list of these
commands, see “Functions and Objects Supported for C/C++ Code Generation —
Category List” (MATLAB Coder).

7 Validate the online estimation.

For details about the validation, see “Validate Online Parameter Estimation at the
Command Line” on page 16-11. If you are not satisfied with the estimation, use the
reset command to set the parameters of the System object to their initial value.

8 Use the estimated parameters for your application.

After validating the online parameter estimation, you can use MATLAB Compiler or
MATLAB Coder to deploy the code in your application.

See Also
clone | isLocked | recursiveAR | recursiveARMA | recursiveARMAX |
recursiveARX | recursiveBJ | recursiveLS | recursiveOE | release | reset |
step

Related Examples
• “Validate Online Parameter Estimation at the Command Line” on page 16-11
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-29
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-55
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on

page 16-65

More About
• “What Is Online Estimation?” on page 16-2
• “How Online Parameter Estimation Differs from Offline Estimation” on page 16-6
• “Recursive Algorithms for Online Parameter Estimation” on page 16-19
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Generate Code for Online Parameter Estimation in
MATLAB

This topic shows how to generate C/C++ code from online estimation MATLAB code that
uses a System object. C/C++ code is generated using the codegen command from
MATLAB Coder. Use the generated code to deploy online estimation algorithms to an
embedded target.

You can also deploy online estimation code by creating a standalone application using
MATLAB Compiler. MATLAB Compiler software supports System objects for use inside
MATLAB functions, but does not support System objects for use in MATLAB scripts.

For Simulink based workflows, use the online estimator blocks from System Identification
Toolbox, such as Recursive Least Squares Estimator and Recursive Polynomial Model
Estimator. You can generate C/C++ code and Structured Text for the online estimation
blocks using Simulink Coder and Simulink PLC Coder.

Supported Online Estimation Commands
Code generation support is available for these online estimation System objects:

• recursiveAR
• recursiveARMA
• recursiveARX
• recursiveARMAX
• recursiveOE
• recursiveBJ
• recursiveLS

Code generation support is available only for the following System object commands:

• step
• reset
• release
• isLocked
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Generate Code for Online Estimation
To generate code for online estimation:

1 Create a function to declare your System object as persistent, and initialize the
object. You define the System object as persistent to maintain the object states
between calls.

function [A,B,EstimatedOutput] = arxonline(output,input)
% Declare System object as persistent
persistent obj;
if isempty(obj)
    obj = recursiveARX([1 2 2],'EstimationMethod','Gradient');
end
[A,B,EstimatedOutput] = step(obj,output,input);
end

The function creates a System object for online estimation of an ARX model of order
[1 2 1], using the unnormalized gradient algorithm, and estimation data, input
and output. Save this function on the MATLAB path. Alternatively, you can specify
the full path name for this function.

The persistent System object is initialized with condition if isempty(obj) to
ensure that the object is initialized only once, when the function is called the first
time. Subsequent calls to the function just execute the step command to update the
estimated parameters. During initialization you specify the nontunable properties of
the object, such as EstimationMethod, Orders, and DataType.

2 Generate C/C++ code and MEX-files using the codegen command from MATLAB
Coder.

codegen arxonline -args {1,1}

The syntax -args {1,1} specifies a set of example arguments to your function. The
example arguments set the dimensions and data types of the function arguments
outputand input as double-precision scalars.

3 Use the generated code.

• Use the generated C/C++ code to deploy online model estimation to an embedded
target.

• Use the generated MEX-file for testing the compiled C/C++ code in MATLAB. The
generated MEX-file is also useful for accelerating simulations of parameter
estimation algorithms in MATLAB.
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Load the estimation data. In this example, use a static data set for illustration.

load iddata3
output = z3.y;
input = z3.u;

Update the model parameters by calling the generated MEX-file.

for i = 1:numel(input)
    [A,B,EstimatedOutput] = arxonline_mex(output(i),input(i));
end

Rules and Limitations When Using System Objects in
Generated MATLAB Code
The following rules and limitations apply to using online estimation System objects when
writing MATLAB code suitable for code generation.

Object Construction and Initialization

• If System objects are stored in persistent variables, initialize objects once by
embedding the object handles in an if statement with a call to isempty( ).

• Set arguments to System object constructors as compile-time constants when using
the codegen command. For more information, see coder.Constant.

• Do not initialize System objects properties with other MATLAB class objects as default
values in code generation. Initialize these properties in the constructor.

Inputs and Outputs

• The data type of the System object inputs should not change.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but they do not generate code.

Cell Arrays

• Cell arrays cannot contain System objects.
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Tunable and Nontunable Properties of System Objects

• The value assigned to a nontunable property must be a constant, and there can be at
most one assignment to that property (including the assignment in the constructor).

• You can set the tunable properties of online estimation System objects at construction
time or by using dot notation after that.

See Also
codegen | isLocked | recursiveAR | recursiveARMA | recursiveARMAX |
recursiveARX | recursiveBJ | recursiveLS | recursiveOE | release | reset |
step

Related Examples
• “Perform Online Parameter Estimation at the Command Line” on page 16-25
• “Validate Online Parameter Estimation at the Command Line” on page 16-11
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-55
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on

page 16-65

More About
• “What Is Online Estimation?” on page 16-2
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Extended and Unscented Kalman Filter Algorithms for
Online State Estimation

You can use discrete-time extended and unscented Kalman filter algorithms for online
state estimation of discrete-time nonlinear systems. If you have a system with severe
nonlinearities, the unscented Kalman filter algorithm may give better estimation results.
You can perform the state estimation in Simulink and at the command line. To perform the
state estimation, you first create the nonlinear state transition function and measurement
function for your system.

At the command line, you use the functions to construct the extendedKalmanFilter or
unscentedKalmanFilter object for desired algorithm, and specify whether the process
and measurement noise terms in the functions are additive or nonadditive. After you
create the object, you use the predict and correct commands to estimate the states
using real-time data. For information about the order in which to execute these
commands, see the predict and correct reference pages.

In Simulink, you specify these function in the Extended Kalman Filter and Unscented
Kalman Filter blocks. You also specify whether the process and measurement noise terms
in the functions are additive or nonadditive. In the blocks, the software decides the order
in which prediction and correction of state estimates is done.

Extended Kalman Filter Algorithm
The extendedKalmanFilter command and Extended Kalman Filter block implement
the first-order discrete-time Kalman filter algorithm. Assume that the state transition and
measurement equations for a discrete-time nonlinear system have nonadditive process
and measurement noise terms with zero mean and covariances Q and R, respectively:

x k f x k w k u k

y k h x k v k u k

w k Q

s

m

[ ] ( [ ], [ ], [ ])

[ ] ( [ ], [ ], [ ])

[ ] ~ ( , [

+ =

=

1

0 kk

v k R k

])

[ ] ~ ( , [ ])0

Here f is a nonlinear state transition function that describes the evolution of states x from
one time step to the next. The nonlinear measurement function h relates x to the
measurements y at time step k. These functions can also have additional input arguments
that are denoted by us and um. The process and measurement noise are w and v,
respectively. You provide Q and R.
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In the block, the software decides the order of prediction and correction of state
estimates. At the command line, you decide the order. For information about the order in
which to execute these commands, see the predict and correct reference pages.
Assuming that you implement the correct command before predict, the software
implements the algorithm as follows:

1 Initialize the filter object with initial values of the state, x[0], and state estimation
error covariance, P.

ˆ[ | ] ( [ ])

[ | ] ( [ ] ˆ[ | ])( [ ] ˆ[ | ])

x E x

P E x x x x
T

0 1 0

0 1 0 0 1 0 0 1

- =

- = - - - -

Here x̂  is the state estimate and ˆ[ | ]x k ka b  denotes the state estimate at time step ka
using measurements at time steps 0,1,...,kb. So ˆ[ | ]x 0 1-  is the best guess of the
state value before you make any measurements. You specify this value when you
construct the filter.

2 For time steps k = 0,1,2,3,..., perform the following:

a Compute the Jacobians of the measurement function, and update the state and
state estimation error covariance using the measured data, y[k]. At the
command line, the correct command performs this update.
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The software calculates these Jacobian matrices numerically unless you specify
the analytical Jacobian.
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Here K is the Kalman gain.
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b Compute the Jacobians of the state transition function, and predict the state and
state estimation error covariance at the next time step. In the software, the
predict command performs this prediction.
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The software calculates these Jacobian matrices numerically unless you specify
the analytical Jacobian. This numerical computation may increase processing
time and numerical inaccuracy of the state estimation.
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These values are used by the correct command in the next time step.

The Extended Kalman Filter block supports multiple measurement functions. These
measurements can have different sample times as long as their sample time is an integer
multiple of the state transition sample time. In this case, a separate correction step is
performed corresponding to measurements from each measurement function.

The algorithm steps described previously assume that you have nonadditive noise terms
in the state transition and measurement functions. If you have additive noise terms in the
functions, the changes in the algorithm are:

• If the process noise w is additive, that is the state transition equation has the form

x k f x k u k w ks[ ] ( [ ], [ ]) [ ]= - - + -1 1 1 , then the Jacobian matrix G[k] is an identity
matrix.

• If the measurement noise v is additive, that is the measurement equation has the form

y k h x k u k v km[ ] ( [ ], [ ]) [ ]= + , then the Jacobian matrix S[k] is an identity matrix.

Additive noise terms in the state and transition functions reduce the processing time.

The first-order extended Kalman filter uses linear approximations to nonlinear state
transition and measurement functions. As a result, the algorithm may not be reliable if
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the nonlinearities in your system are severe. The unscented Kalman filter algorithm may
yield better results in this case.

Unscented Kalman Filter Algorithm
The unscented Kalman filter algorithm and Unscented Kalman Filter block use the
unscented transformation to capture the propagation of the statistical properties of state
estimates through nonlinear functions. The algorithm first generates a set of state values
called sigma points. These sigma points capture the mean and covariance of the state
estimates. The algorithm uses each of the sigma points as an input to the state transition
and measurement functions to get a new set of transformed state points. The mean and
covariance of the transformed points is then used to obtain state estimates and state
estimation error covariance.

Assume that the state transition and measurement equations for an M-state discrete-time
nonlinear system have additive process and measurement noise terms with zero mean
and covariances Q and R, respectively:
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You provide the initial values of Q and R in the ProcessNoise and MeasurementNoise
properties of the unscented Kalman filter object.

In the block, the software decides the order of prediction and correction of state
estimates. At the command line, you decide the order. For information about the order in
which to execute these commands, see the predict and correct reference pages.
Assuming that you implement the correct command before predict, the software
implements the algorithm as follows:

1 Initialize the filter object with initial values of the state, x[0], and state estimation
error covariance, P.

ˆ[ | ] ( [ ])
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Here x̂  is the state estimate and ˆ[ | ]x k ka b  denotes the state estimate at time step ka
using measurements at time steps 0,1,...,kb. So ˆ[ | ]x 0 1-  is the best guess of the
state value before you make any measurements. You specify this value when you
construct the filter.

2 For each time step k, update the state and state estimation error covariance using the
measured data, y[k]. In the software, the correct command performs this update.
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Where c M= +a k
2

( )  is a scaling factor based on number of states M, and the
parameters α and κ. For more information about the parameters, see “Effect of

Alpha, Beta, and Kappa Parameters” on page 16-40. cP  is the matrix square

root of cP such that cP cP cP
T

 ( ) =  and cP
i

( )  is the ith column of cP .
b Use the nonlinear measurement function to compute the predicted

measurements for each of the sigma points.

ˆ [ | ] ˆ [ | ]( , , ,...,( ) ( )y k k x k kh u i Mi i
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c Combine the predicted measurements to obtain the predicted measurement at
time k.
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d Estimate the covariance of the predicted measurement. Add R[k] to account for
the additive measurement noise.
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For information about β parameter, see “Effect of Alpha, Beta, and Kappa
Parameters” on page 16-40.

e
Estimate the cross-covariance between ˆ[ | ]x k k -1  and ˆ[ ]y k .
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f Obtain the estimated state and state estimation error covariance at time step k.
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Here K is the Kalman gain.
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3 Predict the state and state estimation error covariance at the next time step. In the
software, the predict command performs this prediction.

a
Choose the sigma points ˆ [ | ]( )
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i  at time step k.
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b Use the nonlinear state transition function to compute the predicted states for
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The Unscented Kalman Filter block supports multiple measurement functions. These
measurements can have different sample times as long as their sample time is an integer
multiple of the state transition sample time. In this case, a separate correction step is
performed corresponding to measurements from each measurement function.

The previous algorithm is implemented assuming additive noise terms in the state
transition and measurement equations. If the noise terms are nonadditive, the main
changes to the algorithm are:

• The correct command generates 2*(M+V)+1 sigma points using P[k|k-1] and
R[k], where V is the number of elements in measurement noise v[k]. The R[k] term
is no longer added in the algorithm step 2(d) because the extra sigma points capture
the impact of measurement noise on Py.

• The predict command generates 2*(M+W)+1 sigma points using P[k|k] and Q[k],
where W is the number of elements in process noise w[k]. The Q[k] term is no longer
added in the algorithm step 3(d) because the extra sigma points capture the impact of
process noise on P[k+1|k].

Effect of Alpha, Beta, and Kappa Parameters

To compute the state and its statistical properties at the next time step, the unscented
Kalman filter algorithm generates a set of state values distributed around the mean state
value. The algorithm uses each sigma points as an input to the state transition and
measurement functions to get a new set of transformed state points. The mean and
covariance of the transformed points is then used to obtain state estimates and state
estimation error covariance.

The spread of the sigma points around the mean state value is controlled by two
parameters α and κ. A third parameter, β, impacts the weights of the transformed points
during state and measurement covariance calculations.

• α — Determines the spread of the sigma points around the mean state value. It is
usually a small positive value. The spread of sigma points is proportional to α. Smaller
values correspond to sigma points closer to the mean state.

• κ — A second scaling parameter that is usually set to 0. Smaller values correspond to
sigma points closer to the mean state. The spread is proportional to the square-root of
κ.

• β — Incorporates prior knowledge of the distribution of the state. For Gaussian
distributions, β = 2 is optimal.
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You specify these parameters in the Alpha, Kappa, and Beta properties of the unscented
Kalman filter. If you know the distribution of state and state covariance, you can adjust
these parameters to capture the transformation of higher-order moments of the
distribution. The algorithm can track only a single peak in the probability distribution of
the state. If there are multiple peaks in the state distribution of your system, you can
adjust these parameters so that the sigma points stay around a single peak. For example,
choose a small Alpha to generate sigma points close to the mean state value.

References
[1] Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.

John Wiley and Sons Inc., 2006.
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Validate Online State Estimation at the Command Line
After you use the extendedKalmanFilter, unscentedKalmanFilter or
particleFilter commands for online state estimation of a nonlinear system, validate
the estimation before deploying the code in your application. If the validation indicates
low confidence in the estimation, then see “Troubleshoot Online State Estimation” on
page 16-53 for next steps. After you have validated the online estimation results, you can
generate C/C++ code or a standalone application using MATLAB Coder or MATLAB
Compiler software.

To validate the performance of your filter, perform state estimation using measured or
simulated output data from different scenarios.

• Obtain output data from your system at different operating conditions and input values
— To ensure that estimation works well under all operating conditions of interest. For
example, suppose that you want to track the position and velocity of a vehicle using
noisy position measurements. Measure the data at different vehicle speeds and slow
and sharp maneuvers.

• For each operating condition of interest, obtain multiple sets of experimental or
simulated data with different noise realizations — To ensure different noise values do
not deteriorate estimation performance.

For each of these scenarios, test the filter performance by examining the output
estimation error and state estimation error. For an example about performing and
validating online state estimation, see “Nonlinear State Estimation Using Unscented
Kalman Filter and Particle Filter” on page 16-123.

Examine Output Estimation Error
The output estimation error is the difference between the measured output, y, and the
estimated output, yEstimated. You can obtain the estimated output at each time step by
using the measurement function of the system. For example, if vdpMeasurementFcn.m is
the measurement function for your nonlinear system, and you are performing state
estimation using an extended Kalman filter object, obj, you can compute the estimated
output using the current state estimates as:

yEstimated = vdpMeasurementFcn(obj.State);
estimationError = y-yEstimated;
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Here obj.State is the state value ˆ[ | ]x k k -1  after you estimate the states using the

predict command. ˆ[ | ]x k k -1  is the predicted state estimate for time k, estimated using
measured output until a previous time k-1.

The estimation errors (residuals) must have the following characteristics:

• Small magnitude — Small errors relative to the size of the outputs increase confidence
in the estimated values.

• Zero mean
• Low autocorrelation, except at zero time lag — To compute the autocorrelation, you

can use the xcorr command from Signal Processing Toolbox software.

Examine State Estimation Error for Simulated Data
When you simulate the output data of your nonlinear system and use that data for state
estimation, you know the true state values. You can compute the errors between
estimated and true state values and analyze the errors. The estimated state value at any
time step is the value stored in obj.State after you estimate the states using the
predict or correct command. The state estimation errors must satisfy the following
characteristics:

• Small magnitude
• Zero mean
• Low autocorrelation, except at zero time lag

You can also compute the covariance of the state estimation error and compare it to the
state estimation error covariance stored in the StateCovariance property of the filter.
Similar values increase confidence in the performance of the filter.

See Also
extendedKalmanFilter | particleFilter | unscentedKalmanFilter

More About
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on

page 16-123
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• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on
page 16-33

• “Troubleshoot Online State Estimation” on page 16-53
• “Generate Code for Online State Estimation in MATLAB” on page 16-49
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Validate Online State Estimation in Simulink
After you use the Extended Kalman Filter, Unscented Kalman Filter or Particle Filter
blocks for online state estimation of a nonlinear system, validate the estimation before
deploying the code in your application. If the validation indicates low confidence in the
estimation, then see “Troubleshoot Online State Estimation” on page 16-53 for next
steps. After you have validated the online estimation results, you can generate C/C++
code for the blocks using Simulink Coder software.

To validate the performance of your filter, perform state estimation using measured or
simulated output data from these scenarios.

• Obtain output data from your system at different operating conditions and input values
— To ensure that estimation works well under all operating conditions of interest. For
example, suppose that you want to track the position and velocity of a vehicle using
noisy position measurements. Measure the data at different vehicle speeds and slow
and sharp maneuvers.

• For each operating condition of interest, obtain multiple sets of experimental or
simulated data with different noise realizations — To ensure that different noise values
do not deteriorate estimation performance.

For each of these scenarios, test the filter performance by examining the residuals and
state estimation error.

Examine Residuals
The residual, or output estimation error, is the difference between the measured system
output yMeasured[k], and the estimated system output yPredicted[k|k-1] at time
step k. Here, yPredicted[k|k-1] is the estimated output at time step k, which is
predicted using output measurements until time step k-1.

The blocks do not explicitly output yPredicted[k|k-1], however you can compute the
output using the estimated state values and your state transition and measurement
functions. For an example, see “Compute Residuals and State Estimation Errors” on page
16-46.

The residuals must have the following characteristics:

• Small magnitude — Small errors relative to the size of the outputs increase confidence
in the estimated values.
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• Zero mean
• Low autocorrelation, except at zero time lag — To compute the autocorrelation, you

can use the Autocorrelation block from DSP System Toolbox™ software.

Examine State Estimation Error for Simulated Data
When you simulate the output data of your nonlinear system and use that data for state
estimation, you know the true state values. You can compute the errors between
estimated and true state values and analyze the errors. The estimated state value at any
time step is output at the xhat port of the blocks. The state estimation errors must satisfy
the following characteristics:

• Small magnitude
• Zero mean
• Low autocorrelation, except at zero time lag

You can also compute the covariance of the state estimation error, and compare it to the
state estimation error covariance that is output by the blocks in the P port of the blocks.
Similar values increase confidence in the performance of the filter.

Compute Residuals and State Estimation Errors
This example shows how to estimate the states of a discrete-time Van der Pol oscillator
and compute state estimation errors and residuals for validating the estimation. The
residuals are the output estimation errors, that is, they are the difference between the
measured and estimated outputs.

In the Simulink™ model, the Van der Pol Oscillator block implements the oscillator with
nonlinearity parameter, mu, equal to 1. The oscillator has two states. A noisy
measurement of the first state x1 is available.

The model uses the Unscented Kalman Filter block to estimate the states of the oscillator.
Since the block requires discrete-time inputs, the Rate Transition block samples x1 to
give the discretized output measurement yMeasured[k] at time step k. The Unscented
Kalman Filter block outputs the estimated state values xhat[k|k] at time step k, using
yMeasured until time k. The filter block uses the previously written and saved state
transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m.
For information about these functions, see “Nonlinear State Estimation Using Unscented
Kalman Filter and Particle Filter” on page 16-123.
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To validate the state estimation, the model computes the residuals in the Generate
Residual block. In addition, since the true state values are known, the model also
computes the state estimation errors.

To compute the residuals, the Generate Residual block first computes the estimated
output yPredicted[k|k-1] using the estimated states and state transition and
measurement functions. Here, yPredicted[k|k-1] is the estimated output at time step
k, predicted using output measurements until time step k-1. The block then computes
the residual at time step k as yMeasured[k] - yPredicted[k|k-1].

Examine the residuals and state estimation errors, and ensure that they have a small
magnitude, zero mean, and low autocorrelation.

In this example, the Unscented Kalman Filter block outputs xhat[k|k] because the Use
the current measurements to improve state estimates parameter of the block is
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selected. If you clear this parameter, the block instead outputs xhat[k|k-1], the
predicted state value at time step k, using yMeasured until time k-1. In this case,
compute yPredicted[k|k-1] = MeasurementFcn(xhat[k|k-1]), where
MeasurementFcn is the measurement function for your system.

See Also
Extended Kalman Filter | Kalman Filter | Particle Filter | Unscented Kalman Filter

More About
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on

page 16-33
• “Troubleshoot Online State Estimation” on page 16-53
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Generate Code for Online State Estimation in MATLAB
You can generate C/C++ code from MATLAB code that uses extendedKalmanFilter,
unscentedKalmanFilter and particleFilter objects for online state estimation.
C/C++ code is generated using the codegen command from MATLAB Coder software.
Use the generated code to deploy online estimation algorithms to an embedded target.
You can also deploy online estimation code by creating a standalone application using
MATLAB Compiler software.

To generate C/C++ code for online state estimation:

1 Create a function to declare your filter object as persistent, and initialize the object.
You define the object as persistent to maintain the object states between calls.

function [CorrectedX] = ukfcodegen(output)
% Declare object as persistent.
persistent obj;
if isempty(obj)
% Initialize the object.
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0]);
obj.MeasurementNoise = 0.01;
end
% Estimate the states.
CorrectedX = correct(obj,output);
predict(obj);
end

The function creates an unscented Kalman filter object for online state estimation of
a van der Pol oscillator with two states and one output. You use the previously written
and saved state transition and measurement functions, vdpStateFcn.m and
vdpMeasurementFcn.m, and specify the initial state values for the two states as
[2;0]. Here output is the measured output data. Save the ukfcodegen.m function
on the MATLAB path. Alternatively, you can specify the full path name for this
function.

In the ukfcodegen.m function, the persistent object is initialized with condition if
isempty(obj) to ensure that the object is initialized only once, when the function is
called the first time. Subsequent calls to the function only execute the predict and
correct commands to update the state estimates. During initialization, you specify
the nontunable properties of the object, such as StateTransitionFcn (specified in
ukfcodegen.m as vdpStateFcn.m) and MeasurementFcn (specified in
ukfcodegen.m as vdpMeasurementFcn.m). After that, you can specify only the
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tunable properties. For more information, see “Tunable and Nontunable Object
Properties” on page 16-51.

In the state transition and measurement functions you must use only commands that
are supported for code generation. For a list of these commands, see “Functions and
Objects Supported for C/C++ Code Generation — Category List” (MATLAB Coder).
Include the compilation directive %#codegen in these functions to indicate that you
intend to generate code for the function. Adding this directive instructs the MATLAB
Code Analyzer to help you diagnose and fix violations that would result in errors
during code generation. For an example, type vdpStateFcn.m at the command line.

2 Generate C/C++ code and MEX-files using the codegen command from MATLAB
Coder software.

codegen ukfcodegen -args {1}

The syntax -args {1} specifies an example of an argument to your function. The
argument sets the dimensions and data types of the function argument output as a
double-precision scalar.

Note If you want a filter with single-precision floating-point variables, you must
specify the initial value of the states as single-precision during object construction.
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,single([2;0]))

Then to generate code, use the following syntax.

codegen ukfcodegen -args {{single(1)}

3 Use the generated code.

• Use the generated C/C++ code to deploy online state estimation to an embedded
target.

• Use the generated MEX-file for testing the compiled C/C++ code in MATLAB. The
generated MEX-file is also useful for accelerating simulations of state estimation
algorithms in MATLAB.

Load the estimation data. Suppose that your output data is stored in the
measured_data.mat file.

load measured_data.mat output

Estimate the states by calling the generated MEX-file.
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for i = 1:numel(output)
    XCorrected = ukfcodegen_mex(output(i));
end

This example generates C/C++ code for compiling a MEX-file. To generate code for
other targets, see codegen in the MATLAB Coder documentation.

Tunable and Nontunable Object Properties
Property Type Extended Kalman

Filter Object
Unscented Kalman
Filter Object

Particle Filter
Object

Tunable properties
that you can specify
multiple times either
during object
construction, or
afterward using dot
notation

State,
StateCovariance,
ProcessNoise, and
MeasurementNoise

State,
StateCovariance,
ProcessNoise,
MeasurementNoise
, Alpha, Beta, and
Kappa

Particles and
Weights

Nontunable
properties that you
can specify only
once, either during
object construction,
or afterward using
dot notation, but
before using the
predict or
correct commands

StateTransitionF
cn,
MeasurementFcn,
StateTransitionJ
acobianFcn, and
MeasurementJacob
ianFcn

StateTransitionF
cn and
MeasurementFcn

StateTransitionF
cn,
MeasurementLikel
ihoodFcn,
StateEstimationM
ethod,
StateOrientation
,
ResamplingPolicy
and
ResamplingMethod

Nontunable
properties that you
must specify during
object construction

HasAdditiveProce
ssNoise and
HasAdditiveMeasu
rementNoise

HasAdditiveProce
ssNoise and
HasAdditiveMeasu
rementNoise
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More About
• “What Is Online Estimation?” on page 16-2
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on

page 16-123
• “Validate Online State Estimation at the Command Line” on page 16-42
• “Troubleshoot Online State Estimation” on page 16-53
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Troubleshoot Online State Estimation
After you perform state estimation of a nonlinear system using linear, extended, or
unscented Kalman filter or particle filter algorithms, you validate the estimation before
deploying the code in your application. If the validation indicates low confidence in the
estimation, check the following filter properties that you specified:

• Initial state and state covariance values — If you find that the measured and estimated
outputs of your system are diverging at the beginning of state estimation, check the
initial values that you specified.

• State transition and measurement functions — Verify that the functions you specify are
a good representation of the nonlinear system. If the true system is continuous-time,
to implement the algorithms, you discretize the state transition and measurement
equations and use the discretized versions. If the state estimation results are not
satisfactory, consider decreasing the sample time used for discretization. Alternatively,
try a different discretization method. For an example of how to discretize a continuous-
time state transition function, type edit vdpStateFcn.m at the command line. Also
see, “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter”
on page 16-123.

• Process and measurement noise covariance values — If the difference between
estimated and measured outputs of your system is large, try specifying different values
for the process and measurement noise covariance values.

• Choice of algorithm — If you are using the extended Kalman filter algorithm, you can
try the unscented Kalman filter, or the particle filter algorithm instead. The unscented
Kalman filter and particle filter may capture the nonlinearities in the system better.

To troubleshoot state estimation, you can create multiple versions of the filter with
different properties, perform state estimation, and choose the filter that gives the best
validation results.

At the command line, if you want to copy an existing filter object and then modify
properties of the copied object, use the clone command. Do not create additional objects
using syntax obj2 = obj. Any changes made to the properties of the new object created
in this way (obj2) also change the properties of the original object (obj).

See Also
Functions
extendedKalmanFilter | particleFilter | unscentedKalmanFilter
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Blocks
Extended Kalman Filter | Particle Filter | Unscented Kalman Filter

More About
• “Validate Online State Estimation at the Command Line” on page 16-42
• “Validate Online State Estimation in Simulink” on page 16-45
• “Generate Code for Online State Estimation in MATLAB” on page 16-49
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Line Fitting with Online Recursive Least Squares
Estimation

This example shows how to perform online parameter estimation for line-fitting using
recursive estimation algorithms at the MATLAB command line. You capture the time-
varying input-output behavior of the hydraulic valve of a continuously variable
transmission.

Physical System

The system is a continuously variable transmission (CVT) driven by a hydraulic valve,
inspired by reference [1]. The valve pressure is connected to the CVT which allows it to
change its speed ratio and to transmit torque from the engine to the wheels. The input-
output behavior of the valve can be approximated by:

Here, t is the current time, y(t) is the valve pressure in bar, u(t) is the unitless input in the

range of [0, 1]. The condition  is the dead-band of the valve.

The slope, k(t), and offset, b(t), depend on the system temperature. They vary as the
system warms up from cold start to typical operating temperature. You want to estimate
k(t) and b(t) based on noisy measurements of u(t) and y(t).

Data

The true slope and offset parameters are k(0)=70 and b(0)=-15 at time t=0s. At t=50s the
engine starts. The parameters vary over time until they reach k(950)=50 and b(950)=-13
at t=950s. The sample time is Ts=0.1s.

The content of the input signal u is critical for parameter estimation. Consider a case
where u, and hence y, is constant. Then there are infinitely many k and b values that
satisfy y = k u + b. u(t) must be persistently exciting the system for successful estimation
of k(t) and b(t). In this example, the input u:

• is zero from t=0s until t=50s.
• has step changes to 0.40, 0.45, 0.50, 0.55, 0.60, 0.55, 0.50, 0.45, 0.40 every 100s,

from t=50s until t=950s.
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• a Gaussian random variable with zero mean, 0.02 standard deviation was added at
each time step from t=50s until t=950s to provide extra excitation of system dynamics
for identification purposes.

The output is generated with the aforementioned true values of k(t), b(t) along with the
input signal u(t), using y(t) = k(t) u(t) + b(t) + e(t). e(t), measurement noise, is a Gaussian
random variable with zero mean and standard deviation 0.05.

load LineFittingRLSExample u y k b t;
figure();
subplot(2,1,1);
plot(t,u);
ylabel('Input signal, u, [unitless]');
subplot(2,1,2);
plot(t,y);
ylabel('Valve pressure, y, [bar]');
xlabel('Time [s]');
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Online Parameter Estimation Using Recursive Least Squares

Write the valve input-output model using vector notation:

where  is the regressors and  is the parameters to be
estimated. e(t) is the unknown noise. You use the recursiveLS estimation command to
create a System object for online parameter estimation. You then use the step command
to update the parameter estimates, x(t), at each time-step based on H(t) and y(t).
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You specify the following recursiveLS System Object properties:

• Number of parameters: 2.
• EstimationMethod: 'ForgettingFactor' (default). This method has only one scalar

parameter, ForgettingFactor, which requires limited prior information regarding
parameter values.

• ForgettingFactor: 0.95. The parameters are expected to vary over time, hence less

than 1.  is the number of past data samples that influence the estimates
most.

• InitialParameters: [70; -15], an initial guess for the parameter values. Optional, but
recommended for reducing initial transients.

• InitialParameterCovariance: Your estimate of uncertainty in the initial parameter
guess. Set it to a small value, 1% of the absolute value of the initial parameters, if you
have confidence in the initial parameter guesses. Optional but recommended,
especially when you specify InitialParameters. This is only utilized with the
ForgettingFactor and KalmanFilter estimation methods.

X = recursiveLS(2,... % 2=number of estimated parameters
    'EstimationMethod','ForgettingFactor',...
    'ForgettingFactor',0.95,...
    'InitialParameters',[70; -15],...
    'InitialParameterCovariance',[0.7 0.15]);

This example simulates the online operation of the estimator by providing one (y(t),H(t))
pair to the estimator at a time. Call the step command to update parameters with each
new pair. The parameter adaptation is enabled only when the input u is outside the dead
band (u>0.3).

theta = zeros(numel(u),2);
yHat = zeros(numel(u),1);
PHat = zeros(numel(u),2,2);
for kk=1:numel(u)
    % enable parameter estimation only when u is outside the dead-band
    if u(kk)>=0.3 
        X.EnableAdaptation = true();
    else
        X.EnableAdaptation = false();
    end
    [theta(kk,:),yHat(kk)] = step(X,y(kk),[u(kk) 1]); % get estimated parameters and output
    PHat(kk,:,:) = X.ParameterCovariance; % get estimated uncertainty in parameters
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    % perform any desired tasks with the parameters
end

Estimated Parameters

The true and estimated parameter values are:

figure();
subplot(2,1,1);
plot(t,theta(:,1),t,k); % Estimated and real slope, respectively
ylabel('Slope');
xlabel('Time');
ylim([49 71]);
legend('Estimated','Real','Location','Best');
subplot(2,1,2);
plot(t,theta(:,2),t,b); % Estimated and real offset, respectively
ylabel('Offset');
xlabel('Time');
ylim([-15.25 -12.75]);
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Validating the Estimated Model

The estimator provides the following two tools to judge the quality of the parameter
estimates:

1
Output estimate : The second output argument of the step method is

. The relative and absolute error between  and  are measures of
the goodness of the fit.

2
Parameter covariance estimate : This is available with the ForgettingFactor
and KalmanFilter algorithms. It is stored in the ParameterCovarianceMatrix property
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of the estimator. The diagonals of  are the estimated variances of the parameters.
The lower the better.

The output measurement and its estimate, as well as the associated absolute and relative
errors when the engine is on are:

engineOn = t>50 & t<950;
figure();
subplot(2,1,1);
absoluteError = y-yHat;
plot(t(engineOn),absoluteError(engineOn));
ylim([-0.15 0.15]);
ylabel('Abs. Error [bar]');
subplot(2,1,2);
relativeError = (y-yHat)./y;
plot(t(engineOn),relativeError(engineOn));
ylim([-0.025 0.025]);
ylabel('Rel. Error [unitless]');
xlabel('Time [s]');
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The absolute errors are about 0.1bar. The relative errors are below 2%. Both quantities
are small.

The diagonals of the parameter covariance matrix, scaled by the variance of the residuals

, capture the variances of parameter estimates. The square-root of the
variances are the standard deviations of the parameter estimates.

noiseVariance = var(y(engineOn)-yHat(engineOn));
figure();
subplot(2,1,1);
hold on;
plot(t,sqrt(PHat(:,1,1)*noiseVariance));
ylim([0 1]);

16 Online Estimation

16-62



ylabel('Std. dev. of slope k');
subplot(2,1,2);
plot(t,sqrt(PHat(:,2,2)*noiseVariance));
ylim([0 1]);
ylabel('Std. dev. of offset b');
xlabel('Time [s]');
hold on;

The standard deviation of the slope k fluctuates around 0.7. This is small relative to the
range of values of k [50, 70]. This gives confidence in the parameter estimates. The
situation is similar with the offset b, which is in the range [-15 -13].
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Note that the parameter standard deviations are also estimates. They are based on the

assumption that the residuals  are white. This depends on the estimation
method, its associated parameters, structure of the estimated model, and the input signal
u. Differences between the assumed and the actual model structure, lack of persistent
input excitation, or unrealistic estimation method settings can lead to overly optimistic or
pessimistic uncertainty estimates.

Summary

You performed a line fit using recursive least squares to capture the time-varying input-
output behavior of a hydraulic valve. You evaluated the quality of fit by looking at two
signals: the error between estimated and measured system output, and the parameter
covariance estimates.

References
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Online ARX Parameter Estimation for Tracking Time-
Varying System Dynamics

This example shows how to perform online parameter estimation for a time-varying ARX
model at the MATLAB command line. The model parameters are updated at each time
step with incoming new data. This model captures the time-varying dynamics of a linear
plant.

Plant

The plant can be represented as:

Here, G is the transfer function and e is the white-noise. The plant has two operating
modes. In the first operating mode, the transfer function is:

The lightly damped poles in G1(s) have the damping 0.02 and natural frequency 30rad/s.
In the second operating mode, the natural frequency of these poles is 60rad/s. In this
mode, the transfer function is:

The plant operates in the first mode until t=10s, and then switches to the second mode.

The Bode plots of G1 and G2 are:

wn = 30; % natural frequency of the lightly damped poles
ksi = 0.02; % damping of the poles
G1 = tf(1,conv([1/5 1],[1/wn^2 2*ksi/wn 1])); % plant in mode 1
wn = 60; % natural frequency in the second operating mode
G2 = tf(1,conv([1/5 1],[1/wn^2 2*ksi/wn 1])); % plant in mode 2
bode(G1,G2,{1,125});
legend('G1','G2','Location','Best');
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Online ARX Parameter Estimation

The aim is to estimate the dynamics of the plant during its operation. ARX is a common
model structure used for this purpose. ARX models have the form:

Here,  is the time-shift operator. The ratio of the polynomials B(q)/A(q) captures the
input-output model (u(t) to y(t)), and 1/A(q) captures the noise model (e(t) to y(t)). You are
estimating the coefficients of the A(q) and B(q) polynomials. e(t) is white noise.
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ARX model structure is a good first candidate for estimating linear models. The related
estimation methods have low computational burden, are numerically robust, and have the
convexity property. The convexity property ensures there is no risk of parameter
estimation getting stuck at a local optima. However, ARX model structure does not
provide flexibility for noise models.

The lack of flexibility in noise modeling can pose difficulties if the structure of the plant
does not match with the ARX model structure, or if the noise is not white. Two
approaches to remedy this issue are:

1 Data Filtering: If the noise model is not important for your application, you can use
data filtering techniques. For more details, see the 'Filter the Data' section.

2 Different model structures: Use ARMAX, Output-Error, and Box-Jenkins polynomial
models for more flexibility in model structures.

Select Sample Time

The sample time choice is important for good approximation of the continuous-time plant
by a discrete-time model. A rule of thumb is to choose the sampling frequency as 20 times
the dominant dynamics of the system. The plant has the fastest dominant dynamics at
60rad/s, or about 10Hz. The sampling frequency is therefore 200Hz.

Ts = 0.005; % [s], Sample time, Ts=1/200

System Excitation

For successful estimation the plant inputs must persistently excite its dynamics. Simple
inputs such as a single step input are typically not sufficient. In this example the plant is
driven by a pulse with amplitude 10 and a period of 1 second. The pulse width is 50% of
its period.

Generate plant input and output signals:

t = 0:Ts:20; % Time vector
u = double(rem(t/1,1)-0.5 < 0); % pulse
y = zeros(size(u));
% Store random number generator's states for reproducible results.
sRNG = rng;
rng('default');
% Simulate the mode-switching plant with a zero-order hold.
G1d = c2d(G1,Ts,'zoh');
B1 = G1d.num{1}.'; 
A1 = G1d.den{1}.'; % B1 and A1 corresponds to G1.
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G2d = c2d(G2,Ts,'zoh');
B2 = G2d.num{1}.';
A2 = G2d.den{1}.'; % B2 and A2 corresponds to G2.
idx = numel(B2):-1:1;
for ct=(1+numel(B2)):numel(t)
    idx = idx + 1;
    if t(ct)<10 % switch mode after t=10s
        y(ct) = u(idx)*B1-y(idx(2:end))*A1(2:end);
    else
        y(ct) = u(idx)*B2-y(idx(2:end))*A2(2:end);
    end
end
% Add measurement noise
y = y + 0.02*randn(size(y));
% Restore the random number generator's states.
rng(sRNG);

Plot the input-output data:

figure();
subplot(2,1,1);
plot(t,u);
ylabel('Input (u)');
subplot(2,1,2);
plot(t,y);
ylim([-0.2 1.2])
ylabel('Output (y)');
xlabel('Time [s]');
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Filter the Data

The plant has the form:

where e(t) is the white noise. In contrast, the ARX models have the form

The estimator will use B(q) and A(q) to approximate G(q). However, note the difference in
the noise models. The plant has white-noise e(t) directly impacting y(t), but the ARX
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model assumes that a white noise term filtered by 1/A(q) impacts y(t). This mismatch will
negatively affect the estimation.

When the noise model is not of interest, one method to reduce the impact of this

mismatch is to use a data filter. Use a filter  on both u(t) and y(t) to obtain

 and . Then use the filtered signals  and  in
the estimator instead of the plant input u(t) and output y(t). The choice of data filter lets
you reduce the influence of e(t) on the estimation.

The data filter F(q) is typically a low-pass or a band-pass filter based on the frequency
range of importance for the application, and the characteristics of e(t). Here, a 4th order
Butterworth low-pass filter with cutoff frequency 10Hz is used. This is approximately the
frequency of the fastest dominant dynamics in the plant (60rad/s). A low-pass filter is
sufficient here because the noise term does not have low-frequency content.

% Filter coefficients
Fa = [1 -3.1806 3.8612 -2.1122 0.4383]; % denominator
Fb = [4.1660e-04 1.6664e-03 2.4996e-03 1.6664e-03 4.1660e-04]; % numerator
% Filter the plant input for estimation
uf = filter(Fb,Fa,u);
% Filter the plant output
yf = filter(Fb,Fa,y);

Set Up the Estimation

Use the recursiveARX command for online parameter estimation. The command creates a
System object™ for online parameter estimation of an ARX model structure. Specify the
following properties of the object:

• Model orders: [3 1 0]. na = 3 because the plant has 3 poles. nk = 0 because plant
does not have input delay. nb = 1 corresponds to no zeros in the system. nb was set
after a few iterations, starting from nb=4 which corresponds to three zeros, and hence
a proper model. A smaller number of estimated parameters are desirable and nb=1
yields sufficient results.

• EstimationMethod: 'ForgettingFactor' (default). This method has only one scalar
parameter, ForgettingFactor, which requires limited prior information regarding
parameter values.
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• ForgettingFactor: 0.995. The forgetting factor, , is less than one as the parameters

vary over time.  is the number of past data samples that influence the
estimates most.

X = recursiveARX([3 1 0]); % [na nb nk]
X.ForgettingFactor = 0.995;

Create arrays to store estimation results. These are useful for validating the algorithms.

np = size(X.InitialParameterCovariance,1);
PHat = zeros(numel(u),np,np);
A = zeros(numel(u),numel(X.InitialA));
B = zeros(numel(u),numel(X.InitialB));
yHat = zeros(1,numel(u));

Use the step command to update the parameter values using one set of input-output data
at each time step. This illustrates the online operation of the estimator.

for ct=1:numel(t)
    % Use the filtered output and input signals in the estimator
    [A(ct,:),B(ct,:),yHat(ct)] = step(X,yf(ct),uf(ct));
    PHat(ct,:,:) = X.ParameterCovariance;
end

View the Bode plot of the estimated transfer functions:

G1Hat = idpoly(A(1000,:),B(1000,:),1,1,1,[],Ts); % Model snapshot at t=10s
G2Hat = idpoly(X); % Snapshot of the latest model, at t=20s
G2Hat.Ts = G1d.Ts; % Set the sample time of the snapshot
figure();
bode(G1,G1Hat);
xlim([0.5 120]);
legend('G1','Identified model at t=10s','Location','Best');
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figure();
bode(G2,G2Hat);
xlim([0.5 120]);
legend('G2','Identified model at t=20s','Location','Best');
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Validating the Estimated Model

Use the following techniques to validate the parameter estimation:

1 View output estimate, yhat(t): The third output argument of the step method is the
one-step ahead prediction of the output yhat(t). This is based on current model
parameters as well as current and past input-output measurements. The relative and
absolute error between y(t) and yhat(t) are measures of the goodness of the fit.

2 View the parameter covariance estimate, Phat(t): This is available with the
ForgettingFactor and KalmanFilter estimation methods. It is stored in the
ParameterCovarianceMatrix property of the estimator. The diagonals of Phat(t) are
the estimated variances of the parameters. It should be bounded, and the lower the
better.

 Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics

16-73



3 Simulate the estimated time-varying model: Use u(t) and the estimated
parameters to simulate the model to obtain a simulated output, ysim(t). Then
compare y(t) and ysim(t). This is a more strict validation than comparing y(t) and
yhat(t) because ysim(t) is generated without the plant output measurements.

The absolute error yf(t)-yhat(t) and the relative error (yf(t)-yhat(t))/yf(t) are:

figure();
subplot(2,1,1);
plot(t,yf-yHat);
ylabel('Abs. Error');
subplot(2,1,2);
plot(t,(yf-yHat)./yf);
ylim([-0.05 0.05]);
ylabel('Rel. Error');
xlabel('Time [s]');
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The absolute errors are on the order of 1e-3, which is small compared to the measured
output signal itself. The relative error plot at the bottom confirms this, with errors being
less than 5% except at the beginning of the simulation.

The diagonals of the parameter covariance matrix, scaled by the variance of the residuals
y(t)-yhat(t), capture the variances of parameter estimates. The square-root of the
variances are the standard deviations of the parameter estimates. The first three
elements on the diagonals are the three parameters estimated in the A(q) polynomial. The
last element is the single parameter in the B(q) polynomial. Let's look at the first
estimated parameter in A(q)

noiseVariance = var(yf-yHat);
X.A(2) % The first estimated parameter. X.A(1) is fixed to 1
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ans = -2.8635

sqrt(X.ParameterCovariance(1,1)*noiseVariance)

ans = 0.0175

The standard deviation 0.0175 is small relative to the absolute value of the parameter
value 2.86. This indicates good confidence in the estimated parameter.

figure();
plot(t,sqrt(PHat(:,1,1)*noiseVariance));
ylabel('Standard deviation estimate for the parameter A(2)')
xlabel('Time [s]');
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The uncertainty is small and bounded throughout the estimation. However, note that the
parameter standard deviations are also estimates. They are based on the assumption that
the residuals y(t)-yhat(t) are white. This depends on the estimation method, its associated
parameters, the structure of the estimated model, and the input signal u. Differences
between the assumed and the actual model structure, lack of persistent input excitation,
or unrealistic estimation method settings can lead to overly optimistic or pessimistic
uncertainty estimates.

Lastly, simulate the estimated ARX model using the stored history of estimated
parameters. This simulation can also be done simultaneously with the estimation loop for
validation during online operation.

ysim = zeros(size(y));
idx = numel(B2):-1:1;
for ct=(1+numel(B2)):numel(t)
    idx = idx + 1;
    ysim(ct) = u(idx(1))*B(idx(1),:)-ysim(idx(2:end))*A(ct,2:end)';
end
figure();
subplot(2,1,1);
plot(t,y,t,ysim);
ylabel('System Output');
legend('Measured','Estimated','Location','Best');
subplot(2,1,2);
plot(t,y-ysim);
ylim([-0.5 0.5]);
ylabel('Error, y(t)-ysim(t)');
xlabel('Time [s]');
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The error is large initially, but it settles to a smaller value around t=5s for the first
operating mode. The large initial error can be reduced by providing the estimator an
initial guess for the model parameters and initial parameter covariance. When the plant
switches to the second mode, the errors grow initially but settle down as time goes on as
well. This gives confidence that the estimated model parameters are good at capturing
the model behavior for the given input signal.

Summary

You performed online parameter estimation for an ARX model. This model captured the
dynamics of a mode-switching plant. You validated the estimated model by looking at the

16 Online Estimation

16-78



error between estimated, simulated, measured system outputs as well as the parameter
covariance estimates.

See Also
clone | isLocked | recursiveAR | recursiveARMA | recursiveARMAX |
recursiveARX | recursiveBJ | recursiveLS | recursiveOE | release | reset |
step

Related Examples
• “Perform Online Parameter Estimation at the Command Line” on page 16-25
• “Validate Online Parameter Estimation at the Command Line” on page 16-11
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-29
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-55
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Online Recursive Least Squares Estimation
This example shows how to implement an online recursive least squares estimator. You
estimate a nonlinear model of an internal combustion engine and use recursive least
squares to detect changes in engine inertia.

Engine Model

The engine model includes nonlinear elements for the throttle and manifold system, and
the combustion system. The model input is the throttle angle and the model output is the
engine speed in rpm.

open_system('iddemo_engine');
sim('iddemo_engine')
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The engine model is set up with a pulse train driving the throttle angle from open to
closed. The engine response is nonlinear, specifically the engine rpm response time when
the throttle is open and closed are different.

At 100 seconds into the simulation an engine fault occurs causing the engine inertia to
increase (the engine inertia, J, is modeled in the iddemo_engine/Vehicle Dynamics
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block). The inertia change causes engine response times at open and closed throttle
positions to increase. You use online recursive least squares to detect the inertia change.

open_system('iddemo_engine/trpm')

Estimation Model

The engine model is a damped second order system with input and output nonlinearities
to account for different response times at different throttle positions. Use the recursive
least squares block to identify the following discrete system that models the engine:

Since the estimation model does not explicitly include inertia we expect the  values to
change as the inertia changes. We use the changing  values to detect the inertia change.

The engine has significant bandwidth up to 16Hz. Set the estimator sampling frequency
to 2*160Hz or a sample time of  seconds.
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Recursive Least Squares Estimator Block Setup

The  terms in the estimated model are the model regressors and inputs to
the recursive least squares block that estimates the  values. You can implement the
regressors as shown in the iddemo_engine/Regressors block.

open_system('iddemo_engine/Regressors');

Configure the Recursive Least Squares Estimator block:

• Initial Estimate: None. By default, the software uses a value of 1.

• Number of parameters: 3, one for each  regressor coefficient.

• Parameter Covariance Matrix: 1, the amount of uncertainty in initial guess of 1.
Concretely, treat the estimated parameters as a random variable with variance 1.

• Sample Time: .
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Click Algorithm and Block Options to set the estimation options:

• Estimation Method: Forgetting Factor

• Forgetting Factor: 1-2e-4. Since the estimated  values are expected to change with
the inertia, set the forgetting factor to a value less than 1. Choose  = 1-2e-4 which

corresponds to a memory time constant of  or 15 seconds. A 15 second
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memory time ensures that significant data from both the open and closed throttle
position are used for estimation as the position is changed every 10 seconds.

• Select the Output estimation error check box. You use this block output to validate
the estimation.

• Select the Output parameter covariance matrix check box. You use this block
output to validate the estimation.

• Clear the Add enable port check box.

• External reset: None.
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Validating the Estimated Model

The Error output of the Recursive Least Squares Estimator block gives the one-
step-ahead error for the estimated model. This error is less than 5% indicating that for
one-step-ahead prediction the estimated model is accurate.

open_system('iddemo_engine/Error (%)')
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The diagonal of the parameter covariances matrix gives the variances for the 
parameters. The  variance is small relative to the parameter value indicating good
confidence in the estimated value. In contrast, the  variances are large relative to
the parameter values indicating a low confidence in these values.
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While the small estimation error and covariances give confidence that the model is being
estimated correctly, it is limited in that the error is a one-step-ahead predictor. A more
rigorous check is to use the estimated model in a simulation model and compare with the
actual model output. The Estimated Model section of the simulink model implements
this.

The Regressors1 block is identical to the Regressors block use in the recursive
estimator. The only difference is that the y signal is not measured from the plant but fed
back from the output of the estimated model. The Output of the regressors block is
multiplied by estimated  values to give  an estimate of the engine speed.

open_system('iddemo_engine/trpm Est')

The estimated model output matches the model output fairly well. The steady-state values
are close and the transient behavior is slightly different but not significantly so. Note that
after 100 seconds when the engine inertia changes the estimated model output differs
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slightly more from the model output. This implies that the chosen regressors cannot
capture the behavior of the model as well after the inertia change. This also suggests a
change in system behavior.

The estimated model output combined with the low one-step-ahead error and parameter
covariances gives us confidence in the recursive estimator.

Detecting Changes in Engine Inertia

The engine model is setup to introduce an inertia change 100 seconds into the simulation.
The recursive estimator can be used to detect the change in inertia.

The recursive estimator takes around 50 seconds to converge to an initial set of
parameter values. To detect the inertia change we examine the  model coefficient that
influences the  term of the estimated model.

open_system('iddemo_engine/Detect Inertia Change')
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The covariance for , 0.05562, is large relative to the parameter value 0.1246 indicating
low confidence in the estimated value. The time plot of  shows why the covariance is
large. Specifically  is varying as the throttle position varies indicating that the estimated
model is not rich enough to fully capture different rise times at different throttle positions
and needs to adjust . However, we can use this to identify the inertia changes as the
average value of  changes as the inertia changes. You can use a threshold detector on
the moving average of the  parameter to detect changes in the engine inertia.

bdclose('iddemo_engine')
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Online ARMAX Polynomial Model Estimation
This example shows how to implement an online polynomial model estimator. You
estimate two ARMAX models for a nonlinear chemical reaction process. These models
capture the behavior of the process at two operating conditions. The model behavior is
identified online and used to adjust the gains of an adaptive PI controller during system
operation.

Continuously Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

This is a jacketed diabatic (i.e., nondiabatic) tank reactor described extensively in
Bequette's book "Process Dynamics: Modeling, Analysis and Simulation", published by
Prentice-Hall, 1998. The vessel is assumed to be perfectly mixed, and a single first-order
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exothermic and irreversible reaction, A --> B, takes place. The inlet stream of reagent A is
fed to the tank at a constant rate. After stirring, the end product streams out of the vessel
at the same rate as reagent A is fed into the tank (the volume in the reactor tank is
constant). Details of the operation of the CSTR and its 2-state nonlinear model used in
this example are explained in the example “Non-Adiabatic Continuous Stirred Tank
Reactor: MATLAB File Modeling with Simulations in Simulink®”.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A,  at the desired
level , which changes over time. The jacket temperature  is manipulated by a
PI controller in order to reject disturbances arising from the inlet feed stream
temperature . The input of the PI controller is the tracking error signal,

. The inlet feed stream concentration, , is assumed to be constant.
The Simulink model iddemo_cstr implements the CSTR plant as the block CSTR.

open_system('iddemo_cstr');
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The  feed temperature input consists of a white noise disturbance on top of a
constant offset. The noise power is 0.0075 [K^2]. This noise level causes up to 2%
deviation from the desired .

The  signal in this example contains a step change from 1.5 [kgmol/m^3] to 2
[kgmol/m^3] at time . In addition to this step change,  also contains a
white noise perturbation for t in the [0,200) and [400,600) ranges. The power of this
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white noise signal is 0.015. The noise power is adjusted empirically to approximately give
a signal-to-noise ratio of 10. Not having sufficient excitation in the reference signal in
closed-loop identification can lead to not having sufficient information to identify a unique
model. The implementation of  is in the iddemo_cstr/CA Reference block.

Online Estimation for Adaptive Control

It is known from the nonlinear model that the CSTR output  is more sensitive to the
control input  at higher  levels. The Recursive Polynomial Model Estimator
block is used to detect this change in sensitivity. This information is used to adjust the
gains of the PI controller as  varies. The aim is to avoid having a a high gain control
loop which may lead to instability.

You estimate a discrete transfer-function from  to  online with the Recursive
Polynomial Model Estimator block. The adaptive control algorithm uses the DC gain of
this transfer function. The tracking error , is divided by the normalized
DC gain of the estimated transfer function. This normalization is done to have a gain of 1
on the tracking error at the initial operating point, for which the PI controller is designed.
For instance, the error signal is divided by 2 if the DC gain becomes 2 times its original
value. This corresponds to dividing the PI controller gains by 2. This adaptive controller is
implemented in iddemo_cstr/Adaptive PI Controller.

Recursive Polynomial Model Estimator Block Inputs

The 'Recursive Polynomial Model Estimator' block is found under the System
Identification Toolbox/Estimators library in Simulink. You use this block to
estimate linear models with ARMAX structure. ARMAX models have the form:

• The Inputs and Output inport of the recursive polynomial model estimator block
correspond to  and  respectively. For the CSTR model  and  are deviations
from the jacket temperature and A concentration trim operating points:

, . It is good to scale  and  to have a peak
amplitude of 1 to improve the numerical condition of the estimation problem. The trim
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operating points,  and , are not known exactly before system operation.
They are estimated and extracted from the measured signals by using a first-order
moving average filter. These preprocessing filters are implemented in the
iddemo_cstr/Preprocess Tj and iddemo_cstr/Preprocess CA blocks.

open_system('iddemo_cstr/Preprocess Tj');

• The optional Enable inport of the Recursive Polynomial Model Estimator block
controls the parameter estimation in the block. Parameter estimation is disabled when
the Enable signal is zero. Parameter estimation is enabled for all other values of the
Enable signal. In this example the estimation is disabled for the time intervals

 and . During these intervals the measured input  does
not contain sufficient excitation for closed-loop system identification.

Recursive Polynomial Model Estimator Block Setup

Configure the block parameters to estimate a second-order ARMAX model. In the Model
Parameters tab, specify:

• Model Structure: ARMAX. Choose ARMAX since the current and past values of the
disturbances acting on the system, , are expected to impact the CSTR system
output .

• Initial Estimate: None. By default, the software uses a value of 0 for all estimated
parameters.

• Number of parameters in A(q) (na): 2. The nonlinear model has 2 states.

• Number of parameters in B(q) (nb): 2.

• Number of parameters in C(q) (nc): 2. The estimated model corresponds to a
second order model since the maximum of na, nb, and nc are 2.
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• Input Delay (nk): 1. Like most physical systems, the CSTR system does not have
direct feedthrough. Also, there are no extra time delays between its I/Os.

• Parameter Covariance Matrix: 1e4. Specify a high covariance value because the
initial guess values are highly uncertain.

• Sample Time: 0.1. The CSTR model is known to have a bandwidth of about 0.25Hz.
 chosen such that 1/0.1 is greater than 20 times this bandwidth (5Hz).
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Click Algorithm and Block Options to set the estimation options:

• Estimation Method: Forgetting Factor
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• Forgetting Factor: 1-5e-3. Since the estimated parameters are expected to change
with the operating point, set the forgetting factor to a value less than 1. Choose

 which corresponds to a memory time constant of 
seconds. A 100 second memory time ensures that a significant amount data used for
identification is coming from the 200 second identification period at each operating
point.

• Select the Output estimation error check box. You use this block output to validate
the estimation.

• Select the Add enable port check box. You only want to adapt the estimated model
parameters when extra noise is injected in the reference port. The parameter
estimation n is disabled through this port when the extra noise is no longer injected.

• External reset: None.
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Recursive Polynomial Model Estimator Block Outputs

At every time step, the recursive polynomial model estimator provides an estimate for
, , , and the estimation error . The Error outport of the polynomial model
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estimator block contains  and is also known as the one-step-ahead prediction error.
The Parameters outport of the block contains the A(q), B(q), and C(q) polynomial
coefficients in a bus signal. Given the chosen polynomial orders ( , , ,

) the Parameters bus elements contain:

The estimated parameters in the A(q), B(q), and C(q) polynomials change during
simulation as follows:

sim('iddemo_cstr');
close_system('iddemo_cstr/Preprocess Tj');
open_system('iddemo_cstr/ABC');
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The parameter estimates quickly change from their initial values of 0 due to the high
value chosen for the initial parameter covariance matrix. The parameters in the  and

 polynomials approach their values at  rapidly. However, the parameters in
the  polynomial show some fluctuations. One reason behind these fluctuations is that
the disturbance  to CSTR output  is not fully modelled by the ARMAX structure.
The error model  is not important for the control problem studied here since the

 Online ARMAX Polynomial Model Estimation

16-101



 to  relationship is captured by the transfer function . Therefore, the
fluctuation in  is not a concern for this identification and control problem.

The parameter estimates are held constant for  since the estimator block
was disabled for this interval (0 signal to the Enable inport). The parameter estimation is
enabled at  when the CSTR tank starts switching to its new operating point. The
parameters of  and  converge to their new values by , and then held
constant by setting the Enable port to 0. The convergence of  and  is slower at
this operating point. This slow convergence is because of the smaller eigenvalues of the
parameter covariance matrix at t=400 compared to the initial 1e4 values set at t=0. The
parameter covariance, which is a measure of confidence in the estimates, is updated with
each time step. The algorithm quickly changed the parameter estimates when the
confidence in estimates were low at t=0. The improved parameter estimates capture the
system behavior better, resulting in smaller one-step-ahead prediction errors and smaller
eigenvalues in the parameter covariance matrix (increased confidence). The system
behavior changes in t=400. However, the block is slower to change the parameter
estimates due to the increased confidence in the estimates. You can use the External
Reset option of the Recursive Polynomial Model Estimator block to provide a new value
for parameter covariance at t=400. To see the value of the parameter covariance, select
the Output parameter covariance matrix check box in the Recursive Polynomial Model
Estimator block.

Validating the Estimated Model

The Error output of the Recursive Polynomial Model Estimator block gives the
one-step-ahead error for the estimated model.

close_system('iddemo_cstr/ABC');
open_system('iddemo_cstr/1-Step Ahead Prediction Error');
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The one-step-ahead error is higher when there are no extra perturbations injected in the
 channel for system identification. These higher errors may be caused by the lack of

sufficient information in the  input channel that the estimator block relies on.
However, even this higher error is low and bounded when compared to the measured
fluctuations in . This gives confidence in the estimated parameter values.

A more rigorous check of the estimated model is to simulate the estimated model and
compare with the actual model output. The iddemo_cstr/Time-Varying ARMAX block
implements the time-varying ARMAX model estimated by the Online Polynomial Model
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Estimator block. The error between the output of the CSTR system and the estimated
time-varying ARMAX model output is:

close_system('iddemo_cstr/1-Step Ahead Prediction Error');
open_system('iddemo_cstr/Simulation Error');

The simulation error is again bounded and low when compared to the fluctuations in the
. This further provides confidence that the estimated linear models are able to

predict the nonlinear CSTR model behavior.
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The identified models can be further analyzed in MATLAB. The model estimates for the
operating points  and  can be obtained by looking
at the estimated A(q), B(q), and C(q) polynomials at  and  respectively.
Bode plots of these models are:

Ts = 0.1;
tidx = find(t>=200,1);
P200 = idpoly(AHat(:,:,tidx),BHat(:,:,tidx),CHat(:,:,tidx),1,1,[],Ts);
tidx = find(t>=600,1);
P600 = idpoly(AHat(:,:,tidx),BHat(:,:,tidx),CHat(:,:,tidx),1,1,[],Ts);
bodemag(P200,'b',P600,'r--',{10^-1,20});
legend('Estimated Model at C_A=1.5 [kgmol/m^3]', ...
       'Estimated Model at C_A=2.0 [kgmol/m^3]', ...
       'Location', 'Best');
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The estimated model has a higher gain at higher concentration levels. This is in
agreement with prior knowledge about the nonlinear CSTR plant. The transfer function at

 has a  higher gain (double the amplitude) at low frequencies.

Summary

You estimated two ARMAX models to capture the behavior of the nonlinear CSTR plant at
two operating conditions. The estimation was done during closed-loop operation with an
adaptive controller. You looked at two signals to validate the estimation results: One step
ahead prediction errors and the errors between the CSTR plant output and the simulation
of the estimation model. Both of these errors signals were bounded and small compared
to the CSTR plant output. This provided confidence in the estimated ARMAX model
parameters.
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bdclose('iddemo_cstr');
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State Estimation Using Time-Varying Kalman Filter
This example shows how to estimate states of linear systems using time-varying Kalman
filters in Simulink. You use the Kalman Filter block from the System Identification
Toolbox/Estimators library to estimate the position and velocity of a ground vehicle
based on noisy position measurements such as GPS sensor measurements. The plant
model in Kalman filter has time-varying noise characteristics.

Introduction

You want to estimate the position and velocity of a ground vehicle in the north and east
directions. The vehicle can move freely in the two-dimensional space without any
constraints. You design a multi-purpose navigation and tracking system that can be used
for any object and not just a vehicle.

 and  are the vehicle's east and north positions from the origin,  is the
vehicle orientation from east and  is the steering angle of the vehicle.  is the
continuous-time variable.
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The Simulink model consists of two main parts: Vehicle model and the Kalman filter.
These are explained further in the following sections.

open_system('ctrlKalmanNavigationExample');

Vehicle Model

The tracked vehicle is represented with a simple point-mass model:

where the vehicle states are:

the vehicle parameters are:
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and the control inputs are:

The longitudinal dynamics of the model ignore tire rolling resistance. The lateral
dynamics of the model assume that the desired steering angle can be achieved
instantaneously and ignore the yaw moment of inertia.

The car model is implemented in the ctrlKalmanNavigationExample/Vehicle
Model subsystem. The Simulink model contains two PI controllers for tracking the
desired orientation and speed for the car in the ctrlKalmanNavigationExample/
Speed And Orientation Tracking subsystem. This allows you to specify various
operating conditions for the car and test the Kalman filter performance.

Kalman Filter Design

Kalman filter is an algorithm to estimate unknown variables of interest based on a linear
model. This linear model describes the evolution of the estimated variables over time in
response to model initial conditions as well as known and unknown model inputs. In this
example, you estimate the following parameters/variables:

where
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The  terms denote velocities and not the derivative operator.  is the discrete-time index.
The model used in the Kalman filter is of the form:

where  is the state vector,  is the measurements,  is the process noise, and  is the
measurement noise. Kalman filter assumes that  and  are zero-mean, independent
random variables with known variances , , and .
Here, the A, G, and C matrices are:

where 

The third row of A and G model the east velocity as a random walk:
. In reality, position is a continuous-time variable and is the

integral of velocity over time . The first row of the A and G represent a discrete
approximation to this kinematic relationship:

. The second and fourth rows of the A and
G represent the same relationship between the north velocity and position.

The C matrix represents that only position measurements are available. A position sensor,
such as GPS, provides these measurements at the sample rate of 1Hz. The variance of the
measurement noise , the R matrix, is specified as . Since R is specified as a
scalar, the Kalman filter block assumes that the matrix R is diagonal, its diagonals are 50
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and is of compatible dimensions with y. If the measurement noise is Gaussian, R=50
corresponds to 68% of the position measurements being within  or the actual
position in the east and north directions. However, this assumption is not necessary for
the Kalman filter.

The elements of  capture how much the vehicle velocity can change over one sample
time Ts. The variance of the process noise w, the Q matrix, is chosen to be time-varying. It
captures the intuition that typical values of  are smaller when velocity is large. For
instance, going from 0 to 10m/s is easier than going from 10 to 20m/s. Concretely, you use
the estimated north and east velocities and a saturation function to construct Q[n]:

The diagonals of Q model the variance of w inversely proportional to the square of the
estimated velocities. The saturation function prevents Q from becoming too large or
small. The coefficient 250 is obtained from a least squares fit to 0-5, 5-10, 10-15, 15-20,
20-25m/s acceleration time data for a generic vehicle. Note that the diagonal Q choice
represents a naive assumption that the velocity changes in the north and east direction
are uncorrelated.

Kalman Filter Block Inputs and Setup

The 'Kalman Filter' block is in the System Identification Toolbox/Estimators
library in Simulink. It is also in Control System Toolbox library. Configure the block
parameters for discrete-time state estimation. Specify the following Filter Settings
parameters:

• Time domain: Discrete-time. Choose this option to estimate discrete-time states.

• Select the Use current measurement y[n] to improve xhat[n] check box. This
implements the "current estimator" variant of the discrete-time Kalman filter. This
option improves the estimation accuracy and is more useful for slow sample times.
However, it increases the computational cost. In addition, this Kalman filter variant
has direct feedthrough, which leads to an algebraic loop if the Kalman filter is used in
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a feedback loop that does not contain any delays (the feedback loop itself also has
direct feedthrough). The algebraic loop can further impact the simulation speed.

Click the Options tab to set the block inport and outport options:

• Unselect the Add input port u check box. There are no known inputs in the plant
model.

• Select the Output state estimation error covariance Z check box. The Z matrix
provides information about the filter's confidence in the state estimates.
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Click Model Parameters to specify the plant model and noise characteristics:

• Model source: Individual A, B, C, D matrices.

• A: A. The A matrix is defined earlier in this example.

• C: C. The C matrix is defined earlier in this example.
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• Initial Estimate Source: Dialog

• Initial states x[0]: 0. This represents an initial guess of 0 for the position and
velocity estimates at t=0s.

• State estimation error covariance P[0]: 10. Assume that the error between your
initial guess x[0] and its actual value is a random variable with a standard deviation

.

• Select the Use G and H matrices (default G=I and H=0) check box to specify a
non-default G matrix.

• G: G. The G matrix is defined earlier in this example.

• H: 0. The process noise does not impact the measurements y entering the Kalman
filter block.

• Unselect the Time-invariant Q check box. The Q matrix is time-varying and is
supplied through the block inport Q. The block uses a time-varying Kalman filter due
to this setting. You can select this option to use a time-invariant Kalman filter. A time-
invariant Kalman filter performs slightly worse for this problem, but is easier to design
and has a lower computational cost.

• R: R. This is the covariance of the measurement noise . The R matrix is defined
earlier in this example.

• N: 0. Assume that there is no correlation between process and measurement noises.

• Sample time (-1 for inherited): Ts, which is defined earlier in this example.
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Results

Test the performance of the Kalman filter by simulating a scenario where the vehicle
makes the following maneuvers:

• At t = 0 the vehicle is at ,  and is stationary.

• Heading east, it accelerates to 25m/s. It decelerates to 5m/s at t=50s.

• At t = 100s, it turns toward north and accelerates to 20m/s.

• At t = 200s, it makes another turn toward west. It accelerates to 25m/s.

• At t = 260s, it decelerates to 15m/s and makes a constant speed 180 degree turn.

Simulate the Simulink model. Plot the actual, measured and Kalman filter estimates of
vehicle position.

sim('ctrlKalmanNavigationExample');

figure;
% Plot results and connect data points with a solid line.
plot(x(:,1),x(:,2),'bx',...
    y(:,1),y(:,2),'gd',...
    xhat(:,1),xhat(:,2),'ro',...
    'LineStyle','-');
title('Position');
xlabel('East [m]');
ylabel('North [m]');
legend('Actual','Measured','Kalman filter estimate','Location','Best');
axis tight;
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The error between the measured and actual position as well as the error between the
Kalman filter estimate and actual position is:

% East position measurement error [m]
n_xe = y(:,1)-x(:,1);
% North position measurement error [m]
n_xn = y(:,2)-x(:,2);
% Kalman filter east position error [m]
e_xe = xhat(:,1)-x(:,1);
% Kalman filter north position error [m]
e_xn = xhat(:,2)-x(:,2);

figure;
% East Position Errors
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subplot(2,1,1);
plot(t,n_xe,'g',t,e_xe,'r');
ylabel('Position Error - East [m]');
xlabel('Time [s]');
legend(sprintf('Meas: %.3f',norm(n_xe,1)/numel(n_xe)),sprintf('Kalman f.: %.3f',norm(e_xe,1)/numel(e_xe)));
axis tight;
% North Position Errors
subplot(2,1,2);
plot(t,y(:,2)-x(:,2),'g',t,xhat(:,2)-x(:,2),'r');
ylabel('Position Error - North [m]');
xlabel('Time [s]');
legend(sprintf('Meas: %.3f',norm(n_xn,1)/numel(n_xn)),sprintf('Kalman f: %.3f',norm(e_xn,1)/numel(e_xn)));
axis tight;
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The plot legends show the position measurement and estimation error (  and
) normalized by the number of data points. The Kalman filter estimates have

about 25% percent less error than the raw measurements.

The actual velocity in the east direction and its Kalman filter estimate is shown below in
the top plot. The bottom plot shows the estimation error.

e_ve = xhat(:,3)-x(:,3); % [m/s] Kalman filter east velocity error
e_vn = xhat(:,4)-x(:,4); % [m/s] Kalman filter north velocity error
figure;
% Velocity in east direction and its estimate
subplot(2,1,1);
plot(t,x(:,3),'b',t,xhat(:,3),'r');
ylabel('Velocity - East [m]');
xlabel('Time [s]');
legend('Actual','Kalman filter','Location','Best');
axis tight;
subplot(2,1,2);
% Estimation error
plot(t,e_ve,'r');
ylabel('Velocity Error - East [m]');
xlabel('Time [s]');
legend(sprintf('Kalman filter: %.3f',norm(e_ve,1)/numel(e_ve)));
axis tight;
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The legend on the error plot shows the east velocity estimation error 
normalized by the number of data points.

The Kalman filter velocity estimates track the actual velocity trends correctly. The noise
levels decrease when the vehicle is traveling at high velocities. This is in line with the
design of the Q matrix. The large two spikes are at t=50s and t=200s. These are the times
when the car goes through sudden deceleration and a sharp turn, respectively. The
velocity changes at those instants are much larger than the predictions from the Kalman
filter, which is based on its Q matrix input. After a few time-steps, the filter estimates
catch up with the actual velocity.
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Summary

You estimated the position and velocity of a vehicle using the Kalman filter block in
Simulink. The process noise dynamics of the model were time-varying. You validated the
filter performance by simulating various vehicle maneuvers and randomly generated
measurement noise. The Kalman filter improved the position measurements and provided
velocity estimates for the vehicle.

bdclose('ctrlKalmanNavigationExample');
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Nonlinear State Estimation Using Unscented Kalman
Filter and Particle Filter

This example shows how to use the unscented Kalman filter and particle filter algorithms
for nonlinear state estimation for the van der Pol oscillator.

This example also uses the Signal Processing Toolbox™.

Introduction

System Identification Toolbox™ offers three commands for nonlinear state estimation:

• extendedKalmanFilter: First-order, discrete-time extended Kalman filter
• unscentedKalmanFilter: Discrete-time unscented Kalman filter
• particleFilter: Discrete-time particle filter

A typical workflow for using these commands is as follows:

1 Model your plant and sensor behavior.
2 Construct and configure the extendedKalmanFilter, unscentedKalmanFilter

or particleFilter object.
3 Perform state estimation by using the predict and correct commands with the

object.
4 Analyze results to gain confidence in filter performance
5 Deploy the filter on your hardware. You can generate code for these filters using

MATLAB Coder™.

This example first uses the unscentedKalmanFilter command to demonstrate this
workflow. Then it demonstrates the use of particleFilter.

Plant Modeling and Discretization

The unscented Kalman filter (UKF) algorithm requires a function that describes the
evolution of states from one time step to the next. This is typically called the state
transition function. unscentedKalmanFilter supports the following two function forms:

1
Additive process noise: 

2
Non-additive process noise: 
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Here f(..) is the state transition function, x is the state, w is the process noise. u is
optional and represents additional inputs to f, for instance system inputs or parameters. u
can be specified as zero or more function arguments. Additive noise means that the state
and process noise is related linearly. If the relationship is nonlinear, use the second form.
When you create the unscentedKalmanFilter object, you specify f(..) and also whether the
process noise is additive or non-additive.

The system in this example is the van der Pol oscillator with mu=1. This 2-state system is
described with the following set of nonlinear ordinary differential equations (ODE):

Denote this equation as , where . The process noise w does not
appear in the system model. You can assume it is additive for simplicity.

unscentedKalmanFilter requires a discrete-time state transition function, but the plant
model is continuous-time. You can use a discrete-time approximation to the continuous-
time model. Euler discretization is one common approximation method. Assume that your

sample time is , and denote the continuous-time dynamics you have as . Euler

discretization approximates the derivative operator as . The resulting
discrete-time state-transition function is:

The accuracy of this approximation depends on the sample time . Smaller  values
provide better approximations. Alternatively, you can use a different discretization
method. For instance, higher order Runge-Kutta family of methods provide a higher

accuracy at the expense of more computational cost, given a fixed sample time .

Create this state-transition function and save it in a file named vdpStateFcn.m. Use the

sample time . You provide this function to the unscentedKalmanFilter
during object construction.
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type vdpStateFcn

function x = vdpStateFcn(x) 
% vdpStateFcn Discrete-time approximation to van der Pol ODEs for mu = 1. 
% Sample time is 0.05s.
%
% Example state transition function for discrete-time nonlinear state
% estimators.
%
% xk1 = vdpStateFcn(xk)
%
% Inputs:
%    xk - States x[k]
%
% Outputs:
%    xk1 - Propagated states x[k+1]
%
% See also extendedKalmanFilter, unscentedKalmanFilter

%   Copyright 2016 The MathWorks, Inc.

%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

% Euler integration of continuous-time dynamics x'=f(x) with sample time dt
dt = 0.05; % [s] Sample time
x = x + vdpStateFcnContinuous(x)*dt;
end

function dxdt = vdpStateFcnContinuous(x)
%vdpStateFcnContinuous Evaluate the van der Pol ODEs for mu = 1
dxdt = [x(2); (1-x(1)^2)*x(2)-x(1)];
end

Sensor Modeling

unscentedKalmanFilter also needs a function that describes how the model states are
related to sensor measurements. unscentedKalmanFilter supports the following two
function forms:

1
Additive measurement noise: 
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2
Non-additive measurement noise: 

h(..) is the measurement function, v is the measurement noise. u is optional and
represents additional inputs to h, for instance system inputs or parameters. u can be
specified as zero or more function arguments. You can add additional system inputs
following the u term. These inputs can be different than the inputs in the state transition
function.

For this example assume you have measurements of the first state  within some
percentage error:

This falls into the category of non-additive measurement noise because the measurement

noise is not simply added to a function of states. You want to estimate both  and 
from the noisy measurements.

Create this state transition function and save it in a file named
vdpMeasurementNonAdditiveNoiseFcn.m. You provide this function to the
unscentedKalmanFilter during object construction.

type vdpMeasurementNonAdditiveNoiseFcn

function yk = vdpMeasurementNonAdditiveNoiseFcn(xk,vk)
% vdpMeasurementNonAdditiveNoiseFcn Example measurement function for discrete
% time nonlinear state estimators with non-additive measurement noise.
%
% yk = vdpNonAdditiveMeasurementFcn(xk,vk)
%
% Inputs:
%    xk - x[k], states at time k
%    vk - v[k], measurement noise at time k
%
% Outputs:
%    yk - y[k], measurements at time k
%
% The measurement is the first state with multiplicative noise
%
% See also extendedKalmanFilter, unscentedKalmanFilter

%   Copyright 2016 The MathWorks, Inc.
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%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

yk = xk(1)*(1+vk);
end

Unscented Kalman Filter Construction

Construct the filter by providing function handles to the state transition and measurement
functions, followed by your initial state guess. The state transition model has additive
noise. This is the default setting in the filter, hence you do not need to specify it. The
measurement model has non-additive noise, which you must specify through setting the
HasAdditiveMeasurementNoise property of the object as false. This must be done
during object construction. If your application has non-additive process noise in the state
transition function, specify the HasAdditiveProcessNoise property as false.

% Your initial state guess at time k, utilizing measurements up to time k-1: xhat[k|k-1]
initialStateGuess = [2;0]; % xhat[k|k-1]
% Construct the filter
ukf = unscentedKalmanFilter(...
    @vdpStateFcn,... % State transition function
    @vdpMeasurementNonAdditiveNoiseFcn,... % Measurement function
    initialStateGuess,...
    'HasAdditiveMeasurementNoise',false);

Provide your knowledge of the measurement noise covariance

R = 0.2; % Variance of the measurement noise v[k]
ukf.MeasurementNoise = R;

ProcessNoise property stores the process noise covariance. It is set to account for model
inaccuracies and the effect of unknown disturbances on the plant. We have the true model
in this example, but discretization introduces errors. This example did not include any
disturbances for simplicity. Set it to a diagonal matrix with less noise on the first state,
and more on the second state to reflect the knowledge that the second state is more
impacted by modeling errors.

ukf.ProcessNoise = diag([0.02 0.1]);
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Estimation Using predict and correct Commands

In your application, the measurement data arriving from your hardware in real-time are
processed by the filters as they arrive. This operation is demonstrated in this example by
generating a set of measurement data first, and then feeding it to the filter one step at a
time.

Simulate the van der Pol oscillator for 5 seconds with the filter sample time 0.05 [s] to
generate the true states of the system.

T = 0.05; % [s] Filter sample time
timeVector = 0:T:5;
[~,xTrue]=ode45(@vdp1,timeVector,[2;0]);

Generate the measurements assuming that a sensor measures the first state, with a
standard deviation of 45% error in each measurement.

rng(1); % Fix the random number generator for reproducible results
yTrue = xTrue(:,1);
yMeas = yTrue .* (1+sqrt(R)*randn(size(yTrue))); % sqrt(R): Standard deviation of noise

Pre-allocate space for data that you will analyze later

Nsteps = numel(yMeas); % Number of time steps
xCorrectedUKF = zeros(Nsteps,2); % Corrected state estimates
PCorrected = zeros(Nsteps,2,2); % Corrected state estimation error covariances
e = zeros(Nsteps,1); % Residuals (or innovations)

Perform online estimation of the states x using the correct and predict commands.
Provide generated data to the filter one time step at a time.

for k=1:Nsteps
    % Let k denote the current time.
    %
    % Residuals (or innovations): Measured output - Predicted output
    e(k) = yMeas(k) - vdpMeasurementFcn(ukf.State); % ukf.State is x[k|k-1] at this point
    % Incorporate the measurements at time k into the state estimates by
    % using the "correct" command. This updates the State and StateCovariance
    % properties of the filter to contain x[k|k] and P[k|k]. These values
    % are also produced as the output of the "correct" command.
    [xCorrectedUKF(k,:), PCorrected(k,:,:)] = correct(ukf,yMeas(k));
    % Predict the states at next time step, k+1. This updates the State and
    % StateCovariance properties of the filter to contain x[k+1|k] and
    % P[k+1|k]. These will be utilized by the filter at the next time step.
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    predict(ukf);
end

Unscented Kalman Filter Results and Validation

Plot the true and estimated states over time. Also plot the measured value of the first
state.

figure();
subplot(2,1,1);
plot(timeVector,xTrue(:,1),timeVector,xCorrectedUKF(:,1),timeVector,yMeas(:));
legend('True','UKF estimate','Measured')
ylim([-2.6 2.6]);
ylabel('x_1');
subplot(2,1,2);
plot(timeVector,xTrue(:,2),timeVector,xCorrectedUKF(:,2));
ylim([-3 1.5]);
xlabel('Time [s]');
ylabel('x_2');
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The top plot shows the true, estimated, and the measured value of the first state. The
filter utilizes the system model and noise covariance information to produce an improved
estimate over the measurements. The bottom plot shows the second state. The filter is
able to produce a good estimate.

The validation of unscented and extended Kalman filter performance is typically done
using extensive Monte Carlo simulations. These simulations should test variations of
process and measurement noise realizations, plant operating under various conditions,
initial state and state covariance guesses. The key signal of interest used for validating
the state estimation is the residuals (or innovations). In this example, you perform
residual analysis for a single simulation. Plot the residuals.
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figure();
plot(timeVector, e);
xlabel('Time [s]');
ylabel('Residual (or innovation)');

The residuals should have:

1 Small magnitude
2 Zero mean
3 No autocorrelation, except at zero lag

The mean value of the residuals is:

mean(e)
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ans = -0.0012

This is small relative to the magnitude of the residuals. The autocorrelation of the
residuals can be calculated with the xcorr function in the Signal Processing Toolbox.

[xe,xeLags] = xcorr(e,'coeff'); % 'coeff': normalize by the value at zero lag
% Only plot non-negative lags
idx = xeLags>=0;
figure();
plot(xeLags(idx),xe(idx));
xlabel('Lags');
ylabel('Normalized correlation');
title('Autocorrelation of residuals (innovation)');
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The correlation is small for all lags except 0. The mean correlation is close to zero, and
the correlation does not show any significant non-random variations. These
characteristics increase confidence in filter performance.

In reality the true states are never available. However, when performing simulations, you
have access to real states and can look at the errors between estimated and true states.
These errors must satisfy similar criteria to the residual:

1 Small magnitude
2 Variance within filter error covariance estimate
3 Zero mean
4 Uncorrelated.

First, look at the error and the  uncertainty bounds from the filter error covariance
estimate.

eStates = xTrue-xCorrectedUKF;
figure();
subplot(2,1,1);
plot(timeVector,eStates(:,1),...               % Error for the first state
    timeVector, sqrt(PCorrected(:,1,1)),'r', ... % 1-sigma upper-bound
    timeVector, -sqrt(PCorrected(:,1,1)),'r');   % 1-sigma lower-bound
xlabel('Time [s]');
ylabel('Error for state 1');
title('State estimation errors');
subplot(2,1,2);
plot(timeVector,eStates(:,2),...               % Error for the second state
    timeVector,sqrt(PCorrected(:,2,2)),'r', ...  % 1-sigma upper-bound
    timeVector,-sqrt(PCorrected(:,2,2)),'r');    % 1-sigma lower-bound
xlabel('Time [s]');
ylabel('Error for state 2');
legend('State estimate','1-sigma uncertainty bound',...
    'Location','Best');
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The error bound for state 1 approaches 0 at t=2.15 seconds because of the sensor model

(MeasurementFcn). It has the form . At t=2.15 seconds the true and
estimated states are near zero, which implies the measurement error in absolute terms is
also near zero. This is reflected in the state estimation error covariance of the filter.

Calculate what percentage of the points are beyond the 1-sigma uncertainty bound.

distanceFromBound1 = abs(eStates(:,1))-sqrt(PCorrected(:,1,1));
percentageExceeded1 = nnz(distanceFromBound1>0) / numel(eStates(:,1));
distanceFromBound2 = abs(eStates(:,2))-sqrt(PCorrected(:,2,2));
percentageExceeded2 = nnz(distanceFromBound2>0) / numel(eStates(:,2));
[percentageExceeded1 percentageExceeded2]
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ans = 1×2

    0.1386         0

The first state estimation errors exceed the  uncertainty bound approximately 14% of
the time steps. Less than 30% of the errors exceeding the 1-sigma uncertainty bound
implies good estimation. This criterion is satisfied for both states. The 0% percentage for
the second state means that the filter is conservative: most likely the combined process
and measurement noises are too high. Likely a better performance can be obtained by
tuning these parameters.

Calculate the mean autocorrelation of state estimation errors. Also plot the
autocorrelation.

mean(eStates)

ans = 1×2

   -0.0103    0.0200

[xeStates1,xeStatesLags1] = xcorr(eStates(:,1),'coeff'); % 'coeff': normalize by the value at zero lag
[xeStates2,xeStatesLags2] = xcorr(eStates(:,2),'coeff'); % 'coeff'
% Only plot non-negative lags
idx = xeStatesLags1>=0;
figure();
subplot(2,1,1);
plot(xeStatesLags1(idx),xeStates1(idx));
xlabel('Lags');
ylabel('For state 1');
title('Normalized autocorrelation of state estimation error');
subplot(2,1,2);
plot(xeStatesLags2(idx),xeStates2(idx));
xlabel('Lags');
ylabel('For state 2');
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The mean value of the errors is small relative to the value of the states. The
autocorrelation of state estimation errors shows little non-random variations for small lag
values, but these are much smaller than the normalized peak value 1. Combined with the
fact that the estimated states are accurate, this behavior of the residuals can be
considered as satisfactory results.

Particle Filter Construction

Unscented and extended Kalman filters aim to track the mean and covariance of the
posterior distribution of the state estimates by different approximation methods. These
methods may not be sufficient if the nonlinearities in the system are severe. In addition,
for some applications, just tracking the mean and covariance of the posterior distribution
of the state estimates may not be sufficient. Particle filters can address these problems by
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tracking the evolution of many state hypotheses (particles) over time, at the expense of
higher computational cost. The computational cost and estimation accuracy increases
with the number of particles.

The particleFilter command in System Identification Toolbox implements a discrete-time
particle filter algorithm. This section walks you through constructing a particleFilter for
the same van der Pol oscillator used earlier in this example, and highlights the similarities
and differences with the unscented Kalman filter.

The state transition function you provide to particleFilter must perform two tasks. One,
sampling the process noise from any distribution appropriate for your system. Two,
calculating the time propagation of all particles (state hypotheses) to the next step,
including the effect of process noise you calculated in step one.

type vdpParticleFilterStateFcn

function particles = vdpParticleFilterStateFcn(particles) 
% vdpParticleFilterStateFcn Example state transition function for particle
%                           filter
%
% Discrete-time approximation to van der Pol ODEs for mu = 1. 
% Sample time is 0.05s.
%
% predictedParticles = vdpParticleFilterStateFcn(particles)
%
% Inputs:
%    particles - Particles at current time. Matrix with dimensions
%                [NumberOfStates NumberOfParticles] matrix
%
% Outputs:
%    predictedParticles - Predicted particles for the next time step
%
% See also particleFilter

%   Copyright 2017 The MathWorks, Inc.

%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

[numberOfStates, numberOfParticles] = size(particles);
    
% Time-propagate each particle
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%
% Euler integration of continuous-time dynamics x'=f(x) with sample time dt
dt = 0.05; % [s] Sample time
for kk=1:numberOfParticles
    particles(:,kk) = particles(:,kk) + vdpStateFcnContinuous(particles(:,kk))*dt;
end

% Add Gaussian noise with variance 0.025 on each state variable
processNoise = 0.025*eye(numberOfStates);
particles = particles + processNoise * randn(size(particles));
end

function dxdt = vdpStateFcnContinuous(x)
%vdpStateFcnContinuous Evaluate the van der Pol ODEs for mu = 1
dxdt = [x(2); (1-x(1)^2)*x(2)-x(1)];
end

There are differences between the state transition function you supply to
unscentedKalmanFilter and particleFilter. The state transition function you used for
unscented Kalman filter just described propagation of one state hypothesis to the next
time step, instead of a set of hypotheses. In addition, the process noise distribution was
defined in ProcessNoise property of the unscentedKalmanFilter, just by its covariance.
Particle filter can consider arbitrary distributions that may require more statistical
properties to be defined. This arbitrary distribution and its parameters are fully defined in
the state transition function you provide to the particleFilter.

The measurement likelihood function you provide to particleFilter must also perform two
tasks. One, calculating measurement hypotheses from particles. Two, calculating the
likelihood of each particle from the sensor measurement and the hypotheses calculated in
step one.

type vdpExamplePFMeasurementLikelihoodFcn

function likelihood = vdpExamplePFMeasurementLikelihoodFcn(particles,measurement)
% vdpExamplePFMeasurementLikelihoodFcn Example measurement likelihood function
%
% The measurement is the first state.
%
% likelihood = vdpParticleFilterMeasurementLikelihoodFcn(particles, measurement)
%
% Inputs:
%    particles - NumberOfStates-by-NumberOfParticles matrix that holds 
%                the particles
%
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% Outputs:
%    likelihood - A vector with NumberOfParticles elements whose n-th
%                 element is the likelihood of the n-th particle
%
% See also extendedKalmanFilter, unscentedKalmanFilter

%   Copyright 2017 The MathWorks, Inc.

%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

% Validate the sensor measurement
numberOfMeasurements = 1; % Expected number of measurements
validateattributes(measurement, {'double'}, {'vector', 'numel', numberOfMeasurements}, ...
    'vdpExamplePFMeasurementLikelihoodFcn', 'measurement');

% The measurement is first state. Get all measurement hypotheses from particles
predictedMeasurement = particles(1,:);

% Assume the ratio of the error between predicted and actual measurements
% follow a Gaussian distribution with zero mean, variance 0.2
mu = 0; % mean
sigma = 0.2 * eye(numberOfMeasurements); % variance

% Use multivariate Gaussian probability density function, calculate
% likelihood of each particle
numParticles = size(particles,2);
likelihood = zeros(numParticles,1);
C = det(2*pi*sigma) ^ (-0.5);
for kk=1:numParticles
    errorRatio = (predictedMeasurement(kk)-measurement)/predictedMeasurement(kk);
    v = errorRatio-mu;
    likelihood(kk) = C * exp(-0.5 * (v' / sigma * v) );
end
end

Now construct the filter, and initialize it with 1000 particles around the mean [2; 0] with
0.01 covariance. The covariance is small because you have high confidence in your guess
[2; 0].

pf = particleFilter(@vdpParticleFilterStateFcn,@vdpExamplePFMeasurementLikelihoodFcn);
initialize(pf, 1000, [2;0], 0.01*eye(2));
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Optionally, pick the state estimation method. This is set by the StateEstimationMethod
property of particleFilter, which can take the value 'mean' (default) or 'maxweight'. When
StateEstimationMethod is 'mean', the object extracts a weighted mean of the particles
from the Particles and Weights properties as the state estimate. 'maxweight' corresponds
to choosing the particle (state hypothesis) as the state estimate. Alternatively, you can
access Particles and Weights properties of the object and extract your state estimate via
an arbitrary method of your choice.

pf.StateEstimationMethod

ans = 
'mean'

particleFilter lets you specify various resampling options via its ResamplingPolicy and
ResamplingMethod properties. This example uses the default settings in the filter. See the
particleFilter documentation for further details on resampling.

pf.ResamplingMethod

ans = 
'multinomial'

pf.ResamplingPolicy

ans = 
  particleResamplingPolicy with properties:

                TriggerMethod: 'ratio'
             SamplingInterval: 1
    MinEffectiveParticleRatio: 0.5000

Start the estimation loop. This represents measurements arriving over time, step by step.

% Estimate
xCorrectedPF = zeros(size(xTrue));
for k=1:size(xTrue,1)
    % Use measurement y[k] to correct the particles for time k
    xCorrectedPF(k,:) = correct(pf,yMeas(k)); % Filter updates and stores Particles[k|k], Weights[k|k]
    % The result is x[k|k]: Estimate of states at time k, utilizing
    % measurements up to time k. This estimate is the mean of all particles
    % because StateEstimationMethod was 'mean'.
    %
    % Now, predict particles at next time step. These are utilized in the
    % next correct command
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    predict(pf); % Filter updates and stores Particles[k+1|k]
end

Plot the state estimates from particle filter:

figure();
subplot(2,1,1);
plot(timeVector,xTrue(:,1),timeVector,xCorrectedPF(:,1),timeVector,yMeas(:));
legend('True','Particlte filter estimate','Measured')
ylim([-2.6 2.6]);
ylabel('x_1');
subplot(2,1,2);
plot(timeVector,xTrue(:,2),timeVector,xCorrectedPF(:,2));
ylim([-3 1.5]);
xlabel('Time [s]');
ylabel('x_2');
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The top plot shows the true value, particle filter estimate, and the measured value of the
first state. The filter utilizes the system model and noise information to produce an
improved estimate over the measurements. The bottom plot shows the second state. The
filter is able to produce a good estimate.

The validation of the particle filter performance involves performing statistical tests on
residuals, similar to those that were performed earlier in this example for unscented
Kalman filter results.

Summary

This example has shown the steps of constructing and using an unscented Kalman filter
and a particle filter for state estimation of a nonlinear system. You estimated states of a
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van der Pol oscillator from noisy measurements, and validated the estimation
performance.

See Also
extendedKalmanFilter | particleFilter | unscentedKalmanFilter

More About
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on

page 16-33
• “Validate Online State Estimation at the Command Line” on page 16-42
• “Troubleshoot Online State Estimation” on page 16-53
• “Generate Code for Online State Estimation in MATLAB” on page 16-49
• “Fault Detection Using an Extended Kalman Filter” on page 16-144
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Fault Detection Using an Extended Kalman Filter
This example shows how to use an extended Kalman filter for fault detection. The
example uses an extended Kalman filter for online estimation of the friction of a simple
DC motor. Significant changes in the estimated friction are detected and indicate a fault.

Motor Model

The motor is modelled as an inertia J with damping coefficient c, driven by a torque u. The
motor angular velocity w and acceleration , are the measured outputs.

To estimate the damping coefficient c using an extended Kalman filter, introduce an
auxiliary state for the damping coefficient and set its derivative to zero.

Thus, the model state, x = [w;c], and measurement, y, equations are:

The continuous-time equations are transformed to discrete time using the approximation

, where Ts is the discrete sampling period. This gives the discrete-time model
equations which are implemented in the stateUpdate_MotorModel.m and
measurement_MotorModel.m functions.

Specify motor parameters.
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J  = 10;    % Inertia
Ts = 0.01;  % Sample time

Specify initial states.

x0 = [...
    0; ...  % Angular velocity
    1];     % Friction

type stateUpdate_MotorModel
type measurement_MotorModel

function x1 = stateUpdate_MotorModel(x0,varargin)
%STATEUPDATE_MOTORMODEL
%
% State update equations for a motor with friction as a state
%
%  x1 = stateUpdate_MotorModel(x0,u,J,Ts)
%
%  Inputs:
%    x0 - initial state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    x1 - updated states
%

%  Copyright 2016 The MathWorks, Inc.

% Extract data from inputs
u  = varargin{1};   % Input
J  = varargin{2};   % System innertia
Ts = varargin{3};   % Sample time

% State update equation
x1 = [...
    x0(1)+Ts/J*(u-x0(1)*x0(2)); ...
    x0(2)];
end

function y = measurement_MotorModel(x,varargin)
%MEASUREMENT_MOTORMODEL
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%
% Measurement equations for a motor with friction as a state
%
%  y = measurement_MotorModel(x0,u,J,Ts)
%
%  Inputs:
%    x  - motor state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    y - motor measurements with elements [angular velocity; angular acceleration]
%

%  Copyright 2016 The MathWorks, Inc.

% Extract data from inputs
u  = varargin{1};   % Input
J  = varargin{2};   % System innertia

% Output equation
y = [...
    x(1); ...
    (u-x(1)*x(2))/J];
end

The motor experiences state (process) noise disturbances, q, and measurement noise
disturbances, r. The noise terms are additive.

The process and measurement noise have zero mean, E[q]=E[r]=0, and covariances Q
= E[qq'] and R = E[rr']. The friction state has a high process noise disturbance. This
reflects the fact that we expect the friction to vary during normal operation of the motor
and want the filter to track this variation. The acceleration and velocity state noise is low
but the velocity and acceleration measurements are relatively noisy.

Specify the process noise covariance.
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Q = [...
    1e-6 0; ...   % Angular velocity
    0 1e-2];      % Friction

Specify the measurement noise covariance.

R = [...
    1e-4 0; ...  % Velocity measurement
    0 1e-4];     % Acceleration measurement

Creating an Extended Kalman Filter

Create an extended Kalman Filter to estimate the states of the model. We are particularly
interested in the damping state because dramatic changes in this state value indicate a
fault event.

Create an extendedKalmanFilter object, and specify the Jacobians of the state
transition and measurement functions.

ekf = extendedKalmanFilter(...
    @stateUpdate_MotorModel, ...
    @measurement_MotorModel, ...
    x0,...
    'StateCovariance',            [1 0; 0 1000], ...[1 0 0; 0 1 0; 0 0 100], ...
    'ProcessNoise',               Q, ...
    'MeasurementNoise',           R, ...
    'StateTransitionJacobianFcn', @stateJacobian_MotorModel, ...
    'MeasurementJacobianFcn',     @measurementJacobian_MotorModel);

The extended Kalman filter has as input arguments the state transition and measurement
functions defined previously. The initial state value x0, initial state covariance, and
process and measurement noise covariances are also inputs to the extended Kalman filter.
In this example, the exact Jacobian functions can be derived from the state transition
function f, and measurement function h:
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The state Jacobian is defined in the stateJacobian_MotorModel.m function and the
measurement Jacobian is defined in the measurementJacobian_MotorModel.m
function.

type stateJacobian_MotorModel
type measurementJacobian_MotorModel

function Jac = stateJacobian_MotorModel(x,varargin)
%STATEJACOBIAN_MOTORMODEL
%
% Jacobian of motor model state equations. See stateUpdate_MotorModel for
% the model equations.
%
%  Jac = stateJacobian_MotorModel(x,u,J,Ts)
%
%  Inputs:
%    x  - state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    Jac - state Jacobian computed at x
%

%  Copyright 2016 The MathWorks, Inc.

% Model properties
J  = varargin{2};
Ts = varargin{3};

% Jacobian
Jac = [...
    1-Ts/J*x(2) -Ts/J*x(1); ...
    0 1];
end

function J = measurementJacobian_MotorModel(x,varargin)
%MEASUREMENT_MOTORMODEL
%
% Jacobian of motor model measurement equations. See measurement_MotorModel for
% the model equations.
%
%  Jac = measurementJacobian_MotorModel(x,u,J,Ts)
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%
%  Inputs:
%    x  - state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    Jac - measurement Jacobian computed at x
%

%  Copyright 2016 The MathWorks, Inc.

% System parameters
J  = varargin{2};   % System innertia

% Jacobian
J = [ ...
    1 0;
    -x(2)/J -x(1)/J];
end

Simulation

To simulate the plant, create a loop and introduce a fault in the motor (a dramatic change
in the motor fiction). Within the simulation loop, use the extended Kalman filter to
estimate the motor states and to specifically track the friction state to detect when there
is a statistically significant change in friction.

The motor is simulated with a pulse train that repeatedly accelerates and decelerates the
motor. This type of motor operation is typical for a picker robot in a production line.

t  = 0:Ts:20;                  % Time, 20s with Ts sampling period
u  = double(mod(t,1)<0.5)-0.5; % Pulse train, period 1, 50% duty cycle
nt = numel(t);                 % Number of time points
nx = size(x0,1);               % Number of states
ySig = zeros([2, nt]);         % Measured motor outputs
xSigTrue = zeros([nx, nt]);    % Unmeasured motor states
xSigEst = zeros([nx, nt]);     % Estimated motor states
xstd = zeros([nx nx nt]);      % Standard deviation of the estimated states
ySigEst = zeros([2, nt]);      % Estimated model outputs
fMean = zeros(1,nt);           % Mean estimated friction
fSTD = zeros(1,nt);            % Standard deviation of estimated friction
fKur = zeros(2,nt);            % Kurtosis of estimated friction
fChanged = false(1,nt);        % Flag indicating friction change detection
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When simulating the motor, add process and measurement noise similar to the Q and R
noise covariance values used when constructing the extended Kalman filter. For the
friction, use a much smaller noise value because the friction is mostly constant except
when the fault occurs. Artificially induce the fault during the simulation.

rng('default');
Qv = chol(Q);   % Standard deviation for process noise
Qv(end) = 1e-2; % Smaller friction noise
Rv = chol(R);   % Standard deviation for measurement noise

Simulate the model using the state update equation, and add process noise to the model
states. Ten seconds into the simulation, force a change in the motor friction. Use the
model measurement function to simulate the motor sensors, and add measurement noise
to the model outputs.

for ct = 1:numel(t)

   % Model output update
   y = measurement_MotorModel(x0,u(ct),J,Ts);
   y = y+Rv*randn(2,1);   % Add measurement noise
   ySig(:,ct) = y;

   % Model state update
   xSigTrue(:,ct) = x0;
   x1 = stateUpdate_MotorModel(x0,u(ct),J,Ts);
   % Induce change in friction
   if t(ct) == 10
       x1(2) = 10;  % Step change
   end
   x1n = x1+Qv*randn(nx,1);  % Add process noise
   x1n(2) = max(x1n(2),0.1); % Lower limit on friction
   x0 = x1n; % Store state for next simulation iteration

To estimate the motor states from the motor measurements, use the predict and
correct commands of the extended Kalman Filter.

   % State estimation using the Extended Kalman Filter
   x_corr = correct(ekf,y,u(ct),J,Ts); % Correct the state estimate based on current measurement.
   xSigEst(:,ct) = x_corr;
   xstd(:,:,ct) = chol(ekf.StateCovariance);
   predict(ekf,u(ct),J,Ts);            % Predict next state given the current state and input.

To detect changes in friction, compute the estimated friction mean and standard deviation
using a 4 second moving window. After an initial 7-second period, lock the computed
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mean and standard deviation. This initially computed mean is the expected no-fault mean
value for the friction. After 7 seconds, if the estimated friction is greater than 3 standard
deviations away from the expected no-fault mean value, it signifies a significant change in
the friction. To reduce the effect of noise and variability in the estimated friction, use the
mean of the estimated friction when comparing to the 3-standard-deviations bound.

   if t(ct) < 7
       % Compute mean and standard deviation of estimated fiction.
       idx = max(1,ct-400):max(1,ct-1); % Ts = 0.01 seconds
       fMean(ct) = mean( xSigEst(2, idx) );
       fSTD(ct)  = std( xSigEst(2, idx) );
   else
       % Store the computed mean and standard deviation without
       % recomputing.
       fMean(ct) = fMean(ct-1);
       fSTD(ct)  = fSTD(ct-1);
       % Use the expected friction mean and standard deviation to detect
       % friction changes.
       estFriction = mean(xSigEst(2,max(1,ct-10):ct));
       fChanged(ct) = (estFriction > fMean(ct)+3*fSTD(ct)) || (estFriction < fMean(ct)-3*fSTD(ct));
   end
   if fChanged(ct) && ~fChanged(ct-1)
       % Detect a rising edge in the friction change signal |fChanged|.
       fprintf('Significant friction change at %f\n',t(ct));
   end

Significant friction change at 10.450000

Use the estimated state to compute the estimated output. Compute the error between the
measured and estimated outputs, and calculate the error statistics. The error statistics
can be used for detecting the friction change. This is discussed in more detail later.

   ySigEst(:,ct) = measurement_MotorModel(x_corr,u(ct),J,Ts);
   idx = max(1,ct-400):ct;
   fKur(:,ct) = [...
       kurtosis(ySigEst(1,idx)-ySig(1,idx)); ...
       kurtosis(ySigEst(2,idx)-ySig(2,idx))];

end

Extended Kalman Filter Performance

Note that a friction change was detected at 10.45 seconds. We now describe how this
fault-detection rule was derived. First examine the simulation results and filter
performance.
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figure,
subplot(211), plot(t,ySig(1,:),t,ySig(2,:));
title('Motor Outputs')
legend('Measured Angular Velocity','Measured Angular Acceleration', 'Location','SouthWest')
subplot(212), plot(t,u);
title('Motor Input - Torque')

The model input-output responses indicate that it is difficult to detect the friction change
directly from the measured signals. The extended Kalman filter enables us to estimate the
states, in particular the friction state. Compare the true model states and estimated
states. The estimated states are shown with confidence intervals corresponding to 3
standard deviations.
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figure,
subplot(211),plot(t,xSigTrue(1,:), t,xSigEst(1,:), ...
    [t nan t],[xSigEst(1,:)+3*squeeze(xstd(1,1,:))', nan, xSigEst(1,:)-3*squeeze(xstd(1,1,:))'])
axis([0 20 -0.06 0.06]),
legend('True value','Estimated value','Confidence interval')
title('Motor State - Velocity')
subplot(212),plot(t,xSigTrue(2,:), t,xSigEst(2,:),  ...
    [t nan t],[xSigEst(2,:)+3*squeeze(xstd(2,2,:))' nan xSigEst(2,:)-3*squeeze(xstd(2,2,:))'])
axis([0 20 -10 15])
title('Motor State - Friction');

Note that the filter estimate tracks the true values, and that the confidence intervals
remain bounded. Examining the estimation errors provide more insight into the filter
behavior.
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figure,
subplot(211),plot(t,xSigTrue(1,:)-xSigEst(1,:))
title('Velocity State Error')
subplot(212),plot(t,xSigTrue(2,:)-xSigEst(2,:))
title('Friction State Error')

The error plots show that the filter adapts after the friction change at 10 seconds and
reduces the estimation errors to zero. However, the error plots cannot be used for fault
detection as they rely on knowing the true states. Comparing the measured state value to
the estimated state values for acceleration and velocity could provide a detection
mechanism.

figure
subplot(211), plot(t,ySig(1,:)-ySigEst(1,:))
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title('Velocity Measurement Error')
subplot(212),plot(t,ySig(2,:)-ySigEst(2,:))
title('Acceleration Measurement Error')

The acceleration error plot shows a minor difference in mean error around 10 seconds
when the fault is introduced. View the error statistics to see if the fault can be detected
from the computed errors. The acceleration and velocity errors are expected to be
normally distributed (the noise models are all Gaussian). Therefore, the kurtosis of the
acceleration error may help identify when the error distribution change from symmetrical
to asymmetrical due to the friction change and resulting change in error distribution.

figure,
subplot(211),plot(t,fKur(1,:))
title('Velocity Error Kurtosis')
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subplot(212),plot(t,fKur(2,:))
title('Acceleration Error Kurtosis')

Ignoring the first 4 seconds when the estimator is still converging and data is being
collected, the kurtosis of the errors is relatively constant with minor variations around 3
(the expected kurtosis value for a Gaussian distribution). Thus, the error statistics cannot
be used to automatically detect friction changes in this application. Using the kurtosis of
the errors is also difficult in this application as the filter is adapting and continually
driving the errors to zero, only giving a short time window where the error distributions
differ from zero.

Thus in this application, using the changes in estimated friction provide the best way to
automatically detect faults in the motor. The friction estimates (mean and standard
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deviation) from known no-fault data provide expected bounds for the friction and it is easy
to detect when these bounds are violated. The following plot highlights this fault-
detection approach.

figure
plot(t,xSigEst(2,:),[t nan t],[fMean+3*fSTD,nan,fMean-3*fSTD])
title('Friction Change Detection')
legend('Estimated Friction','No-Fault Friction Bounds')
axis([0 20 -10 20])
grid on
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Summary

This example has shown how to use an extended Kalman filter to estimate the friction in a
simple DC motor and use the friction estimate for fault detection.

See Also
extendedKalmanFilter | unscentedKalmanFilter

More About
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on

page 16-33
• “Validate Online State Estimation at the Command Line” on page 16-42
• “Troubleshoot Online State Estimation” on page 16-53
• “Generate Code for Online State Estimation in MATLAB” on page 16-49
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on

page 16-123
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Estimate States of Nonlinear System with Multiple,
Multirate Sensors

This example shows how to perform nonlinear state estimation in Simulink™ for a system
with multiple sensors operating at different sample rates. The Extended Kalman Filter
block in System Identification Toolbox™ is used to estimate the position and velocity of an
object using GPS and radar measurements.

Introduction

The toolbox has three Simulink blocks for nonlinear state estimation:

• Extended Kalman Filter: Implements the first-order discrete-time extended Kalman
filter algorithm.

• Unscented Kalman Filter: Implements the discrete-time unscented Kalman filter
algorithm.

• Particle Filter: Implements a discrete-time particle filter algorithm.

These blocks support state estimation using multiple sensors operating at different
sample rates. A typical workflow for using these blocks is as follows:

1 Model your plant and sensor behavior using MATLAB or Simulink functions.
2 Configure the parameters of the block.
3 Simulate the filter and analyze results to gain confidence in filter performance.
4 Deploy the filter on your hardware. You can generate code for these filters using

Simulink Coder™ software.

This example uses the Extended Kalman Filter block to demonstrate the first two steps of
this workflow. The last two steps are briefly discussed in the Next Steps section. The goal
in this example is to estimate the states of an object using noisy measurements provided
by a radar and a GPS sensor. The states of the object are its position and velocity, which
are denoted as xTrue in the Simulink model.

If you are interested in the Particle Filter block, please see the example "Parameter and
State Estimation in Simulink Using Particle Filter Block".

addpath(fullfile(matlabroot,'examples','ident_featured','main')) % add example data
open_system('multirateEKFExample');
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Plant Modeling

The extended Kalman filter (EKF) algorithm requires a state transition function that
describes the evolution of states from one time step to the next. The block supports the
following two function forms:

• Additive process noise: 
• Nonadditive process noise: 

Here f(..) is the state transition function, x is the state, and w is the process noise. u is
optional, and represents additional inputs to f, for instance system inputs or parameters.
Additive noise means that the next state  and process noise  are related
linearly. If the relationship is nonlinear, use the nonadditive form.

The function f(...) can be a MATLAB Function that comply with the restrictions of
MATLAB Coder™, or a Simulink Function block. After you create f(...), you specify the
function name and whether the process noise is additive or nonadditive in the Extended
Kalman Filter block.

In this example, you are tracking the north and east positions and velocities of an object
on a 2-dimensional plane. The estimated quantities are:
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Here  is the discrete-time index. The state transition equation used is of the nonadditive
form , where  is the state vector, and  is the process noise.
The filter assumes that  is a zero-mean, independent random variable with known
variance . The A and G matrices are:

where  is the sample time. The third row of A and G model the east velocity as a random
walk: . In reality, position is a continuous-time variable and is the

integral of velocity over time . The first row of A and G represent a discrete
approximation to this kinematic relationship:

. The second and fourth rows of A and G
represent the same relationship between the north velocity and position. This state
transition model is linear, but the radar measurement model is nonlinear. This
nonlinearity necessitates the use of a nonlinear state estimator such as the extended
Kalman filter.

In this example you implement the state transition function using a Simulink Function
block. To do so,

• Add a Simulink Function block to your model from the Simulink/User-Defined
Functions library

• Click on the name shown on the Simulink Function block. Edit the function name, and
add or remove input and output arguments, as necessary. In this example the name for
the state transition function is stateTransitionFcn. It has one output argument
(xNext) and two input arguments (x, w).
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• Though it is not required in this example, you can use any signals from the rest of your
Simulink model in the Simulink Function. To do so, add Inport blocks from the
Simulink/Sources library. Note that these are different than the ArgIn and ArgOut
blocks that are set through the signature of your function (xNext =
stateTransitionFcn(x, w)).

• In the Simulink Function block, construct your function utilizing Simulink blocks.
• Set the dimensions for the input and output arguments x, w, and xNext in the Signal

Attributes tab of the ArgIn and ArgOut blocks. The data type and port dimensions
must be consistent with the information you provide in the Extended Kalman
Filter block.

Analytical Jacobian of the state transition function is also implemented in this example.
Specifying the Jacobian is optional. However, this reduces the computational burden, and
in most cases increases the state estimation accuracy. Implement the Jacobian function as
a Simulink function because the state transition function is a Simulink function.

open_system('multirateEKFExample/Simulink Function - State Transition Jacobian');
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Sensor modeling - Radar

The Extended Kalman Filter block also needs a measurement function that describes how
the states are related to measurements. The following two function forms are supported:

• Additive measurement noise: 
• Nonadditive measurement noise: 

Here h(..) is the measurement function, and v is the measurement noise. u is optional, and
represents additional inputs to h, for instance system inputs or parameters. These inputs
can differ from the inputs in the state transition function.

In this example a radar located at the origin measures the range and angle of the object
at 20 Hz. Assume that both of the measurements have about 5% noise. This can be
modeled by the following measurement equation:

Here  and  are the measurement noise terms, each with variance 0.05^2. That
is, most of the measurements have errors less than 5%. The measurement noise is
nonadditive because  and  are not simply added to the measurements, but
instead they depend on the states x. In this example, the radar measurement equation is
implemented using a Simulink Function block.

open_system('multirateEKFExample/Simulink Function - Radar Measurements');
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Sensor modeling - GPS

A GPS measures the east and north positions of the object at 1 Hz. Hence, the
measurement equation for the GPS sensor is:

Here  and  are measurement noise terms with the covariance matrix [10^2 0; 0
10^2]. That is, the measurements are accurate up to approximately 10 meters, and the
errors are uncorrelated. The measurement noise is additive because the noise terms
affect the measurements  linearly.

Create this function, and save it in a file named gpsMeasurementFcn.m. When the
measurement noise is additive, you must not specify the noise terms in the function. You
provide this function name and measurement noise covariance in the Extended Kalman
Filter block.

type gpsMeasurementFcn

function y = gpsMeasurementFcn(x)
% gpsMeasurementFcn GPS measurement function for state estimation
%
% Assume the states x are:
%   [EastPosition; NorthPosition; EastVelocity; NorthVelocity]
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%#codegen

% The %#codegen tag above is needed is you would like to use MATLAB Coder to 
% generate C or C++ code for your filter

y = x([1 2]); % Position states are measured
end

Filter Construction

Configure the Extended Kalman Filter block to perform the estimation. You specify the
state transition and measurement function names, initial state and state error covariance,
and process and measurement noise characteristics.

In the System Model tab of the block dialog, specify the following parameters:

State Transition

1 Specify the state transition function, stateTransitionFcn, in Function. Since you
have the Jacobian of this function, select Jacobian, and specify the Jacobian function,
stateTransitionJacobianFcn.

2 Select Nonadditive in the Process Noise drop-down list because you explicitly
stated how the process noise impacts the states in your function.

3 Specify the process noise covariance as [0.2 0; 0 0.2]. As explained in the Plant
Modeling section of this example, process noise terms define the random walk of the
velocities in each direction. The diagonal terms approximately capture how much the
velocities can change over one sample time of the state transition function. The off-
diagonal terms are set to zero, which is a naive assumption that velocity variations in
the north and east directions are uncorrelated.

Initialization

1 Specify your best initial state estimate in Initial state. In this example, specify [100;
100; 0; 0].

2 Specify your confidence in your state estimate guess in Initial covariance. In this
example, specify 10. The software interprets this value as the true state values are
likely to be within  of your initial estimate. You can specify a separate value for
each state by setting Initial covariance as a vector. You can specify cross-
correlations in this uncertainty by specifying it as a matrix.
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Since there are two sensors, click Add Measurement to specify a second measurement
function.

Measurement 1

1 Specify the name of your measurement function, radarMeasurementFcn, in
Function.

2 Select Nonadditive in the Measurement Noise drop-down list because you
explicitly stated how the process noise impacts the measurements in your function.

3 Specify the measurement noise covariance as [0.05^2 0; 0 0.05^2] per the
discussion in the Sensor Modeling - Radar section.

Measurement 2

1 Specify the name of your measurement function, gpsMeasurementFcn, in Function.
2 This sensor model has additive noise. Therefore, specify the GPS measurement noise

as Additive in the Measurement Noise drop-down list.
3 Specify the measurement noise covariance as [100 0; 0 100].
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In the Multirate tab, since the two sensors are operating at different sample rates,
perform the following configuration:

1 Select Enable multirate operation.
2 Specify the state transition sample time. The state transition sample time must be the

smallest, and all measurement sample times must be an integer multiple of the state
transition sample time. Specify State Transition sample time as 0.05, the sample
time of the fastest measurement. Though not required in this example, it is possible
to have a smaller sample time for state transition than all measurements. This means
there will be some sample times without any measurements. For these sample times
the filter generates state predictions using the state transition function.

3 Specify the Measurement 1 sample time (Radar) as 0.05 seconds and
Measurement 2 (GPS) as 1 seconds.
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Simulation and Results

Test the performance of the Extended Kalman filter by simulating a scenario where the
object travels in a square pattern with the following maneuvers:

• At t = 0, the object starts at 
• It heads north at  until t = 20 seconds.
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• It heads east at  between t = 20 and t = 45 seconds.
• It heads south at  between t = 45 and t = 85 seconds.
• It heads west at  between t = 85 and t = 185 seconds.

Generate the true state values corresponding to this motion:

Ts = 0.05; % [s] Sample rate for the true states
[t, xTrue] = generateTrueStates(Ts); % Generate position and velocity profile over 0-185 seconds

Simulate the model. For instance, look at the actual and estimated velocities in the east
direction:

sim('multirateEKFExample');
open_system('multirateEKFExample/Scope - East Velocity');
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The plot shows the true velocity in the east direction, and its extended Kalman filter
estimates. The filter successfully tracks the changes in velocity. The multirate nature of
the filter is most apparent in the time range t = 20 to 30 seconds. The filter makes large
corrections every second (GPS sample rate), while the corrections due to radar
measurements are visible every 0.05 seconds.
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Next Steps

1 Validate the state estimation: The validation of unscented and extended Kalman filter
performance is typically done using extensive Monte Carlo simulations. For more
information, see “Validate Online State Estimation in Simulink” on page 16-45.

2 Generate code: The Unscented and Extended Kalman Filter blocks support C and C+
+ code generation using Simulink Coder™ software. The functions you provide to
these blocks must comply with the restrictions of MATLAB Coder™ software (if you
are using MATLAB functions to model your system) and Simulink Coder software (if
you are using Simulink Function blocks to model your system).

Summary

This example has shown how to use the Extended Kalman Filter block in System
Identification Toolbox. You estimated position and velocity of an object from two different
sensors operating at different sampling rates.

close_system('multirateEKFExample', 0);
rmpath(fullfile(matlabroot,'examples','ident_featured','main')) % remove example data

See Also
Extended Kalman Filter | Particle Filter | Unscented Kalman Filter

More About
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on

page 16-33
• “Validate Online State Estimation in Simulink” on page 16-45
• “Troubleshoot Online State Estimation” on page 16-53

16 Online Estimation

16-172



Model Analysis

• “Validating Models After Estimation” on page 17-3
• “Supported Model Plots” on page 17-5
• “Plot Models in the System Identification App” on page 17-7
• “Simulating and Predicting Model Output” on page 17-9
• “Simulation and Prediction in the App” on page 17-12
• “Simulation and Prediction at the Command Line” on page 17-17
• “Compare Simulated Output with Measured Data” on page 17-22
• “Perform Multivariate Time Series Forecasting” on page 17-25
• “What Is Residual Analysis?” on page 17-43
• “How to Plot Residuals in the App” on page 17-47
• “How to Plot Residuals at the Command Line” on page 17-50
• “Examine Model Residuals” on page 17-51
• “Impulse and Step Response Plots” on page 17-55
• “Plot Impulse and Step Response Using the System Identification App” on page 17-59
• “Plot Impulse and Step Response at the Command Line” on page 17-62
• “Frequency Response Plots” on page 17-64
• “Plot Bode Plots Using the System Identification App” on page 17-68
• “Plot Bode and Nyquist Plots at the Command Line” on page 17-71
• “Noise Spectrum Plots” on page 17-73
• “Plot the Noise Spectrum Using the System Identification App” on page 17-75
• “Plot the Noise Spectrum at the Command Line” on page 17-78
• “Pole and Zero Plots” on page 17-80
• “Reducing Model Order Using Pole-Zero Plots” on page 17-83
• “Model Poles and Zeros Using the System Identification App” on page 17-84
• “Plot Poles and Zeros at the Command Line” on page 17-86
• “Analyzing MIMO Models” on page 17-87
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• “Customize Response Plots Using the Response Plots Property Editor” on page 17-92
• “Computing Model Uncertainty” on page 17-114
• “Troubleshooting Model Estimation” on page 17-117
• “Next Steps After Getting an Accurate Model” on page 17-121
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Validating Models After Estimation

Ways to Validate Models
You can use the following approaches to validate models:

• Comparing simulated or predicted model output to measured output.

See “Simulating and Predicting Model Output” on page 17-9.

To simulate identified models in the Simulink environment, see “Simulating Identified
Model Output in Simulink” on page 20-5.

• Analyzing autocorrelation and cross-correlation of the residuals with input.

See “What Is Residual Analysis?” on page 17-43.
• Analyzing model response. For more information, see the following:

• “Impulse and Step Response Plots” on page 17-55
• “Frequency Response Plots” on page 17-64

For information about the response of the noise model, see “Noise Spectrum Plots” on
page 17-73.

• Plotting the poles and zeros of the linear parametric model.

For more information, see “Pole and Zero Plots” on page 17-80.
• Comparing the response of nonparametric models, such as impulse-, step-, and

frequency-response models, to parametric models, such as linear polynomial models,
state-space model, and nonlinear parametric models.

Note Do not use this comparison when feedback is present in the system because
feedback makes nonparametric models unreliable. To test if feedback is present in the
system, use the advice command on the data.

• Compare models using Akaike Information Criterion or Akaike Final Prediction Error.

For more information, see the aic and fpe reference page.
• Plotting linear and nonlinear blocks of Hammerstein-Wiener and nonlinear ARX

models.

 Validating Models After Estimation

17-3



Displaying confidence intervals on supported plots helps you assess the uncertainty of
model parameters. For more information, see “Computing Model Uncertainty” on page
17-114.

Data for Model Validation
For plots that compare model response to measured response and perform residual
analysis, you designate two types of data sets: one for estimating the models (estimation
data), and the other for validating the models (validation data). Although you can
designate the same data set to be used for estimating and validating the model, you risk
over-fitting your data. When you validate a model using an independent data set, this
process is called cross-validation.

Note Validation data should be the same in frequency content as the estimation data. If
you detrended the estimation data, you must remove the same trend from the validation
data. For more information about detrending, see “Handling Offsets and Trends in Data”
on page 2-112.
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Supported Model Plots
The following table summarizes the types of supported model plots.

Plot Type Supported Models Learn More
Model Output All linear and nonlinear

models
“Simulating and Predicting
Model Output” on page 17-
9

Residual Analysis All linear and nonlinear
models

“What Is Residual
Analysis?” on page 17-43

Transient Response • All linear parametric
models

• Correlation analysis
(nonparametric) models

• For nonlinear models,
only step response.

“Impulse and Step Response
Plots” on page 17-55

Frequency Response All linear models “Frequency Response Plots”
on page 17-64

Noise Spectrum • All linear parametric
models

• Spectral analysis
(nonparametric) models

“Noise Spectrum Plots” on
page 17-73

Poles and Zeros All linear parametric models “Pole and Zero Plots” on
page 17-80

Nonlinear ARX Nonlinear ARX models only Nonlinear ARX Plots on
page 11-50

Hammerstein-Wiener Hammerstein-Wiener
models only

Hammerstein-Wiener Plots
on page 12-27

See Also

Related Examples
• “Plot Models in the System Identification App” on page 17-7
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• “Compare Simulated Output with Measured Data” on page 17-22

More About
• “Validating Models After Estimation” on page 17-3
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Plot Models in the System Identification App
To create one or more plots of your models, select the corresponding check box in the
Model Views area of the System Identification app. An active model icon has a thick line
in the icon, while an inactive model has a thin line. Only active models appear on the
selected plots.

To include or exclude a model on a plot, click the corresponding icon in the System
Identification app. Clicking the model icon updates any plots that are currently open.

For example, in the following figure, Model output is selected. In this case, the models
n4s3 is not included on the plot because only arxqs is active.

Active model

Inactive model

Plots the model
output of active
models.

Plots Include Only Active Models

To close a plot, clear the corresponding check box in the System Identification app.
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Tip To get information about a specific plot, select a help topic from the Help menu in
the plot window.

See Also

Related Examples
• “Interpret the Model Output Plot” on page 17-12
• “Change Model Output Plot Settings” on page 17-14
• “Working with Plots” on page 21-11
• “Compare Simulated Output with Measured Data” on page 17-22
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Simulating and Predicting Model Output

Why Simulate or Predict Model Output?
You primarily use a model is to simulate its output, i.e., calculate the output (y(t)) for
given input values. You can also predict model output, i.e., compute a qualified guess of
future output values based on past observations of system’s inputs and outputs.

You also validate linear parametric models and nonlinear models by checking how well
the simulated or predicted output of the model matches the measured output. You can use
either time or frequency domain data for simulation or prediction. For frequency domain
data, the simulation and prediction results are products of the Fourier transform of the
input and frequency function of the model.

Simulation provides a better validation test for the model than prediction. However, how
you validate the model output should match how you plan to use the model. For example,
if you plan to use your model for control design, you can validate the model by predicting
its response over a time horizon that represents the dominating time constants of the
model.

What are Simulation and Prediction?
Simulation means computing the model response using input data and initial conditions.
The time samples of the model response match the time samples of the input data used
for simulation.

For a continuous-time system, simulation means solving a differential equation. For a
discrete-time system, simulation means directly applying the model equations.

For example, consider a dynamic model described by a first-order difference equation that
uses a sample time of 1 second:

y(t) + ay(t–1) = bu(t–1),

where y is the output and u is the input. For parameter values a = –0.9 and b = 1.5, the
equation becomes:

y(t) – 0.9y(t–1) = 1.5u(t–1).
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Suppose you want to compute the values y(1), y(2), y(3),... for given input values u(0) = 2,
u(1) = 1, u(2) = 4,...Here, y(1) is the value of output at the first sampling instant. Using
initial condition of y(0) = 0, the values of y(t) for times t = 1, 2 and 3 can be computed as:

y(1) = 0.9y(0) + 1.5u(0) = 0.9*0 + 1.5*2 = 3

y(2) = 0.9y(1) + 1.5u(1) = 0.9*3 + 1.5*1 = 4.2

y(3) = 0.9y(2) + 1.5u(2) = 0.9*4.2 + 1.5*4 = 9.78

...

Prediction forecasts the model response k steps ahead into the future using the current
and past values of measured input and output values. k is called the prediction horizon,
and corresponds to predicting output at time kTs, where Ts is the sample time.

For example, suppose you use sensors to measure the input signal u(t) and output signal
y(t) of the physical system, described in the previous first-order equation. At the tenth
sampling instant (t = 10), the output y(10) is 16 mm and the corresponding input u(10) is
12 N. Now, you want to predict the value of the output at the future time t = 11. Using the
previous equation:

y(11) = 0.9y(10) + 1.5u(10)

Hence, the predicted value of future output y(11) at time t = 10 is:

y(11) = 0.9*16 + 1.5*12 = 32.4

In general, to predict the model response k steps into the future (k≥1) from the current
time t, you should know the inputs up to time t+k and outputs up to time t:

yp(t+k) = f(u(t+k),u(t+k–1),...,u(t),u(t–1),...,u(0)
                y(t),y(t–1),y(t–2),...,y(0))

u(0) and y(0) are the initial states. f() represents the predictor, which is a dynamic
model whose form depends on the model structure. For example, the one-step-ahead
predictor yp of the model y(t) + ay(t–1) = bu(t) is:

yp(t+1) = –ay(t) + bu(t+1)

The difference between prediction and simulation is that in prediction, the past values of
outputs used for calculation are measured values while in simulation the outputs are
themselves a result of calculation using inputs and initial conditions.
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The way information in past outputs is used depends on the disturbance model H of the

model. For the previous dynamic model, H z

az

( ) =

+
-

1

1
1 . In models of Output-Error (OE)

structure (H(z) = 1), there is no information in past outputs that can be used for
predicting future output values. In this case, predictions and simulations coincide. For
state-space models (idss), output-error structure corresponds to models with K=0. For
polynomial models (idpoly), this corresponds to models with polynomials a=c=d=1.

Note Prediction with k=∞ means that no previous outputs are used in the computation
and prediction returns the same result as simulation.

Both simulation and prediction require initial conditions, which correspond to the states
of the model at the beginning of the simulation or prediction.

Tip If you do not know the initial conditions and have input and output measurements
available, you can estimate the initial condition using this toolbox.

See Also

Related Examples
• “Simulation and Prediction in the App” on page 17-12
• “Simulation and Prediction at the Command Line” on page 17-17

More About
• “Simulating Identified Model Output in Simulink” on page 20-5
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Simulation and Prediction in the App

How to Plot Simulated and Predicted Model Output
To create a model output plot for parametric linear and nonlinear models in the System
Identification app, select the Model output check box in the Model Views area. By
default, this operation estimates the initial states from the data and plots the output of
selected models for comparison.

To include or exclude a model on the plot, click the corresponding model icon in the
System Identification app. Active models display a thick line inside the Model Board icon.

To learn how to interpret the model output plot, see “Interpret the Model Output Plot” on
page 17-12.

To change plot settings, see “Change Model Output Plot Settings” on page 17-14.

For general information about creating and working with plots, see “Working with Plots”
on page 21-11.

Interpret the Model Output Plot
The following figure shows a sample Model Output plot, created in the System
Identification app.
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The model output plot shows different information depending on the domain of the input-
output validation data, as follows:

• For time-domain validation data, the plot shows simulated or predicted model output.
• For frequency-domain data, the plot shows the amplitude of the model response to the

frequency-domain input signal. The model response is equal to the product of the
Fourier transform of the input and the model's frequency function.

• For frequency-response data, the plot shows the amplitude of the model frequency
response.

For linear models, you can estimate a model using time-domain data, and then validate
the model using frequency domain data. For nonlinear models, you can only use time-
domain data for both estimation and validation.

The right side of the plot displays the percentage of the output that the model reproduces
(Best Fit), computed using the following equation:

Best Fit = -
-

-

Ê

Ë
ÁÁ

ˆ

¯
˜̃ ¥1 100

y y

y y

ˆ
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In this equation, y is the measured output, ŷ  is the simulated or predicted model output,

and y  is the mean of y. 100% corresponds to a perfect fit, and 0% indicates that the fit is

no better than guessing the output to be a constant ( ŷ y= ).

Because of the definition of Best Fit, it is possible for this value to be negative. A
negative best fit is worse than 0% and can occur for the following reasons:

• The estimation algorithm failed to converge.
•

The model was not estimated by minimizing y y- ˆ . Best Fit can be negative when
you minimized 1-step-ahead prediction during the estimation, but validate using the

simulated output ŷ .
• The validation data set was not preprocessed in the same way as the estimation data

set.

Change Model Output Plot Settings
The following table summarizes the Model Output plot settings.
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Model Output Plot Settings

Action Command
Display confidence intervals.

Note Confidence intervals are only
available for simulated model output of
linear models. Confidence internal are not
available for nonlinear ARX and
Hammerstein-Wiener models.

See “Definition: Confidence Interval” on
page 17-16.

• To display the dashed lines on either
side of the nominal model curve, select
Options > Show confidence intervals.
Select this option again to hide the
confidence intervals.

• To change the confidence value, select
Options > Set % confidence level, and
choose a value from the list.

• To enter your own confidence level,
select Options > Set confidence level
> Other. Enter the value as a
probability (between 0 and 1) or as the
number of standard deviations of a
Gaussian distribution.

Change between simulated output or
predicted output.

Note Prediction is only available for time-
domain validation data.

• Select Options > Simulated output or
Options > k step ahead predicted
output.

• To change the prediction horizon, select
Options > Set prediction horizon,
and select the number of samples.

• To enter your own prediction horizon,
select Options > Set prediction
horizon > Other. Enter the value in
terms of the number of samples.

Display the actual output values (Signal
plot), or the difference between model
output and measured output (Error plot).

Select Options > Signal plot or Options
> Error plot.

(Time-domain validation data only)
Set the time range for model output and the
time interval for which the Best Fit value is
computed.

Select Options > Customized time span
for fit and enter the minimum and
maximum time values. For example:

[1 20]

(Multiple-output system only)
Select a different output.

Select the output by name in the Channel
menu.
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Definition: Confidence Interval
The confidence interval corresponds to the range of output values with a specific
probability of being the actual output of the system. The toolbox uses the estimated
uncertainty in the model parameters to calculate confidence intervals and assumes the
estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal curve
represents the range of values that have a 95% probability of being the true system
response. You can specify the confidence interval as a probability (between 0 and 1) or as
the number of standard deviations of a Gaussian distribution. For example, a probability
of 0.99 (99%) corresponds to 2.58 standard deviations.

Note The calculation of the confidence interval assumes that the model sufficiently
describes the system dynamics and the model residuals pass independence tests.

In the app, you can display a confidence interval on the plot to gain insight into the
quality of a linear model. To learn how to show or hide confidence interval, see “Change
Model Output Plot Settings” on page 17-14.

See Also

Related Examples
• “Simulation and Prediction at the Command Line” on page 17-17

More About
• “Simulating and Predicting Model Output” on page 17-9
• “Simulating Identified Model Output in Simulink” on page 20-5
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Simulation and Prediction at the Command Line

Simulation and Prediction Commands

Note If you estimated a linear model from detrended data and want to simulate or
predict the output at the original operation conditions, use retrend to add trend data
back into the simulated or predicted output.

Command Description Example
compare Determine how closely the

simulated model response
matches the measured
output signal.

Plots simulated or
predicted output of one or
more models on top of the
measured output. You
should use an independent
validation data set as
input to the model.

To plot five-step-ahead predicted
output of the model mod against the
validation data data, use the
following command:

compare(data,mod,5)

Note Omitting the third argument
assumes an infinite horizon and
results in the comparison of the
simulated response to the input data.

sim Simulate and plot the
model output only.

To simulate the response of the
model model using input data data,
use the following command:

sim(model,data)
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Command Description Example
predict Predict and plot the model

output only.
To perform one-step-ahead prediction
of the response for the model model
and input data data, use the
following command:

predict(model,data,1)

Use the following syntax to compute
k-step-ahead prediction of the output
signal using model m:

yhat = predict(m,[y u],k)

predict computes the prediction
results only over the time range of
data. It does not forecast results
beyond the available data range.

forecast Forecast a time series into
the future.

To forecast the value of a time series
in an arbitrary number of steps into
the future, use the following
command:

forecast(model,past_data,K)

Here, model is a time series model,
past_data is a record of the
observed values of the time series,
and K is the forecasting horizon.

Initial States in Simulation and Prediction
The process of computing simulated and predicted responses over a time range starts by
using the initial conditions to compute the first few output values. sim, forecast, and
predict commands provide defaults for handling initial conditions.

Simulation: Default initial conditions are zero for all model types except idnlgrey
model, in which case the default initial conditions are the internal model initial states
(model property x0). You can specify other initial conditions using the
InitialCondition simulation option (see simOptions).
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Use the compare command to validate models by simulation because its algorithm
estimates the initial states of a model to optimize the model fit to a given data set.

If you use sim, the simulated and the measured responses might differ when the initial
conditions of the estimated model and the system that measured the validation data set
differ—especially at the beginning of the response. To minimize this difference, estimate
the initial state values from the data using findstates and specify these initial states
using the InitialCondition simulation option (see simOptions). For example, to
compute the initial states that optimize the fit of the model m to the output data in z:

% Estimate the initial states
X0est = findstates(m,z);
% Simulate the response using estimated initial states
opt = simOptions('InitialCondition',X0est);
sim(m,z.InputData,opt)

Prediction: Default initial conditions depend on the type of model. You can specify other
initial conditions using the InitialCondition option (see predictOptions). For
example, to compute the initial states that optimize the 1-step-ahead predicted response
of the model m to the output data z:

opt = predictOptions('InitialCondition','estimate');
[Yp,X0est] = predict(m,z,1,opt);

This command returns the estimated initial states as the output argument X0est. For
information about other ways to specify initials states, see the predictOptions
reference page.

Simulate a Continuous-Time State-Space Model
This example shows how to simulate a continuous-time state-space model using a random
binary input u and a sample time of 0.1 s.

Consider the following state-space model:

where e is Gaussian white noise with variance 7.
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Create a continuous-time state-space model.

A = [-1 1; -0.5 0];
B = [1;0.5]; 
C = [1 0];
D = 0;
K = [0.5;0.5];
% Ts = 0 indicates continuous time
model_ss = idss(A,B,C,D,K,'Ts',0,'NoiseVariance',7);

Create a random binary input.

u = idinput(400,'rbs',[0 0.3]);

Create an iddata object with empty output to represent just the input signal.

data = iddata([],u);
data.ts = 0.1;

Simulate the output using the model

opt = simOptions('AddNoise',true); 
y = sim(model_ss,data,opt);

Simulate Model Output with Noise
This example shows how you can create input data and a model, and then use the data
and the model to simulate output data.

In this example, you create the following ARMAX model with Gaussian noise e:

Then, you simulate output data with random binary input u.

Create an ARMAX model.

m_armax = idpoly([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);

Create a random binary input.

u = idinput(400,'rbs',[0 0.3]);
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Simulate the output data.

opt = simOptions('AddNoise',true);
y = sim(m_armax,u,opt);

The 'AddNoise' option specifies to include in the simulation the Gaussian noise e
present in the model. Set this option to false (default behavior) to simulate the noise-
free response to the input u , which is equivalent to setting e to zero.

See Also
compare | forecast | predict | sim

Related Examples
• “Compare Simulated Output with Measured Data” on page 17-22
• “Perform Multivariate Time Series Forecasting” on page 17-25
• “Simulation and Prediction in the App” on page 17-12

More About
• “Simulating and Predicting Model Output” on page 17-9
• “Simulating Identified Model Output in Simulink” on page 20-5
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Compare Simulated Output with Measured Data
This example shows how to validate an estimated model by comparing the simulated
model output with measured data.

Create estimation and validation data.

load iddata1;
ze = z1(1:150); 
zv = z1(151:300);

Estimate an ARMAX model.

m = armax(ze,[2 3 1 0]);

Compare simulated model output with measured data.

compare(zv,m);
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See Also

Related Examples
• “Simulation and Prediction at the Command Line” on page 17-17
• “Perform Multivariate Time Series Forecasting” on page 17-25

More About
• “Simulating and Predicting Model Output” on page 17-9
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• “Why Simulate or Predict Model Output?” on page 17-9
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Perform Multivariate Time Series Forecasting
This example shows how to perform multivariate time series forecasting of data measured
from predator and prey populations in a prey crowding scenario. The predator-prey
population-change dynamics are modeled using linear and nonlinear time series models.
Forecasting performance of these models is compared.

Data Description

The data is a bivariate time series consisting of 1-predator 1-prey populations (in
thousands) collected 10 times a year for 20 years. For more information about the data,
see “Three Ecological Population Systems: MATLAB and C MEX-File Modeling of Time-
Series”.

Load the time series data.

load PredPreyCrowdingData
z = iddata(y,[],0.1,'TimeUnit','years','Tstart',0);

z is an iddata object containing two output signals, y1 and y2, which refer to the
predator and prey populations, respectively. The OutputData property of z contains the
population data as a 201-by-2 matrix, such that z.OutputData(:,1) is the predator
population and z.OutputData(:,2) is the prey population.

Plot the data.

plot(z)
title('Predator-Prey Population Data')
ylabel('Population (thousands)')
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The data exhibits a decline in predator population due to crowding.

Use the first half as estimation data for identifying time series models.

ze = z(1:120);

Use the remaining data to search for model orders, and to validate the forecasting
results.

zv = z(121:end);

Estimate a Linear Model

Model the time series as a linear, autoregressive process. Linear models can be created in
polynomial form or state-space form using commands such as ar (for scalar time series
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only), arx, armax, n4sid and ssest. Since the linear models do not capture the data
offsets (non-zero conditional mean), first detrend the data.

[zed, Tze] = detrend(ze, 0);
[zvd, Tzv] = detrend(zv, 0);

Identification requires specification of model orders. For polynomial models, you can find
suitable orders using the arxstruc command. Since arxstruc works only on single-
output models, perform the model order search separately for each output.

na_list = (1:10)';
V1 = arxstruc(zed(:,1,:),zvd(:,1,:),na_list);
na1 = selstruc(V1,0);
V2 = arxstruc(zed(:,2,:),zvd(:,2,:),na_list);
na2 = selstruc(V2,0);

The arxstruc command suggests autoregressive models of orders 7 and 8, respectively.

Use these model orders to estimate a multi-variance ARMA model where the cross terms
have been chosen arbitrarily.

na = [na1 na1-1; na2-1 na2];
nc = [na1; na2];
sysARMA = armax(zed,[na nc])

sysARMA =
Discrete-time ARMA model:                                                 
  Model for output "y1": A(z)y_1(t) = - A_i(z)y_i(t) + C(z)e_1(t)         
                                                                          
    A(z) = 1 - 0.885 z^-1 - 0.1493 z^-2 + 0.8089 z^-3 - 0.2661 z^-4       
                                 - 0.9487 z^-5 + 0.8719 z^-6 - 0.2896 z^-7
                                                                          
                                                                          
    A_2(z) = 0.3433 z^-1 - 0.2802 z^-2 - 0.04949 z^-3 + 0.1018 z^-4       
                                              - 0.02683 z^-5 - 0.2416 z^-6
                                                                          
                                                                          
    C(z) = 1 - 0.4534 z^-1 - 0.4127 z^-2 + 0.7874 z^-3 + 0.298 z^-4       
                                 - 0.8684 z^-5 + 0.6106 z^-6 + 0.3616 z^-7
                                                                          
  Model for output "y2": A(z)y_2(t) = - A_i(z)y_i(t) + C(z)e_2(t)                
                                                                                 
    A(z) = 1 - 0.5826 z^-1 - 0.4688 z^-2 - 0.5949 z^-3 - 0.0547 z^-4             
                  + 0.5062 z^-5 + 0.4024 z^-6 - 0.01544 z^-7 - 0.1766 z^-8       
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    A_1(z) = 0.2386 z^-1 + 0.1564 z^-2 - 0.2249 z^-3 - 0.2638 z^-4 - 0.1019 z^-5 
                                              - 0.07821 z^-6 + 0.2982 z^-7       
                                                                                 
                                                                                 
    C(z) = 1 - 0.1717 z^-1 - 0.09877 z^-2 - 0.5289 z^-3 - 0.24 z^-4              
                 + 0.06555 z^-5 + 0.2217 z^-6 - 0.05765 z^-7 - 0.1824 z^-8       
                                                                                 
Sample time: 0.1 years
  
Parameterization:
   Polynomial orders:   na=[7 6;7 8]   nc=[7;8]
   Number of free coefficients: 43
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using ARMAX on time domain data "zed".         
Fit to estimation data: [89.85;90.97]% (prediction focus)
FPE: 3.814e-05, MSE: 0.007533                            

Compute a 10-step-ahead (1 year) predicted output to validate the model over the time
span of the estimation data. Since the data was detrended for estimation, you need to
specify those offsets for meaningful predictions.

predOpt = predictOptions('OutputOffset',Tze.OutputOffset');
yhat1 = predict(sysARMA,ze,10, predOpt);

The predict command predicts the response over the time span of measured data and is
a tool for validating the quality of an estimated model. The response at time t is
computed using measured values at times t = 0, ..., t-10.

Plot the predicted response and the measured data.

plot(ze,yhat1)
title('10-step predicted response compared to measured data')
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Note, the generation of predicted response and plotting it with the measured data, can be
automated using the compare command.

compareOpt = compareOptions('OutputOffset',Tze.OutputOffset');
compare(ze,sysARMA,10,compareOpt)
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The plot generated using compare also shows the normalized root mean square (NRMSE)
measure of goodness of fit in percent form.

After validating the data, forecast the output of the model sysARMA 100 steps (10 years)
beyond the estimation data, and calculate output standard deviations.

forecastOpt = forecastOptions('OutputOffset',Tze.OutputOffset');
[yf1,x01,sysf1,ysd1] = forecast(sysARMA, ze, 100, forecastOpt);

yf1 is the forecasted response, returned as an iddata object. yf1.OutputData
contains the forecasted values.
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sysf1 is a system similar to sysARMA but is in state-space form. Simulation of sysf1
using the sim command, with initial conditions, x01, reproduces the forecasted response,
yf1.

ysd1 is the matrix of standard deviations. It measures the uncertainty is forecasting
owing to the effect of additive disturbances in the data (as measured by
sysARMA.NoiseVariance), parameter uncertainty (as reported by getcov(sysARMA))
and uncertainties associated with the process of mapping past data to the initial
conditions required for forecasting (see data2state).

Plot the measured, predicted, and forecasted output for model sysARMA.

t = yf1.SamplingInstants;
te = ze.SamplingInstants;
t0 = z.SamplingInstants;
subplot(1,2,1);
plot(t0,z.y(:,1),...
   te,yhat1.y(:,1),...
   t,yf1.y(:,1),'m',...
   t,yf1.y(:,1)+ysd1(:,1),'k--', ...
   t,yf1.y(:,1)-ysd1(:,1), 'k--')
xlabel('Time (year)');
ylabel('Predator population, in thousands');
subplot(1,2,2);
plot(t0,z.y(:,2),...
   te,yhat1.y(:,2),...
   t,yf1.y(:,2),'m',...
   t,yf1.y(:,2)+ysd1(:,2),'k--', ...
   t,yf1.y(:,2)-ysd1(:,2),'k--')
% Make the figure larger.
fig = gcf;
p = fig.Position;
fig.Position = [p(1),p(2)-p(4)*0.2,p(3)*1.4,p(4)*1.2];
xlabel('Time (year)');
ylabel('Prey population, in thousands');
legend({'Measured','Predicted','Forecasted','Forecast Uncertainty (1 sd)'},...
   'Location','best')
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The plots show that forecasting using a linear ARMA model (with added handling of
offsets) worked somewhat and the results showed high uncertainty compared to the
actual populations over the 12-20 years time span. This indicates that the population
change dynamics might be nonlinear.

Estimate a Nonlinear Black-Box Model

Fit a nonlinear black-box model to the estimation data. You do not require prior
knowledge about the equations governing the estimation data. A linear-in-regressor form
of Nonlinear ARX model will be estimated.

Create a nonlinear ARX model with 2 outputs and no inputs.

sysNLARX = idnlarx([1 1;1 1],[],'Ts',0.1,'TimeUnit','years');
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sysNLARX is a first order nonlinear ARX model that uses no nonlinear function; it predicts
the model response using a weighted sum of its first-order regressors.

getreg(sysNLARX)

Regressors:
  For output 1:
    y1(t-1)
    y2(t-1)
  For output 2:
    y1(t-1)
    y2(t-1)

To introduce a nonlinearity function, add polynomial regressors to the model.

Create regressors up to power 2, and include cross terms (products of standard
regressors listed above). Add those regressors to the model as custom regressors.

R = polyreg(sysNLARX,'MaxPower',2,'CrossTerm','on');
sysNLARX.CustomRegressors = R;
getreg(sysNLARX)

Regressors:
  For output 1:
    y1(t-1)
    y2(t-1)
    y1(t-1).^2
    y1(t-1).*y2(t-1)
    y2(t-1).^2
  For output 2:
    y1(t-1)
    y2(t-1)
    y1(t-1).^2
    y1(t-1).*y2(t-1)
    y2(t-1).^2

Estimate the coefficients (the regressor weightings and the offset) of the model using
estimation data, ze.

sysNLARX = nlarx(ze,sysNLARX)

sysNLARX =
Nonlinear ARX model with 2 outputs and 0 input
 Inputs
 Outputs: y1, y2
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 Standard regressors corresponding to the orders:
   na = [1 1; 1 1]
   nb = []
   nk = []
 Custom regressors:
   For output 1:
     y1(t-1).^2
     y1(t-1).*y2(t-1)
     y2(t-1).^2
   For output 2:
     y1(t-1).^2
     y1(t-1).*y2(t-1)
     y2(t-1).^2
 Nonlinear regressors:
  For output 1:
    none
  For output 2:
    none
 Model outputs are linear in their regressors

Sample time: 0.1 years

Status:                                                  
Estimated using NLARX on time domain data "ze".          
Fit to estimation data: [88.34;88.91]% (prediction focus)
FPE: 3.265e-05, MSE: 0.01048

Compute a 10-step-ahead predicted output to validate the model.

yhat2 = predict(sysNLARX,ze,10);

Forecast the output of the model 100 steps beyond the estimation data.

yf2 = forecast(sysNLARX,ze,100);

The standard deviations of the forecasted response are not computed for nonlinear ARX
models. This data is unavailable because the parameter covariance information is not
computed during estimation of these models.

Plot the measured, predicted, and forecasted outputs.

t = yf2.SamplingInstants;
subplot(1,2,1);
plot(t0,z.y(:,1),...
   te,yhat2.y(:,1),...
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   t,yf2.y(:,1),'m')
xlabel('Time (year)');
ylabel('Predator population (thousands)');
subplot(1,2,2);
plot(t0,z.y(:,2),...
   te,yhat2.y(:,2),...
   t,yf2.y(:,2),'m')
legend('Measured','Predicted','Forecasted')
xlabel('Time (year)');
ylabel('Prey population (thousands)');

The plots show that forecasting using a nonlinear ARX model gave better forecasting
results than using a linear model. Nonlinear black-box modeling did not require prior
knowledge about the equations governing the data.
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Note that to reduce the number of regressors, you can pick an optimal subset of
(transformed) variables using principal component analysis (see pca) or feature selection
(see sequentialfs) in the Statistics and Machine Learning Toolbox™.

If you have prior knowledge of the system dynamics, you can fit the estimation data using
a nonlinear grey-box model.

Estimate a Nonlinear Grey-Box Model

Knowledge about the nature of the dynamics can help improve the model quality and thus
the forecasting accuracy. For the predator-prey dynamics, the changes in the predator
(y1) and prey (y2) population can be represented as:

For more information about the equations, see “Three Ecological Population Systems:
MATLAB and C MEX-File Modeling of Time-Series”.

Construct a nonlinear grey-box model based on these equations.

Specify a file describing the model structure for the predator-prey system. The file
specifies the state derivatives and model outputs as a function of time, states, inputs, and
model parameters. The two outputs (predator and prey populations) are chosen as states
to derive a nonlinear state-space description of the dynamics.

FileName = 'predprey2_m';

Specify the model orders (number of outputs, inputs, and states)

Order = [2 0 2];

Specify the initial values for the parameters , , , , and , and indicate that all
parameters are to be estimated. Note that the requirement to specify initial guesses for
parameters did not exist when estimating the black box models sysARMA and sysNLARX.

Parameters = struct('Name',{'Survival factor, predators' 'Death factor, predators' ...
   'Survival factor, preys' 'Death factor, preys' ...
   'Crowding factor, preys'}, ...
   'Unit',{'1/year' '1/year' '1/year' '1/year' '1/year'}, ...

17 Model Analysis

17-36



   'Value',{-1.1 0.9 1.1 0.9 0.2}, ...
   'Minimum',{-Inf -Inf -Inf -Inf -Inf}, ...
   'Maximum',{Inf Inf Inf Inf Inf}, ...
   'Fixed',{false false false false false});

Similarly, specify the initial states of the model, and indicate that both initial states are to
be estimated.

InitialStates = struct('Name',{'Predator population' 'Prey population'}, ...
   'Unit',{'Size (thousands)' 'Size (thousands)'}, ...
   'Value',{1.8 1.8}, ...
   'Minimum', {0 0}, ...
   'Maximum',{Inf Inf}, ...
   'Fixed',{false false});

Specify the model as a continuous-time system.

Ts = 0;

Create a nonlinear grey-box model with specified structure, parameters, and states.

sysGrey = idnlgrey(FileName,Order,Parameters,InitialStates,Ts,'TimeUnit','years');

Estimate the model parameters.

sysGrey = nlgreyest(ze,sysGrey);
present(sysGrey)

                                                                                           
sysGrey =                                                                                  
Continuous-time nonlinear grey-box model defined by 'predprey2_m' (MATLAB file):           
                                                                                           
   dx/dt = F(t, x(t), p1, ..., p5)                                                         
    y(t) = H(t, x(t), p1, ..., p5) + e(t)                                                  
                                                                                           
with 2 states, 2 outputs, and 5 free parameters (out of 5).                                
                                                                                           
 States:                                          initial value                            
    x(1)  Predator population(t) [Size (thou..]   xinit@exp1   2.01325   (est) in [0, Inf] 
    x(2)  Prey population(t) [Size (thou..]       xinit@exp1   1.99687   (est) in [0, Inf] 
 Outputs:                                                                                  
    y(1)  y1(t)                                                                            
    y(2)  y2(t)                                                                            
 Parameters:                                   value       standard dev                    
    p1   Survival factor, predators [1/year]   -0.995895   0.0125269   (est) in [-Inf, Inf]
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    p2   Death factor, predators [1/year]        1.00441   0.0129368   (est) in [-Inf, Inf]
    p3   Survival factor, preys [1/year]         1.01234   0.0135413   (est) in [-Inf, Inf]
    p4   Death factor, preys [1/year]            1.01909   0.0121026   (est) in [-Inf, Inf]
    p5   Crowding factor, preys [1/year]        0.103244   0.0039285   (est) in [-Inf, Inf]
                                                                                           
Status:                                                                                    
Termination condition: Change in cost was less than the specified tolerance.               
Number of iterations: 6, Number of function evaluations: 7                                 
                                                                                           
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "ze".                 
Fit to estimation data: [91.21;92.07]%                                                     
FPE: 8.613e-06, MSE: 0.005713                                                              
More information in model's "Report" property.                                             

Compute a 10-step-ahead predicted output to validate the model.

yhat3 = predict(sysGrey,ze,10);

Forecast the output of the model 100 steps beyond the estimation data, and calculate
output standard deviations.

[yf3,x03,sysf3,ysd3] = forecast(sysGrey,ze,100);

Plot the measured, predicted, and forecasted outputs.

t = yf3.SamplingInstants;
subplot(1,2,1);
plot(t0,z.y(:,1),...
   te,yhat3.y(:,1),...
   t,yf3.y(:,1),'m',...
   t,yf3.y(:,1)+ysd3(:,1),'k--', ...
   t,yf3.y(:,1)-ysd3(:,1),'k--')
xlabel('Time (year)');
ylabel('Predator population (thousands)');
subplot(1,2,2);
plot(t0,z.y(:,2),...
   te,yhat3.y(:,2),...
   t,yf3.y(:,2),'m',...
   t,yf3.y(:,2)+ysd3(:,2),'k--', ...
   t,yf3.y(:,2)-ysd3(:,2),'k--')

legend('Measured','Predicted','Forecasted','Forecast uncertainty (1 sd)')
xlabel('Time (years)');
ylabel('Prey population (thousands)');
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The plots show that forecasting using a nonlinear grey-box model gave good forecasting
results and low forecasting output uncertainty.

Compare Forecasting Performance

Compare the forecasted response obtained from the identified models, sysARMA,
sysNLARX, and sysGrey. The first two are discrete-time models and sysGrey is a
continuous-time model.

clf
plot(z,yf1,yf2,yf3)
legend({'Measured','Linear ARMA','Nonlinear AR','Nonlinear Grey-Box'})
title('Forecasted Responses')
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Forecasting with a nonlinear ARX model gave better results than forecasting with a linear
model. Inclusion of the knowledge of the dynamics in the nonlinear grey-box model
further improved the reliability of the model and therefore the forecasting accuracy.

Note that the equations used in grey-box modeling are closely related to the polynomial
regressors used by the Nonlinear ARX model. If you approximate the derivatives in the
governing equations by first-order differences, you will get equations similar to:
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Where,  are some parameters related to the original parameters  and to
the sample time used for differencing. These equations suggest that only 2 regressors are
needed for the first output (y1(t-1) and *y1(t-1)*y2(t-1)) and 3 for the second output when
constructing the Nonlinear ARX model. Even in absence of such prior knowledge, linear-
in-regressor model structures employing polynomial regressors remain a popular choice
in practice.

Forecast the values using the nonlinear grey-box model over 200 years.

[yf4,~,~,ysd4] = forecast(sysGrey, ze, 2000);

Plot the latter part of the data (showing 1 sd uncertainty)

t = yf4.SamplingInstants;
N = 700:2000;
subplot(1,2,1);
plot(t(N), yf4.y(N,1), 'm',...
   t(N), yf4.y(N,1)+ysd4(N,1), 'k--', ...
   t(N), yf4.y(N,1)-ysd4(N,1), 'k--')
xlabel('Time (year)');
ylabel('Predator population (thousands)');
ax = gca;
ax.YLim = [0.8 1];
ax.XLim = [82 212];
subplot(1,2,2);
plot(t(N),yf4.y(N,2),'m',...
   t(N),yf4.y(N,2)+ysd4(N,2),'k--', ...
   t(N),yf4.y(N,2)-ysd4(N,2),'k--')
legend('Forecasted population','Forecast uncertainty (1 sd)')
xlabel('Time (years)');
ylabel('Prey population (thousands)');
ax = gca;
ax.YLim = [0.9 1.1];
ax.XLim = [82 212];
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The plot show that the predatory population is forecasted to reach a steady-state of
approximately 890 and the prey population is forecasted to reach 990.

See Also

Related Examples
• “Introduction to Forecasting of Dynamic System Response” on page 14-36
• “Simulation and Prediction at the Command Line” on page 17-17
• “Identify Time-Series Models at the Command Line” on page 14-13
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What Is Residual Analysis?
Residuals are differences between the one-step-predicted output from the model and the
measured output from the validation data set. Thus, residuals represent the portion of the
validation data not explained by the model.

Residual analysis consists of two tests: the whiteness test and the independence test.

According to the whiteness test criteria, a good model has the residual autocorrelation
function inside the confidence interval of the corresponding estimates, indicating that the
residuals are uncorrelated.

According to the independence test criteria, a good model has residuals uncorrelated with
past inputs. Evidence of correlation indicates that the model does not describe how part
of the output relates to the corresponding input. For example, a peak outside the
confidence interval for lag k means that the output y(t) that originates from the input u(t-
k) is not properly described by the model.

Your model should pass both the whiteness and the independence tests, except in the
following cases:

• For output-error (OE) models and when using instrumental-variable (IV) methods,
make sure that your model shows independence of e and u, and pay less attention to
the results of the whiteness of e.

In this case, the modeling focus is on the dynamics G and not the disturbance
properties H.

• Correlation between residuals and input for negative lags, is not necessarily an
indication of an inaccurate model.

When current residuals at time t affect future input values, there might be feedback in
your system. In the case of feedback, concentrate on the positive lags in the cross-
correlation plot during model validation.

Supported Model Types
You can validate parametric linear and nonlinear models by checking the behavior of the
model residuals. For a description of residual analysis, see “What Residual Plots Show for
Different Data Domains” on page 17-44.

 What Is Residual Analysis?

17-43



Note Residual analysis plots are not available for frequency response (FRD) models. For
time-series models, you can only generate model-output plots for parametric models using
time-domain time-series (no input) measured data.

What Residual Plots Show for Different Data Domains
Residual analysis plots show different information depending on whether you use time-
domain or frequency-domain input-output validation data.

For time-domain validation data, the plot shows the following two axes:

• Autocorrelation function of the residuals for each output
• Cross-correlation between the input and the residuals for each input-output pair

Note For time-series models, the residual analysis plot does not provide any input-
residual correlation plots.

For frequency-domain validation data, the plot shows the following two axes:

• Estimated power spectrum of the residuals for each output
• Transfer-function amplitude from the input to the residuals for each input-output pair

For linear models, you can estimate a model using time-domain data, and then validate
the model using frequency domain data. For nonlinear models, the System Identification
Toolbox product supports only time-domain data.

The following figure shows a sample Residual Analysis plot, created in the System
Identification app.
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Displaying the Confidence Interval
The confidence interval corresponds to the range of residual values with a specific
probability of being statistically insignificant for the system. The toolbox uses the
estimated uncertainty in the model parameters to calculate confidence intervals and
assumes the estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around zero represents the range
of residual values that have a 95% probability of being statistically insignificant. You can
specify the confidence interval as a probability (between 0 and 1) or as the number of
standard deviations of a Gaussian distribution. For example, a probability of 0.99 (99%)
corresponds to 2.58 standard deviations.

You can display a confidence interval on the plot in the app to gain insight into the quality
of the model. To learn how to show or hide confidence interval, see the description of the
plot settings in “How to Plot Residuals in the App” on page 17-47.
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Note If you are working in the System Identification app, you can specify a custom
confidence interval. If you are using the resid command, the confidence interval is fixed
at 99%.

See Also

Related Examples
• “How to Plot Residuals in the App” on page 17-47
• “Examine Model Residuals” on page 17-51
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How to Plot Residuals in the App
To create a residual analysis plot for parametric linear and nonlinear models in the
System Identification app, select the Model resids check box in the Model Views area.
For general information about creating and working with plots, see “Working with Plots”
on page 21-11.

To include or exclude a model on the plot, click the corresponding model icon in the
System Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Residual Analysis plot settings.
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Residual Analysis Plot Settings

Action Command
Display confidence intervals
around zero.

Note Confidence internal are
not available for nonlinear ARX
and Hammerstein-Wiener
models.

• To display the dashed lines on either side of the
nominal model curve, select Options > Show
confidence intervals. Select this option again to
hide the confidence intervals.

• To change the confidence value, select Options >
Set % confidence level and choose a value from
the list.

• To enter your own confidence level, select Options
> Set confidence level > Other. Enter the value
as a probability (between 0 and 1) or as the
number of standard deviations of a Gaussian
distribution.

Change the number of lags (data
samples) for which to compute
autocorrelation and cross-
correlation functions.

Note For frequency-domain
validation data, increasing the
number of lags increases the
frequency resolution of the
residual spectrum and the
transfer function.

• Select Options > Number of lags and choose the
value from the list.

• To enter your own lag value, select Options > Set
confidence level > Other. Enter the value as the
number of data samples.

(Multiple-output system only)
Select a different input-output
pair.

Select the input-output by name in the Channel menu.

See Also

Related Examples
• “How to Plot Residuals at the Command Line” on page 17-50
• “Examine Model Residuals” on page 17-51
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More About
• “What Is Residual Analysis?” on page 17-43
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How to Plot Residuals at the Command Line
The following table summarizes commands that generate residual-analysis plots for linear
and nonlinear models. For detailed information about this command, see the
corresponding reference page.

Note Apply pe and resid to one model at a time.

Command Description Example
pe Computes and plots model

prediction errors.
To plot the prediction errors for
the model model using data
data, type the following
command:

pe(model,data)

resid Performs whiteness and
independence tests on model
residuals, or prediction errors.
Uses validation data input as
model input.

To plot residual correlations for
the model model using data
data, type the following
command:

resid(data,model)

See Also

Related Examples
• “How to Plot Residuals in the App” on page 17-47
• “Examine Model Residuals” on page 17-51

More About
• “What Is Residual Analysis?” on page 17-43
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Examine Model Residuals
This example shows how you can use residual analysis to evaluate model quality.

Creating Residual Plots
1 To load the sample System Identification app session that contains estimated models,

type the following command in the MATLAB Command Window:

systemIdentification('dryer2_linear_models')
2 To generate a residual analysis plot, select the Model resids check box in the System

Identification app.

This opens an empty plot.
3 In the System Identification app window, click each model icon to display it on the

Residual Analysis plot.

Note For the nonparametric models, imp and spad, residual analysis plots are not
available.
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Description of the Residual Plot Axes
The top axes show the autocorrelation of residuals for the output (whiteness test). The
horizontal scale is the number of lags, which is the time difference (in samples) between
the signals at which the correlation is estimated. The horizontal dashed lines on the plot
represent the confidence interval of the corresponding estimates. Any fluctuations within
the confidence interval are considered to be insignificant. Four of the models, arxqs,
n4s3, arx223 and amx2222, produce residuals that enter outside the confidence interval.
A good model should have a residual autocorrelation function within the confidence
interval, indicating that the residuals are uncorrelated.

The bottom axes show the cross-correlation of the residuals with the input. A good model
should have residuals uncorrelated with past inputs (independence test). Evidence of
correlation indicates that the model does not describe how the output is formed from the
corresponding input. For example, when there is a peak outside the confidence interval
for lag k, this means that the contribution to the output y(t) that originates from the input
u(t-k) is not properly described by the model. The models arxqs and amx2222 extend
beyond the confidence interval and do not perform as well as the other models.
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Validating Models Using Analyzing Residuals
To remove models with poor performance from the Residual Analysis plot, click the model
icons arxqs, n4s3, arx223, and amx2222 in the System Identification app.

The Residual Analysis plot now includes only the three models that pass the residual
tests: arx692, n4s6, and amx3322.

The plots for these models fall within the confidence intervals. Thus, when choosing the
best model among several estimated models, it is reasonable to pick amx3322 because it
is a simpler, low-order model.

See Also

Related Examples
• “How to Plot Residuals in the App” on page 17-47
• “How to Plot Residuals at the Command Line” on page 17-50
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More About
• “What Is Residual Analysis?” on page 17-43
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Impulse and Step Response Plots

Supported Models
You can plot the simulated response of a model using impulse and step signals as the
input for all linear parametric models and correlation analysis (nonparametric) models.

You can also create step-response plots for nonlinear models. These step and impulse
response plots, also called transient response plots, provide insight into the
characteristics of model dynamics, including peak response and settling time.

Note For frequency-response models, impulse- and step-response plots are not available.
For nonlinear models, only step-response plots are available.

Examples

“Plot Impulse and Step Response Using the System Identification App” on page 17-59

“Plot Impulse and Step Response at the Command Line” on page 17-62

How Transient Response Helps to Validate Models
Transient response plots provide insight into the basic dynamic properties of the model,
such as response times, static gains, and delays.

Transient response plots also help you validate how well a linear parametric model, such
as a linear ARX model or a state-space model, captures the dynamics. For example, you
can estimate an impulse or step response from the data using correlation analysis
(nonparametric model), and then plot the correlation analysis result on top of the
transient responses of the parametric models.

Because nonparametric and parametric models are derived using different algorithms,
agreement between these models increases confidence in the parametric model results.
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What Does a Transient Response Plot Show?
Transient response plots show the value of the impulse or step response on the vertical
axis. The horizontal axis is in units of time you specified for the data used to estimate the
model.

The impulse response of a dynamic model is the output signal that results when the input
is an impulse. That is, u(t) is zero for all values of t except at t=0, where u(0)=1. In the
following difference equation, you can compute the impulse response by setting y(-
T)=y(-2T)=0, u(0)=1, and u(t>0)=0.

y t y t T y t T

u t u t T

( ) . ( ) . ( )

. ( ) . ( )

- - + - =

+ -

1 5 0 7 2

0 9 0 5       

The step response is the output signal that results from a step input, where u(t<0)=0 and
u(t>0)=1.

If your model includes a noise model, you can display the transient response of the noise
model associated with each output channel. For more information about how to display
the transient response of the noise model, see “Plot Impulse and Step Response Using the
System Identification App” on page 17-59.

The following figure shows a sample Transient Response plot, created in the System
Identification app.

17 Model Analysis

17-56



Displaying the Confidence Interval
In addition to the transient-response curve, you can display a confidence interval on the
plot. To learn how to show or hide confidence interval, see the description of the plot
settings in “Plot Impulse and Step Response Using the System Identification App” on
page 17-59.

The confidence interval corresponds to the range of response values with a specific
probability of being the actual response of the system. The toolbox uses the estimated
uncertainty in the model parameters to calculate confidence intervals and assumes the
estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal curve
represents the range where there is a 95% chance that it contains the true system
response. You can specify the confidence interval as a probability (between 0 and 1) or as
the number of standard deviations of a Gaussian distribution. For example, a probability
of 0.99 (99%) corresponds to 2.58 standard deviations.
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Note The calculation of the confidence interval assumes that the model sufficiently
describes the system dynamics and the model residuals pass independence tests.
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Plot Impulse and Step Response Using the System
Identification App

To create a transient analysis plot in the System Identification app, select the Transient
resp check box in the Model Views area. For general information about creating and
working with plots, see “Working with Plots” on page 21-11.

To include or exclude a model on the plot, click the corresponding model icon in the
System Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Transient Response plot settings.
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Transient Response Plot Settings

Action Command
Display step response for linear or
nonlinear model.

Select Options > Step response.

Display impulse response for linear
model.

Select Options > Impulse response.

Note Not available for nonlinear models.
Display the confidence interval.

Note Only available for linear models.

• To display the dashed lines on either side of
the nominal model curve, select Options >
Show confidence intervals. Select this
option again to hide the confidence intervals.

• To change the confidence value, select
Options > Set % confidence level, and
choose a value from the list.

• To enter your own confidence level, select
Options > Set confidence level > Other.
Enter the value as a probability (between 0
and 1) or as the number of standard
deviations of a Gaussian distribution.

Change time span over which the
impulse or step response is calculated.
For a scalar time span T, the resulting
response is plotted from -T/4 to T.

Note To change the time span of
models you estimated using correlation
analysis models, select Estimate >
Correlation models and reestimate
the model using a new time span.

• Select Options > Time span (time units),
and choose a new time span in units of time
you specified for the model.

• To enter your own time span, select Options
> Time span (time units) > Other, and
enter the total response duration.

• To use the time span based on model
dynamics, type [] or default.

The default time span is computed based
on the model dynamics and might be
different for different models. For nonlinear
models, the default time span is 10.
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Action Command
Toggle between line plot or stem plot.

Tip Use a stem plot for displaying
impulse response.

Select Style > Line plot or Style > Stem plot.

(Multiple-output system only)

Select an input-output pair to view the
noise spectrum corresponding to those
channels.

Select the output by name in the Channel
menu.

If the plotted models include a noise model, you
can display the transient response properties
associated with each output channel. The name
of the channel has the format e@OutputName,
where OutputName is the name of the output
channel corresponding to the noise model.

(Step response for nonlinear models
only)

Set level of the input step.

Note For multiple-input models, the
input-step level applies only to the input
channel you selected to display in the
plot.

Select Options > Step Size, and then chose
from two options:

• 0–>1 sets the lower level to 0 and the upper
level to 1.

• Other opens the Step Level dialog box,
where you enter the values for the lower and
upper level values.

More About

“Impulse and Step Response Plots” on page 17-55
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Plot Impulse and Step Response at the Command Line
You can plot impulse- and step-response plots using the impulseplot and stepplot
commands, respectively. If you want to fetch the response data, use impulse and step
instead.

All plot commands have the same basic syntax, as follows:

• To plot one model, use the syntax command(model).
• To plot several models, use the syntax command(model1,model2,...,modelN).

In this case, command represents any of the plotting commands.

To display confidence intervals for a specified number of standard deviations, use the
following syntax:

h = impulseplot(model);
showConfidence(h,sd);

where h is the plot handle returned by impulseplot. You could also use the plot handle
returned by stepplot. sd is the number of standard deviations of a Gaussian
distribution. For example, a confidence value of 99% for the nominal model curve
corresponds to 2.58 standard deviations.

Alternatively, you can turn on the confidence region view interactively by right-clicking on
the plot and selecting Characteristics > Confidence Region. Use the plot property
editor to specify the number of standard deviations.

The following table summarizes commands that generate impulse- and step-response
plots. For detailed information about each command, see the corresponding reference
page.
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Command Description Example
impulse,impulseplo
t

Plot impulse response for
idpoly, idproc, idtf,
idss, and idgrey model
objects.

Note Does not support
nonlinear models.

To plot the impulse response of the
model sys, type the following
command:

impulse(sys)

step,stepplot Plots the step response of
all linear and nonlinear
models.

To plot the step response of the
model sys, type the following
command:

step(sys)

To specify the step level offset (u0)
and amplitude (A) for a model:

opt = stepDataOptions;
opt.InputOffset = u0; 
opt.StepAmplitude = A; 

step(sys,opt)

More About

“Impulse and Step Response Plots” on page 17-55
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Frequency Response Plots

What Is Frequency Response?
Frequency response plots show the complex values of a transfer function as a function of
frequency.

In the case of linear dynamic systems, the transfer function G is essentially an operator
that takes the input u of a linear system to the output y:

y Gu=

For a continuous-time system, the transfer function relates the Laplace transforms of the
input U(s) and output Y(s):

Y s G s U s( ) ( ) ( )=

In this case, the frequency function G(iw) is the transfer function evaluated on the
imaginary axis s=iw.

For a discrete-time system sampled with a time interval T, the transfer function relates
the Z-transforms of the input U(z) and output Y(z):

Y z G z U z( ) ( ) ( )=

In this case, the frequency function G(eiwT) is the transfer function G(z) evaluated on the
unit circle. The argument of the frequency function G(eiwT) is scaled by the sample time T

to make the frequency function periodic with the sampling frequency 2p

T
.

Examples

“Plot Bode Plots Using the System Identification App” on page 17-68

“Plot Bode and Nyquist Plots at the Command Line” on page 17-71
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How Frequency Response Helps to Validate Models
You can plot the frequency response of a model to gain insight into the characteristics of
linear model dynamics, including the frequency of the peak response and stability
margins. Frequency-response plots are available for all linear models.

Note Frequency-response plots are not available for nonlinear models. In addition,
Nyquist plots do not support time-series models that have no input.

The frequency response of a linear dynamic model describes how the model reacts to
sinusoidal inputs. If the input u(t) is a sinusoid of a certain frequency, then the output y(t)
is also a sinusoid of the same frequency. However, the magnitude of the response is
different from the magnitude of the input signal, and the phase of the response is shifted
relative to the input signal.

Frequency response plots provide insight into linear systems dynamics, such as
frequency-dependent gains, resonances, and phase shifts. Frequency response plots also
contain information about controller requirements and achievable bandwidths. Finally,
frequency response plots can also help you validate how well a linear parametric model,
such as a linear ARX model or a state-space model, captures the dynamics.

One example of how frequency-response plots help validate other models is that you can
estimate a frequency response from the data using spectral analysis (nonparametric
model), and then plot the spectral analysis result on top of the frequency response of the
parametric models. Because nonparametric and parametric models are derived using
different algorithms, agreement between these models increases confidence in the
parametric model results.

What Does a Frequency-Response Plot Show?
System Identification app supports the following types of frequency-response plots for
linear parametric models, linear state-space models, and nonparametric frequency-
response models:

• Bode plot of the model response. A Bode plot consists of two plots. The top plot shows

the magnitude G  by which the transfer function G magnifies the amplitude of the

sinusoidal input. The bottom plot shows the phase j = argG  by which the transfer
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function shifts the input. The input to the system is a sinusoid, and the output is also a
sinusoid with the same frequency.

• Plot of the disturbance model, called noise spectrum. This plot is the same as a Bode
plot of the model response, but it shows the output power spectrum of the noise model
instead. For more information, see “Noise Spectrum Plots” on page 17-73.

• (Only in the MATLAB Command Window)
Nyquist plot. Plots the imaginary versus the real part of the transfer function.

The following figure shows a sample Bode plot of the model dynamics, created in the
System Identification app.

Displaying the Confidence Interval
In addition to the frequency-response curve, you can display a confidence interval on the
plot. To learn how to show or hide confidence interval, see the description of the plot
settings in “Plot Bode Plots Using the System Identification App” on page 17-68

The confidence interval corresponds to the range of response values with a specific
probability of being the actual response of the system. The toolbox uses the estimated
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uncertainty in the model parameters to calculate confidence intervals and assumes the
estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal curve
represents the range where there is a 95% chance that it contains the true system
response. You can specify the confidence interval as a probability (between 0 and 1) or as
the number of standard deviations of a Gaussian distribution. For example, a probability
of 0.99 (99%) corresponds to 2.58 standard deviations.
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Plot Bode Plots Using the System Identification App
To create a frequency-response plot for linear models in the System Identification app,
select the Frequency resp check box in the Model Views area. For general information
about creating and working with plots, see “Working with Plots” on page 21-11.

To include or exclude a model on the plot, click the corresponding model icon in the
System Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Frequency Function plot settings.
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Frequency Function Plot Settings

Action Command
Display the confidence interval. • To display the dashed lines on either side of the

nominal model curve, select Options > Show
confidence intervals. Select this option again to
hide the confidence intervals.

• To change the confidence value, select Options >
Set % confidence level, and choose a value from
the list.

• To enter your own confidence level, select Options
> Set confidence level > Other. Enter the value
as a probability (between 0 and 1) or as the
number of standard deviations of a Gaussian
distribution.

Change the frequency values for
computing the noise spectrum.

The default frequency vector is
128 linearly distributed values,
greater than zero and less than or
equal to the Nyquist frequency.

Select Options > Frequency range and specify a
new frequency vector in units of rad/s.

Enter the frequency vector using any one of following
methods:

• MATLAB expression, such as [1:100]*pi/100 or
logspace(-3,-1,200). Cannot contain variables
in the MATLAB workspace.

• Row vector of values, such as [1:.1:100]

Note To restore the default frequency vector, enter
[].

Change frequency units between
hertz and radians per second.

Select Style > Frequency (Hz) or Style >
Frequency (rad/s).

Change frequency scale between
linear and logarithmic.

Select Style > Linear frequency scale or Style >
Log frequency scale.

Change amplitude scale between
linear and logarithmic.

Select Style > Linear amplitude scale or Style >
Log amplitude scale.
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Action Command
(Multiple-output system only)
Select an input-output pair to
view the noise spectrum
corresponding to those channels.

Note You cannot view cross
spectra between different
outputs.

Select the output by name in the Channel menu.

More About

“Frequency Response Plots” on page 17-64
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Plot Bode and Nyquist Plots at the Command Line
You can plot Bode and Nyquist plots for linear models using the bode and nyquist
commands. If you want to customize the appearance of the plot, or turn on the confidence
region programmatically, use bodeplot, and nyquistplot instead.

All plot commands have the same basic syntax, as follows:

• To plot one model, use the syntax command(model).
• To plot several models, use the syntax command(model1,model2,...,modelN).

In this case, command represents any of the plotting commands.

To display confidence intervals for a specified number of standard deviations, use the
following syntax:

h=command(model);
showConfidence(h,sd)

where sd is the number of standard deviations of a Gaussian distribution and command is
bodeplotor nyquistplot. For example, a confidence value of 99% for the nominal
model curve corresponds to 2.58 standard deviations.

The following table summarizes commands that generate Bode and Nyquist plots for
linear models. For detailed information about each command and how to specify the
frequency values for computing the response, see the corresponding reference page.

Command Description Example
bode and bodeplot Plots the magnitude and

phase of the frequency
response on a logarithmic
frequency scale.

Note Does not support
time-series models.

To create the bode plot of the
model, sys, use the following
command:

bode(sys)
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Command Description Example
nyquist and
nyquistplot

Plots the imaginary
versus real part of the
transfer function.

Note Does not support
time-series models.

To plot the frequency response of
the model, sys, use the following
command:

nyquist(sys)

spectrum and
spectrumplot

Plots the disturbance
spectra of input-output
models and output
spectra of time series
models.

To plot the output spectrum of a
time series model, sys, with 1
standard deviation confidence
region, use the following command:

showConfidence(spectrumplot(sys));

More About

“Frequency Response Plots” on page 17-64
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Noise Spectrum Plots

Supported Models
When you estimate the noise model of your linear system, you can plot the spectrum of
the estimated noise model. Noise-spectrum plots are available for all linear parametric
models and spectral analysis (nonparametric) models.

Note For nonlinear models and correlation analysis models, noise-spectrum plots are not
available. For time-series models, you can only generate noise-spectrum plots for
parametric and spectral-analysis models.

Examples

“Plot the Noise Spectrum Using the System Identification App” on page 17-75

“Plot the Noise Spectrum at the Command Line” on page 17-78

What Does a Noise Spectrum Plot Show?
The general equation of a linear dynamic system is given by:

y t G z u t v t( ) ( ) ( ) ( )= +

In this equation, G is an operator that takes the input to the output and captures the
system dynamics, and v is the additive noise term. The toolbox treats the noise term as
filtered white noise, as follows:

v t H z e t( ) ( ) ( )=

where e(t) is a white-noise source with variance λ.

The toolbox computes both H and l  during the estimation of the noise model and stores
these quantities as model properties. The H(z) operator represents the noise model.

Whereas the frequency-response plot shows the response of G, the noise-spectrum plot
shows the frequency-response of the noise model H.
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For input-output models, the noise spectrum is given by the following equation:

Fv
i

H e( )w l w= ( )
2

For time-series models (no input), the vertical axis of the noise-spectrum plot is the same
as the dynamic model spectrum. These axes are the same because there is no input for

time series and y He= .

Note You can avoid estimating the noise model by selecting the Output-Error model
structure or by setting the DisturbanceModel property value to 'None' for a state
space model. If you choose to not estimate a noise model for your system, then H and the
noise spectrum amplitude are equal to 1 at all frequencies.

Displaying the Confidence Interval
In addition to the noise-spectrum curve, you can display a confidence interval on the plot.
To learn how to show or hide confidence interval, see the description of the plot settings
in “Plot the Noise Spectrum Using the System Identification App” on page 17-75.

The confidence interval corresponds to the range of power-spectrum values with a
specific probability of being the actual noise spectrum of the system. The toolbox uses the
estimated uncertainty in the model parameters to calculate confidence intervals and
assumes the estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal curve
represents the range where there is a 95% chance that the true response belongs.. You
can specify the confidence interval as a probability (between 0 and 1) or as the number of
standard deviations of a Gaussian distribution. For example, a probability of 0.99 (99%)
corresponds to 2.58 standard deviations.

Note The calculation of the confidence interval assumes that the model sufficiently
describes the system dynamics and the model residuals pass independence tests.
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Plot the Noise Spectrum Using the System Identification
App

To create a noise spectrum plot for parametric linear models in the app, select the Noise
spectrum check box in the Model Views area. For general information about creating
and working with plots, see “Working with Plots” on page 21-11.

To include or exclude a model on the plot, click the corresponding model icon in the
System Identification app. Active models display a thick line inside the Model Board icon.

The following figure shows a sample Noise Spectrum plot.

The following table summarizes the Noise Spectrum plot settings.
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Noise Spectrum Plot Settings

Action Command
Display the confidence
interval.

• To display the dashed lines on either side of the nominal
model curve, select Options > Show confidence
intervals. Select this option again to hide the
confidence intervals.

• To change the confidence value, select Options > Set
% confidence level, and choose a value from the list.

• To enter your own confidence level, select Options >
Set confidence level > Other. Enter the value as a
probability (between 0 and 1) or as the number of
standard deviations of a Gaussian distribution.

Change the frequency values
for computing the noise
spectrum.

The default frequency vector
is 128 linearly distributed
values, greater than zero and
less than or equal to the
Nyquist frequency.

Select Options > Frequency range and specify a new
frequency vector in units of radians per second.

Enter the frequency vector using any one of following
methods:

• MATLAB expression, such as [1:100]*pi/100 or
logspace(-3,-1,200). Cannot contain variables in
the MATLAB workspace.

• Row vector of values, such as [1:.1:100]

Tip To restore the default frequency vector, enter [].
Change frequency units
between hertz and radians
per second.

Select Style > Frequency (Hz) or Style > Frequency
(rad/s).

Change frequency scale
between linear and
logarithmic.

Select Style > Linear frequency scale or Style > Log
frequency scale.

Change amplitude scale
between linear and
logarithmic.

Select Style > Linear amplitude scale or Style > Log
amplitude scale.
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Action Command
(Multiple-output system only)
Select an input-output pair to
view the noise spectrum
corresponding to those
channels.

Note You cannot view cross
spectra between different
outputs.

Select the output by name in the Channel menu.

More About

“Noise Spectrum Plots” on page 17-73
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Plot the Noise Spectrum at the Command Line
To plot the disturbance spectrum of an input-output model or the output spectrum of a
time series model, use spectrum. To customize such plots, or to turn on the confidence
region view programmatically for such plots, use spectrumplot instead.

To determine if your estimated noise model is good enough, you can compare the output
spectrum of the estimated noise-model H to the estimated output spectrum of v(t). To
compute v(t), which represents the actual noise term in the system, use the following
commands:

ysimulated = sim(m,data);
v = ymeasured-ysimulated;

ymeasured is data.y. v is the noise term v(t), as described in “What Does a Noise
Spectrum Plot Show?” on page 17-73 and corresponds to the difference between the
simulated response ysimulated and the actual response ymeasured.

To compute the frequency-response model of the actual noise, use spa:

V = spa(v);

The toolbox uses the following equation to compute the noise spectrum of the actual
noise:
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The covariance function R
v  is given in terms of E, which denotes the mathematical

expectation, as follows:
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v
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To compare the parametric noise-model H to the (nonparametric) frequency-response
estimate of the actual noise v(t), use spectrum:

spectrum(V,m)

If the parametric and the nonparametric estimates of the noise spectra are different, then
you might need a higher-order noise model.
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More About

“Noise Spectrum Plots” on page 17-73
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Pole and Zero Plots

Supported Models
You can create pole-zero plots of linear identified models. To study the poles and zeros of
the noise component of an input-output model or a time series model, use noise2meas to
first extract the noise model as an independent input-output model, whose inputs are the
noise channels of the original model.

For examples of creating pole-zero plots, see “Model Poles and Zeros Using the System
Identification App” on page 17-84 and “Plot Poles and Zeros at the Command Line” on
page 17-86.

What Does a Pole-Zero Plot Show?
The following figure shows a sample pole-zero plot of the model with confidence intervals.
x indicate poles and o indicate zeros.

The general equation of a linear dynamic system is given by:
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y t G z u t v t( ) ( ) ( ) ( )= +

In this equation, G is an operator that takes the input to the output and captures the
system dynamics, and v is the additive noise term.

The poles of a linear system are the roots of the denominator of the transfer function G.
The poles have a direct influence on the dynamic properties of the system. The zeros are
the roots of the numerator of G. If you estimated a noise model H in addition to the
dynamic model G, you can also view the poles and zeros of the noise model.

Zeros and the poles are equivalent ways of describing the coefficients of a linear
difference equation, such as the ARX model. Poles are associated with the output side of
the difference equation, and zeros are associated with the input side of the equation. The
number of poles is equal to the number of sampling intervals between the most-delayed
and least-delayed output. The number of zeros is equal to the number of sampling
intervals between the most-delayed and least-delayed input. For example, there two poles
and one zero in the following ARX model:

y t y t T y t T

u t u t T

( ) . ( ) . ( )

. ( ) . ( )

- - + - =

+ -

1 5 0 7 2

0 9 0 5       

Displaying the Confidence Interval
You can display a confidence interval for each pole and zero on the plot. To learn how to
show or hide confidence interval, see “Model Poles and Zeros Using the System
Identification App” on page 17-84 and “Plot Poles and Zeros at the Command Line” on
page 17-86.

The confidence interval corresponds to the range of pole or zero values with a specific
probability of being the actual pole or zero of the system. The toolbox uses the estimated
uncertainty in the model parameters to calculate confidence intervals and assumes the
estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal pole or zero
value represents the range of values that have a 95% probability of being the true system
pole or zero value. You can specify the confidence interval as a probability (between 0 and
1) or as the number of standard deviations of a Gaussian distribution. For example, a
probability of 0.99 (99%) corresponds to 2.58 standard deviations.

You can use pole-zero plots to evaluate whether it might be useful to reduce model order.
When confidence intervals for a pole-zero pair overlap, this overlap indicates a possible
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pole-zero cancellation. For more information, see “Reducing Model Order Using Pole-Zero
Plots” on page 17-83.

See Also

More About
• “Model Poles and Zeros Using the System Identification App” on page 17-84
• “Plot Poles and Zeros at the Command Line” on page 17-86
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Reducing Model Order Using Pole-Zero Plots
You can use pole-zero plots of linear identified models to evaluate whether it might be
useful to reduce model order. When confidence intervals for a pole-zero pair overlap, this
overlap indicates a possible pole-zero cancellation.

For example, you can use the following syntax to plot a 1-standard deviation confidence
interval around model poles and zeros.

showConfidence(iopzplot(model))

If poles and zeros overlap, try estimating a lower order model.

Always validate model output and residuals to see if the quality of the fit changes after
reducing model order. If the plot indicates pole-zero cancellations, but reducing model
order degrades the fit, then the extra poles probably describe noise. In this case, you can
choose a different model structure that decouples system dynamics and noise. For
example, try ARMAX, Output-Error, or Box-Jenkins polynomial model structures with an A
or F polynomial of an order equal to that of the number of uncanceled poles. For more
information about estimating linear polynomial models, see “Input-Output Polynomial
Models”.

See Also
iopzplot

More About
• “Pole and Zero Plots” on page 17-80
• “Plot Poles and Zeros at the Command Line” on page 17-86
• “Model Poles and Zeros Using the System Identification App” on page 17-84
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Model Poles and Zeros Using the System Identification
App

To create a pole-zero plot for parametric linear models in the System Identification app,
select the Zeros and poles check box in the Model Views area. For general information
about creating and working with plots, see “Working with Plots” on page 21-11.

To include or exclude a model on the plot, click the corresponding model icon in the
System Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Zeros and Poles plot settings.

Zeros and Poles Plot Settings

Action Command
Display the confidence
interval.

• To display the dashed lines on either side of the
nominal pole and zero values, select Options > Show
confidence intervals. Select this option again to hide
the confidence intervals.

• To change the confidence value, select Options > Set
% confidence level, and choose a value from the list.

• To enter your own confidence level, select Options >
Set confidence level > Other. Enter the value as a
probability (between 0 and 1) or as the number of
standard deviations of a Gaussian distribution.

Show real and imaginary
axes.

Select Style > Re/Im-axes. Select this option again to
hide the axes.

Show the unit circle. Select Style > Unit circle. Select this option again to
hide the unit circle. The unit circle is useful as a reference
curve for discrete-time models.

(Multiple-output system only)
Select an input-output pair to
view the poles and zeros
corresponding to those
channels.

Select the output by name in the Channel menu.
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See Also

More About
• “Pole and Zero Plots” on page 17-80
• “Plot Poles and Zeros at the Command Line” on page 17-86

 See Also
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Plot Poles and Zeros at the Command Line
You can create a pole-zero plot for linear identified models using the iopzmap and
iopzplot commands.

To display confidence intervals for a specified number of standard deviations, use the
following syntax:

h = iopzplot(model); 
showConfidence(h,sd)

where sd is the number of standard deviations of a Gaussian distribution. For example, a
confidence value of 99% for the nominal model curve corresponds to 2.58 standard
deviations.

Command Description Example
iopzmap,iopzplot Plots zeros and poles of the

model on the S-plane or Z-
plane for continuous-time or
discrete-time model,
respectively.

To plot the poles and zeros
of the model sys, use the
following command:

iopzmap(sys)

See Also

More About
• “Pole and Zero Plots” on page 17-80
• “Model Poles and Zeros Using the System Identification App” on page 17-84

17 Model Analysis

17-86



Analyzing MIMO Models

Overview of Analyzing MIMO Models
If you plot a MIMO system, or an LTI array containing multiple identified linear models,
you can use special features of the right-click menu to group the response plots by input/
output (I/O) pairs, or select individual plots for display. For example, generate a random
3-input, 3-output MIMO system and then randomly sample it 10 times. Plot the step
response for all the models.

sys_mimo=rsample(idss(rss(3,3,3)),10);
step(sys_mimo);

sys_mimo is an array of ten 3-input, 3-output systems.

A set of 9 plots appears, one from each input to each output, for the ten model samples.
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Array Selector
If you plot an identified linear model array, Array Selector appears as an option in the
right-click menu. Selecting this option opens the Model Selector for LTI Arrays, shown
below.

You can use this window to include or exclude models within the LTI array using various
criteria.

Arrays

Select the LTI array for model selection using the Arrays list.

Selection Criteria

There are two selection criteria. The default, Index into Dimensions, allows you to
include or exclude specified indices of the LTI Array. Select systems from the Selection
Criterion Setup section of the dialog box. Then, Specify whether to show or hide the
systems using the pull-down menu below the Setup lists.

The second criterion is Bound on Characteristics. Selecting this options causes the
Model Selector to reconfigure. The reconfigured window is shown below
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Use this option to select systems for inclusion or exclusion in your response plot based on
their time response characteristics. The panel directly above the buttons describes how to
set the inclusion or exclusion criteria based on which selection criteria you select from
the reconfigured Selection Criteria Setup panel.

I/O Grouping for MIMO Models
You can group the plots by inputs, by outputs, or both by selecting I/O Grouping from
the right-click menu, and then selecting Inputs, Outputs, or All.

For example, if you select Outputs, the step plot reconfigures into 3 plots, grouping all
the outputs together on each plot. Each plot now displays the responses from one of the
inputs to all of the MIMO system’s outputs, for all of the models in the array.
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Selecting None returns to the default configuration, where all I/O pairs are displayed
individually.

Selecting I/O Pairs
Another way to organize MIMO system information is to choose I/O Selector from the
right-click menu, which opens the I/O Selector window.
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This window automatically configures to the number of I/O pairs in your MIMO system.
You can select:

• Any individual plot (only one at a time) by clicking on a button
• Any row or column by clicking on Y(*) or U(*)
• All of the plots by clicking [all]

Using these options, you can inspect individual I/O pairs, or look at particular I/O
channels in detail.

See Also
Linear System Analyzer

More About
• “Model Arrays” (Control System Toolbox)
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Customize Response Plots Using the Response Plots
Property Editor

Opening the Property Editor
After you create a response plot, there are two ways to open the Property Editor:

• Double-click in the plot region.
• Right-click the plot, and select Properties from the context menu.

Before looking at the Property Editor, open a step response plot using these commands.

sys_dc = idtf([1 4],[1 20 5]);
step(sys_dc)

This creates a step plot. Right-click the plot, and select Properties from the context
menu. When you open the Property Editor, squares appear around the step response plot.
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Overview of Response Plots Property Editor
The appearance of the Property Editor dialog box depends on the type of response plot.
This figure shows the Property Editor dialog box for a step response.
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The Property Editor for Step Response

In general, you can change the following properties of response plots. Only the Labels
and Limits panes are available when using the Property Editor with Simulink Design
Optimization™ software.

• Titles and X- and Y-labels in the Labels pane.
• Numerical ranges of the X and Y axes in the Limits pane.
• Units where applicable (e.g., rad/s to Hertz) in the Units pane.

If you cannot customize units, the Property Editor displays that no units are available
for the selected plot.

• Styles in the Styles pane.

You can show a grid, adjust font properties, such as font size, bold, and italics, and
change the axes foreground color

17 Model Analysis

17-94



• Change options where applicable in the Options pane.

These include peak response, settling time, phase and gain margins, etc. Plot options
change with each plot response type. The Property Editor displays only the options
that make sense for the selected response plot. For example, phase and gain margins
are not available for step responses.

As you make changes in the Property Editor, they display immediately in the response
plot. Conversely, if you make changes in a plot using right-click menus, the Property
Editor for that plot automatically updates. The Property Editor and its associated plot are
dynamically linked.

Labels Pane
To specify new text for plot titles and axis labels, type the new names in the field next to
the label you want to change. The label changes immediately as you type, so you can see
how the new text looks as you are typing.
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Limits Pane
Default values for the axes limits make sure that the maximum and minimum x and y
values are displayed. If you want to override the default settings, change the values in the
Limits fields. The Auto-Scale box automatically clears if you click a different field. The
new limits appear immediately in the response plot.

To re-establish the default values, select the Auto-Scale box again.

Units Pane
You can use the Units pane to change units in your response plot. The contents of this
pane depend on the response plot associated with the editor. Use the menus to toggle
between units.
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Optional Unit Conversions for Response Plots

Response Plot Unit Conversions
Bode and
Bode Magnitude

• Frequency

By default, shows rad/TimeUnit where TimeUnit is
the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
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Response Plot Unit Conversions
• 'cycles/year'

• Frequency scale is logarithmic or linear.
• Magnitude in decibels (dB) or the absolute value
• Phase in degrees or radians

Impulse • Time

By default, shows the system time units specified in
the TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'
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Response Plot Unit Conversions
Nichols Chart • Frequency

By default, shows rad/TimeUnit where TimeUnit is
the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'
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Response Plot Unit Conversions
• Phase in degrees or radians
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Response Plot Unit Conversions
Nyquist Diagram • Frequency

By default, shows rad/TimeUnit where TimeUnit is
the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'
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Response Plot Unit Conversions
Pole/Zero Map • Time

By default, shows the system time units specified in
the TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

• Frequency

By default, shows rad/TimeUnit where TimeUnit is
the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
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Response Plot Unit Conversions
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'
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Response Plot Unit Conversions
Singular Values • Frequency

By default, shows rad/TimeUnit where TimeUnit is
the system time units specified in the TimeUnit
property of the input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'
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Response Plot Unit Conversions
• Frequency scale is logarithmic or linear.
• Magnitude in decibels or the absolute value using

logarithmic or linear scale
Step • Time

By default, shows the system time units specified in
the TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes foreground
colors for response plots.
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You have the following choices:

• Grid — Activate grids by default in new plots.
• Fonts — Set the font size, weight (bold), and angle (italic) for fonts used in response

plot titles, X/Y-labels, tick labels, and I/O names. Select font sizes from the menus or
type any font-size values in the fields.

• Colors — Specify the color vector to use for the axes foreground, which includes the
X-Y axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select button to open
the Select Color dialog box.
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Options Pane
The Options pane enables you to customize response characteristics for plots. Each
response plot has its own set of characteristics and optional settings. When you change
the value in a field, press Enter on your keyboard to update the response plot.
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Response Characteristic Options for Response Plots

Plot Customizable Feature
Bode Diagram and Bode
Magnitude

• Magnitude Response

Select lower magnitude limit.
• Phase Response

By default, plots display exact phase. Check Wrap
phase to wrap the phase into the interval [–180º,
180º). To wrap accumulated phase at a different
value, enter the value in the Branch field. For
example, entering 0 causes the plot to wrap the
phase into the interval [0º,360º).

Check Adjust phase offsets to keep phase close to
a particular value, within a range of 0º–360º, at a
given frequency.

• Confidence Region for Identified Models

This option is available with System Identification
Toolbox.

Specify number of standard deviations for plotting
the response confidence region.

To see the confidence region, right-click the plot,
and select Characteristics > Confidence Region.
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Plot Customizable Feature
Impulse • Response Characteristics

Show settling time within xx% (specify the
percentage).

• Confidence Region for Identified Models

These options are available with System
Identification Toolbox.

Display using zero mean interval: For an
identified model with impulse response y and
standard deviation Δy, plot the uncertainty ±Δy as a
function of time (default). If cleared, y±Δy as a
function of time is plotted.

Number of standard deviations for display:
Specify number of standard deviations for plotting
the uncertainty.

To see the confidence interval, right-click the plot,
and select Characteristics > Confidence Region.

Nichols Chart • Magnitude Response

Select lower magnitude limit.
• Phase Response

By default, plots display exact phase. Check Wrap
phase to wrap the phase into the interval [–180º,
180º). To wrap accumulated phase at a different
value, enter the value in the Branch field. For
example, entering 0 causes the plot to wrap the
phase into the interval [0º,360º).

Check Adjust phase offsets to keep phase close to
a particular value, within a range of 0º–360º, at a
given frequency.
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Plot Customizable Feature
Nyquist Diagram • Confidence Region for Identified Models

These options are available with System
Identification Toolbox.

Number of standard deviations for display:
Specify number of standard deviations for plotting
the confidence ellipses.

Display spacing: Specify the frequency spacing of
confidence ellipses. The default is 5, which means
that the confidence ellipses are shown at every fifth
frequency sample.

To see the confidence ellipses, right-click the plot,
and select Characteristics > Confidence Region.

Pole/Zero Map • Confidence Region for Identified Models

This option is available with System Identification
Toolbox.

Specify number of standard deviations for
displaying the confidence region characteristic.

To see the confidence region, right-click the plot,
and select Characteristics > Confidence Region.

Singular Values None
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Plot Customizable Feature
Step • Response Characteristics

Show settling time within xx% (specify the
percentage).

Show rise time from xx to yy% (specify the
percentages)

• Confidence Region for Identified Models

This option is available with System Identification
Toolbox.

Specify number of standard deviations for plotting
the response confidence region.

To see the confidence region, right-click the plot,
and select Characteristics > Confidence Region.

Editing Subplots Using the Property Editor
If you create more than one plot in a single figure window, you can edit each plot
individually. For example, the following code creates a figure with two plots, a step and an
impulse response with two randomly selected systems:

subplot(2,1,1)
step(rss(2,1))
subplot(2,1,2)
impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot to activate
the Property Editor. A set of small squares appear around the step response, indicating
that it is the active plot for the editor. To switch to the lower (impulse response) plot, click
once in the impulse response plot region. The set of squares switches to the impulse
response, and the Property Editor updates as well.
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See Also

More About
• “Toolbox Preferences Editor” on page 18-2
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Computing Model Uncertainty

Why Analyze Model Uncertainty?
In addition to estimating model parameters, the toolbox algorithms also estimate
variability of the model parameters that result from random disturbances in the output.

Understanding model variability helps you to understand how different your model
parameters would be if you repeated the estimation using a different data set (with the
same input sequence as the original data set) and the same model structure.

When validating your parametric models, check the uncertainty values. Large
uncertainties in the parameters might be caused by high model orders, inadequate
excitation, and poor signal-to-noise ratio in the data.

Note You can get model uncertainty data for linear parametric black-box models, and
both linear and nonlinear grey-box models. Supported model objects include idproc,
idpoly, idss, idtf, idgrey, idfrd, and idnlgrey.

What Is Model Covariance?
Uncertainty in the model is called model covariance.

When you estimate a model, the covariance matrix of the estimated parameters is stored
with the model. Use getcov to fetch the covariance matrix. Use getpvec to fetch the list
of parameters and their individual uncertainties that have been computed using the
covariance matrix. The covariance matrix is used to compute all uncertainties in model
output, Bode plots, residual plots, and pole-zero plots.

Computing the covariance matrix is based on the assumption that the model structure
gives the correct description of the system dynamics. For models that include a
disturbance model H, a correct uncertainty estimate assumes that the model produces
white residuals. To determine whether you can trust the estimated model uncertainty
values, perform residual analysis tests on your model. For more details about residual
analysis, see the topics on the “Residual Analysis” page. If your model passes residual
analysis tests, there is a good chance that the true system lies within the confidence
interval and any parameter uncertainties results from random disturbances in the output.
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For output-error models, such as transfer function models, state-space with K=0 and
polynomial models of output-error form, with the noise model H fixed to 1, the covariance
matrix computation does not assume white residuals. Instead, the covariance is estimated
based on the estimated color of the residual correlations. This estimation of the noise
color is also performed for state-space models with K=0, which is equivalent to an output-
error model.

Types of Model Uncertainty Information
You can view the following uncertainty information from linear and nonlinear grey-box
models:

• Uncertainties of estimated parameters.

Type present(model) at the prompt, where model represents the name of a linear
or nonlinear model.

• Confidence intervals on the linear model plots, including step-response, impulse-
response, Bode, Nyquist, noise spectrum and pole-zero plots.

Confidence intervals are computed based on the variability in the model parameters.
For information about displaying confidence intervals, see “Definition of Confidence
Interval for Specific Model Plots” on page 17-116.

• Covariance matrix of the estimated parameters in linear models and nonlinear grey-
box models using getcov.

• Estimated standard deviations of polynomial coefficients, poles/zeros, or state-space
matrices using idssdata, tfdata, zpkdata, and polydata.

• Simulated output values for linear models with standard deviations using sim.

Call the sim command with output arguments, where the second output argument is
the estimated standard deviation of each output value. For example, type
[ysim,ysimsd] = sim(model,data), where ysim is the simulated output, ysimsd
contains the standard deviations on the simulated output, and data is the simulation
data.

• Perform Monte-Carlo analysis using rsample to generate a random sampling of an
identified model in a given confidence region. An array of identified systems of the
same structure as the input system is returned. The parameters of the returned
models are perturbed about their nominal values in a way that is consistent with the
parameter covariance.
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• Simulate the effect of parameter uncertainties on a model's response using simsd.

Definition of Confidence Interval for Specific Model Plots
You can display the confidence interval on the following plot types:

Plot Type Confidence Interval
Corresponds to the Range
of ...

More Information on Displaying
Confidence Interval

Simulated
and
Predicted
Output

Output values with a specific
probability of being the actual
output of the system.

Model Output Plots on page 17-16

Residuals Residual values with a specific
probability of being statistically
insignificant for the system.

Residuals Plots on page 17-45

Impulse and
Step

Response values with a specific
probability of being the actual
response of the system.

Impulse and Step Plots on page 17-57

Frequency
Response

Response values with a specific
probability of being the actual
response of the system.

Frequency Response Plots on page 17-
66

Noise
Spectrum

Power-spectrum values with a
specific probability of being the
actual noise spectrum of the
system.

Noise Spectrum Plots on page 17-74

Poles and
Zeros

Pole or zero values with a specific
probability of being the actual
pole or zero of the system.

Pole-Zero Plots on page 17-74
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Troubleshooting Model Estimation

About Troubleshooting Models
During validation, models can exhibit undesirable characteristics or a poor fit to the
validation data.

Use the tips in these sections to help improve your model performance. Some features,
such as low signal-to-noise ratio, varying system properties, or nonstationary
disturbances, can produce data for which a good model fit is not possible.

Model Order Is Too High or Too Low
A poor fit in the Model Output plot can be the result of an incorrect model order. System
identification is largely a trial-and-error process when selecting model structure and
model order. Ideally, you want the lowest-order model that adequately captures the
system dynamics. High-order models are more expensive to compute and result in greater
parameter uncertainty.

Start by estimating the model order as described in “Preliminary Step – Estimating Model
Orders and Input Delays” on page 6-10. Use the suggested order as a starting point to
estimate the lowest possible order with different model structures. After each estimation,
monitor the Model Output and Residual Analysis plots, and then adjust your settings for
the next estimation.

When a low-order model fits the validation data poorly, estimate a higher-order model to
see if the fit improves. For example, if the Model Output plot shows that a fourth-order
model gives poor results, estimate an eighth-order model. When a higher-order model
improves the fit, you can conclude that higher-order linear models are potentially
sufficient for your application.

Use an independent data set to validate your models. If you use the same data set for both
estimation and validation, the fit always improves as you increase the model order and
you risk overfitting. However, if you use an independent data set to validate your model,
the fit eventually deteriorates if the model orders are too high.
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Substantial Noise in the System
Substantial noise in your system can result in a poor model fit. The presence of such noise
is indicated when:

• A state-space model produces a better fit than an ARX model. While a state-space
structure has sufficient flexibility to model noise, an ARX structure is unable to
independently model noise and system dynamics. The following ARX model equation
shows that A couples the dynamics and the noise terms by appearing in the
denominator of both:

y
B

A
u

A
e= +

1

• A residual analysis plot shows significant autocorrelation of residuals at nonzero lags.
For more information about residual analysis, see the topics on the “Residual Analysis”
page.

To model noise more carefully, use either an ARMAX or the Box-Jenkins model structure,
both of which model the noise and dynamics terms using different polynomials.

Unstable Models
Unstable Linear Model

You can test whether a linear model is unstable is by examining the pole-zero plot of the
model, which is described in “Pole and Zero Plots” on page 17-80. The stability threshold
for pole values differs for discrete-time and continuous-time models, as follows:

• For stable continuous-time models, the real part of the pole is less than 0.
• For stable discrete-time models, the magnitude of the pole is less than 1.

Note Linear trends in estimation data can cause the identified linear models to be
unstable. However, detrending the model does not guarantee stability.

If your model is unstable, but you believe that your system is stable, you can.

• Force stability during estimation — Set the Focus estimation option to a value that
guarantees a stable model. This setting can result in reduced model quality.
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• Allow for some instability — Set the stability threshold advanced estimation option to
allow for a margin of error:

• For continuous-time models, set the value of Advanced.StabilityThreshold.s.
The model is considered stable if the pole on the far right is to the left of s.

• For discrete-time models, set the value of Advanced.StabilityThreshold.z.
The model is considered stable if all of the poles are inside a circle with a radius of
z that is centered at the origin.

For more information about Focus and Advanced.StabilityThreshold, see the
various commands for creating estimation option sets, such as tfestOptions,
ssestOptions, andprocestOptions.

Unstable Nonlinear Models

To test if a nonlinear model is unstable, plot the simulated model output on top of the
validation data. If the simulated output diverges from measured output, the model is
unstable. However, agreement between model output and measured output does not
guarantee stability.

When an Unstable Model Is OK

In some cases, an unstable model is still useful. For example, if your system is unstable
without a controller, you can use your model for control design. In this case, you can
import the unstable model into Simulink or Control System Toolbox products.

Missing Input Variables
If modeling noise and trying different model structures and orders still results in a poor
fit, try adding more inputs that can affect the output. Inputs do not need to be control
signals. Any measurable signal can be considered an input, including measurable
disturbances.

Include additional measured signals in your input data, and estimate the model again.

System Nonlinearities
If a linear model shows a poor fit to the validation data, consider whether nonlinear
effects are present in the system.
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You can model the nonlinearities by performing a simple transformation on the input
signals to make the problem linear in the new variables. For example, in a heating
process with electrical power as the driving stimulus, you can multiply voltage and
current measurements to create a power input signal.

If your problem is sufficiently complex and you do not have physical insight into the
system, try fitting nonlinear black-box models to your data, see “About Identified
Nonlinear Models” on page 11-2.

Nonlinearity Estimator Produces a Poor Fit
For nonlinear ARX and Hammerstein-Wiener models, the Model Output plot does not
show a good fit when the nonlinearity estimator has incorrect complexity.

Specify the complexity of piece-wise-linear, wavelet, sigmoid, and custom networks using
the NumberOfUnits nonlinear estimator property. A higher number of units indicates a
more complex nonlinearity estimator. When using neural networks, specify the complexity
using the parameters of the network object. For more information, see the Neural
Network Toolbox documentation.

To select the appropriate nonlinearity estimator complexity, first validate the output of a
low-complexity model. Next, increase the model complexity and validate the output again.
The model fit degrades when the nonlinearity estimator becomes too complex. This
degradation in performance is only visible if you use independent estimation and
validation data sets

See Also

More About
• “Ways to Validate Models” on page 17-3
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-10
• “Pole and Zero Plots” on page 17-80
• “What Is Residual Analysis?” on page 17-43
• “Next Steps After Getting an Accurate Model” on page 17-121

17 Model Analysis

17-120



Next Steps After Getting an Accurate Model
For linear parametric models, you can perform the following operations:

• Transform between continuous-time and discrete-time representation.

See “Transforming Between Discrete-Time and Continuous-Time Representations” on
page 4-16.

• Transform between linear model representations, such as between polynomial, state-
space, and zero-pole representations.

See “Transforming Between Linear Model Representations” on page 4-34.
• Extract numerical data from transfer functions, pole-zero models, and state-space

matrices.

See “Extracting Numerical Model Data” on page 4-13.

For nonlinear black-box models (idnlarx and idnlhw objects), you can compute a linear
approximation of the nonlinear model. See “Linear Approximation of Nonlinear Black-Box
Models” on page 11-64.

System Identification Toolbox models in the MATLAB workspace are immediately
available to other MathWorks® products. However, if you used the System Identification
app to estimate models, you must first export the models to the MATLAB workspace.

Tip To export a model from the app, drag the model icon to the To Workspace rectangle.
Alternatively, right-click the model to open the Data/model Info dialog box. Click Export.

If you have the Control System Toolbox software installed, you can import your linear
plant model for control-system design. For more information, see “Using Identified
Models for Control Design Applications” on page 19-2.

Finally, if you have Simulink software installed, you can exchange data between the
System Identification Toolbox software and the Simulink environment. For more
information, see “Simulating Identified Model Output in Simulink” on page 20-5.
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Toolbox Preferences Editor

Overview of the Toolbox Preferences Editor
The Toolbox Preferences editor allows you to set plot preferences that will persist from
session to session.

Opening the Toolbox Preferences Editor
To open the Toolbox Preferences editor, select Toolbox Preferences from the File menu
of the Linear System Analyzer or the Control System Designer. Alternatively, you can
type

identpref

at the MATLAB prompt.

Control System Toolbox Preferences Editor

Note Control System Designer requires the Control System Toolbox software.

18 Setting Toolbox Preferences

18-2



Units Pane

Use the Units pane to set preferences for the following:

• Frequency

The default auto option uses rad/TimeUnit as the frequency units relative to the
system time units, where TimeUnit is the system time units specified in the
TimeUnit property of the system on frequency-domain plots. For multiple systems
with different time units, the units of the first system is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
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• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)
• Phase — Degrees or radians
• Time

The default auto option uses the time units specified in the TimeUnit property of the
system on the time- and frequency-domain plots. For multiple systems with different
time units, the units of the first system is used.

Other Time Units Options

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
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• 'months'
• 'years'

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes foreground
colors for all plots you create. This figure shows the Style pane.

You have the following choices:

• Grid — Activate grids by default in new plots.
• Fonts — Set the font size, weight (bold), and angle (italic). Select font sizes from the

menus or type any font-size values in the fields.
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• Colors — Specify the color vector to use for the axes foreground, which includes the
X-Y axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select button to open
the Select Colors dialog box.

Options Pane
The Options pane has selections for time responses and frequency responses. This figure
shows the Options pane with default settings.

For time response plots, the following options are available:

• Show settling time within xx% — Set the threshold of the settling time calculation
to any percentage from 0 to 100%. The default is 2%.

• Specify rise time from xx% to yy%— The standard definition of rise time is the time
it takes the signal to go from 10% to 90% of the final value. Specify any percentages
you like (from 0% to 100%), provided that the first value is smaller than the second.

For frequency response plots, the following options are available:

• Only show magnitude above — Specify a lower limit for magnitude values in
response plots so that you can focus on a region of interest.
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• Wrap phase — Wrap the phase into the interval [–180º,180º). To wrap accumulated
phase at a different value, enter the value in the Branch field. For example, entering 0
causes the plot to wrap the phase into the interval [0º,360º).

Control System Designer Pane
The Control System Designer pane has settings for Control System Designer. This
figure shows the Control System Designer pane with default settings.

You can make the following selections:

• Compensator Format — Select the time constant, natural frequency, or zero/pole/
gain format. The time constant format is a factorization of the compensator transfer
function of the form

K
T s T s

T s T s

z z

p p

¥
+( ) +( )
+( ) +( )

1 1

1 1

1 2

1 2

L

where K is compensator DC gain, Tz1, Tz2, ..., are the zero time constants, and Tp1,
Tp2, ..., are the pole time constants.

The natural frequency format is
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where K is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the natural
frequencies of the zeros and poles, respectively.

The zero/pole/gain format is

K
s z s z

s p s p
¥

+( ) +( )

+( ) +( )
1 2

1 2

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the zero and
pole locations, respectively.

• Bode Options — By default, the Control System Designer shows the plant and
sensor poles and zeros as blue x's and o's, respectively. Clear this box to eliminate the
plant's poles and zeros from the Bode plot. Note that the compensator poles and zeros
(in red) will still appear.
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Control Design Applications

• “Using Identified Models for Control Design Applications” on page 19-2
• “Create and Plot Identified Models Using Control System Toolbox Software”

on page 19-6
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Using Identified Models for Control Design Applications
How Control System Toolbox Software Works with Identified
Models
System Identification Toolbox software integrates with Control System Toolbox software
by providing a plant for control design.

Control System Toolbox software also provides the Linear System Analyzer to extend
System Identification Toolbox functionality for linear model analysis.

Control System Toolbox software supports only linear models. If you identified a nonlinear
plant model using System Identification Toolbox software, you must linearize it before you
can work with this model in the Control System Toolbox software. For more information,
see the linapp, idnlarx/linearize, or idnlhw/linearize reference page.

Note You can only use the System Identification Toolbox software to linearize nonlinear
ARX (idnlarx) and Hammerstein-Wiener (idnlhw) models. Linearization of nonlinear
grey-box (idnlgrey) models is not supported.

Using balred to Reduce Model Order
In some cases, the order of your identified model might be higher than necessary to
capture the dynamics. If you have the Control System Toolbox software, you can use
balred to compute a state-spate model approximation with a reduced model order.

To learn how you can reduce model order using pole-zero plots, see “Reducing Model
Order Using Pole-Zero Plots” on page 17-83.

Compensator Design Using Control System Toolbox Software
After you estimate a plant model using System Identification Toolbox software, you can
use Control System Toolbox software to design a controller for this plant.

System Identification Toolbox models in the MATLAB workspace are immediately
available to Control System Toolbox commands. However, if you used the System
Identification app to estimate models, you must first export the models to the MATLAB
workspace. To export a model from the app, drag the model icon to the To Workspace
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rectangle. Alternatively, right-click the icon to open the Data/model Info dialog box. Click
Export to export the model.

Control System Toolbox software provides both the Control System Designer and
commands for working at the command line. You can import linear models directly into
Control System Designer using the following command:

controlSystemDesigner(model)

You can also identify a linear model from measured SISO data and tune a PID controller
for the resulting model in the PID Tuner. You can interactively adjust the identified
parameters to obtain an LTI model whose response fits your response data. The PID
Tuner automatically tunes a PID controller for the identified model. You can then
interactively adjust the performance of the tuned control system, and save the identified
plant and tuned controller. To access the PID Tuner, enter pidTuner at the MATLAB
command line. For more information, see “PID Controller Tuning” (Control System
Toolbox).

Converting Models to LTI Objects
You can convert linear identified models into numeric LTI models (ss, tf, zpk) of Control
System Toolbox software.

The following table summarizes the commands for transforming linear state-space and
polynomial models to an LTI object.

Commands for Converting Models to LTI Objects

Command Description Example
frd Convert to frequency-response

representation.
ss_sys = frd(model)

ss Convert to state-space
representation.

ss_sys = ss(model)

tf Convert to transfer-function
form.

tf_sys = tf(model)

zpk Convert to zero-pole form. zpk_sys = zpk(model)

The following code converts the noise component of a linear identified model, sys, to a
numeric state-space model:

 Using Identified Models for Control Design Applications

19-3



noise_model_ss = idss(sys,'noise');

To convert both the measured and noise components of a linear identified model, sys, to
a numeric state-space model:

model_ss = idss(sys,'augmented');

For more information about subreferencing the dynamic or the noise model, see
“Separation of Measured and Noise Components of Models” on page 4-38.

Viewing Model Response Using the Linear System Analyzer
What Is the Linear System Analyzer?

If you have the Control System Toolbox software, you can plot models in the Linear
System Analyzer from either the System Identification app or the MATLAB Command
Window.

The Linear System Analyzer is a graphical user interface for viewing and manipulating
the response plots of linear models.

Note The Linear System Analyzer does not display model uncertainty.

For more information about working with plots in the Linear System Analyzer, see the
“Linear System Analyzer Overview” (Control System Toolbox).

Displaying Identified Models in the Linear System Analyzer

When the MATLAB software is installed, the System Identification app contains the To
LTI Viewer rectangle. To plot models in the Linear System Analyzer, do one of the
following:

• Drag and drop the corresponding icon to the To LTI Viewer rectangle in the System
Identification app.

• Right-click the icon to open the Data/model Info dialog box. Click Show in LTI Viewer
to plot the model in the Linear System Analyzer.

Alternatively, use the following syntax when working at the command line to view a model
in the Linear System Analyzer:

linearSystemAnalyzer(model)
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Combining Model Objects
If you have the Control System Toolbox software, you can combine linear model objects,
such as idtf, idgrey, idpoly, idproc, and idss model objects, similar to the way you
combine LTI objects. The result of these operations is a numeric LTI model that belongs to
the Control System Toolbox software. The only exceptions are the model stacking and
model concatenation operations, which deliver results as identified models.

For example, you can perform the following operations on identified models:

• G1+G2
• G1*G2
• append(G1,G2)
• feedback(G1,G2)

See Also

Related Examples
• “Create and Plot Identified Models Using Control System Toolbox Software” on page

19-6

 See Also

19-5



Create and Plot Identified Models Using Control System
Toolbox Software

This example shows how to create and plot models using the System Identification
Toolbox software and Control System Toolbox software. The example requires a Control
System Toolbox license.

Construct a random numeric model using the Control System Toolbox software.

rng('default');
sys0 = drss(3,3,2);

rng('default') specifies the setting of the random number generator as its default
setting.

sys0 is a third-order numeric state-space model with three outputs and two inputs.

Convert sys0 to an identified state-space model and set its output noise variance.

sys = idss(sys0);
sys.NoiseVariance = 0.1*eye(3);

Generate input data for simulating the output.

u = iddata([],idinput([800 2],'rbs'));

Simulate the model output with added noise.

opt = simOptions('AddNoise',true);
y = sim(sys,u,opt);

opt is an option set specifying simulation options. y is the simulated output for sys0.

Create an input-output ( iddata ) object.

data = [y u];

Estimate the state-space model from the generated data using ssest .

estimated_ss = ssest(data(1:400));

estimated_ss is an identified state-space model.

Convert the identified state-space model to a numeric transfer function.
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sys_tf = tf(estimated_ss);

Plot the model output for identified state-space model.

compare(data(401:800),estimated_ss)

Plot the response of identified model using the Linear System Analyzer.

linearSystemAnalyzer(estimated_ss);
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See Also

More About
• “Using Identified Models for Control Design Applications” on page 19-2
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System Identification Toolbox
Blocks

• “Using System Identification Toolbox Blocks in Simulink Models” on page 20-2
• “Preparing Data” on page 20-3
• “Identifying Linear Models” on page 20-4
• “Simulating Identified Model Output in Simulink” on page 20-5
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Using System Identification Toolbox Blocks in Simulink
Models

System Identification Toolbox software provides blocks for sharing information between
the MATLAB and Simulink environments.

You can use the System Identification Toolbox block library to perform the following
tasks:

• Stream time-domain data source (iddata object) into a Simulink model.
• Export data from a simulation in Simulink software as a System Identification Toolbox

data object (iddata object).
• Import estimated models into a Simulink model, and simulate the models with or

without noise.

The model you import might be a component of a larger system modeled in Simulink.
For example, if you identified a plant model using the System Identification Toolbox
software, you can import this plant into a Simulink model for control design.

• Estimate parameters of linear polynomial models during simulation from single-output
data.

To open the System Identification Toolbox block library, enter slLibraryBrowser at the
MATLAB prompt. In the Library Browser, select System Identification Toolbox.

You can also open the System Identification Toolbox block library directly by typing the
following command at the MATLAB prompt:

slident

To get help on a block, right-click the block in the Library Browser, and select Help.

See Also

More About
• “Simulating Identified Model Output in Simulink” on page 20-5
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Preparing Data
The following table summarizes the blocks you use to transfer data between the MATLAB
and Simulink environments.

After you add a block to the Simulink model, double-click the block to specify block
parameters. For an example of bringing data into a Simulink model, see the tutorial on
estimating process models in the System Identification Toolbox Getting Started Guide.

Block Description
Iddata Sink Export input and output signals to the MATLAB

workspace as an iddata object.
Iddata Source Import iddata object from the MATLAB workspace.

Input and output ports of the block correspond to input
and output signals of the data. These inputs and outputs
provide signals to blocks that are connected to this data
block.

For information about configuring each block, see the corresponding reference pages.
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Identifying Linear Models
The following table summarizes the blocks you use to recursively estimate model
parameters in a Simulink model during simulation and export the results to the MATLAB
environment.

After you add a block to the model, double-click the block to specify block parameters.

Block Description
Recursive Least Squares
Estimator

Estimate model coefficients using recursive least squares
(RLS) algorithm

Recursive Polynomial Model
Estimator

Estimate input-output and time-series model coefficients

Kalman Filter Estimate states of discrete-time or continuous-time linear
system

Model Type Converter Convert polynomial model coefficients to state-space
model matrices

For information about configuring each block, see the corresponding reference pages.

20 System Identification Toolbox Blocks

20-4



Simulating Identified Model Output in Simulink

When to Use Simulation Blocks
Add model simulation blocks to your Simulink model from the System Identification
Toolbox block library when you want to:

• Represent the dynamics of a physical component in a Simulink model using a data-
based nonlinear model.

• Replace a complex Simulink subsystem with a simpler data-based nonlinear model.

You use the model simulation blocks to import the models you identified using System
Identification Toolbox software from the MATLAB workspace into the Simulink
environment. For a list of System Identification Toolbox simulation blocks, see “Summary
of Simulation Blocks” on page 20-5.

Summary of Simulation Blocks
The following table summarizes the blocks you use to import models from the MATLAB
environment into a Simulink model for simulation. Importing a model corresponds to
entering the model variable name in the block parameter dialog box.

Block Description
Idmodel Simulate a linear identified model in Simulink software.

The model can be a process (idproc), linear polynomial
(idpoly), state-space (idss), grey-box (idgrey) and
transfer-function (idtf) model.

Nonlinear ARX Model Simulate idnlarx model in Simulink.
Hammerstein-Wiener Model Simulate idnlhw model in Simulink.
Nonlinear Grey-Box Model Simulate nonlinear ODE (idnlgrey model object) in

Simulink.

After you import the model into Simulink software, use the block parameter dialog box to
specify the initial conditions for simulating that block. (See “Specifying Initial Conditions
for Simulation” on page 20-6.) For information about configuring each block, see the
corresponding reference pages.
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Specifying Initial Conditions for Simulation
For accurate simulation of a linear or a nonlinear model, you can use default initial
conditions or specify the initial conditions for simulation using the block parameters
dialog box.

Specifying Initial States of Linear Models

Specify the initial states for simulation in the Initial states (state space only: idss,
idgrey) field of the Function Block Parameters: Idmodel dialog box:

• For idss and idgrey models, initial states must be a vector of length equal to the
order of the model.

• For models other than idss and idgrey, initial conditions are zero.
• In some situations, you may want to match the simulated response of the model to a

certain input/output data set:

1 Convert the identified model into state-space form (idss model), and use the
state-space model in the block.

2 Compute the initial state values that produce the best fit between the model
output and the measured output signal using findstates.

3 Specify the same input signal for simulation that you used as the validation data in
the app or in the compare plot.

For example:

% Convert to state-space model
mss = idss(m); 
% Estimate initial states from data
X0 = findstates(mss,z);

z is the data set you used for validating the model m. Use the model mss and
initial states X0 in the Idmodel block to perform the simulation.

Specifying Initial States of Nonlinear ARX Models

The states of a nonlinear ARX model correspond to the dynamic elements of the nonlinear
ARX model structure, which are the model regressors. Regressors can be the delayed
input/output variables (standard regressors) or user-defined transformations of delayed
input/output variables (custom regressors). For more information about the states of a
nonlinear ARX model, see the idnlarx reference page.
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For simulating nonlinear ARX models, you can specify the initial conditions as input/
output values, or as a vector. For more information about specifying initial conditions for
simulation, see the IDNLARX Model reference page.

Specifying Initial States of Hammerstein-Wiener Models

The states of a Hammerstein-Wiener model correspond to the states of the embedded
linear (idpoly or idss) model. For more information about the states of a Hammerstein-
Wiener model, see the idnlhw reference page.

The default initial state for simulating a Hammerstein-Wiener model is 0. For more
information about specifying initial conditions for simulation, see the IDNLHW Model
reference page.

Simulate Identified Model Using Simulink Software
This example shows how to set the initial states for simulating a model such that the
simulation provides a best fit to measured input-output data.

Prerequisites

Estimate a model, M, using a multiple-experiment data set, Z, which contains data from
three experiments — z1, z2, and z3:

% Load multi-experiment data.
load(fullfile(matlabroot,'toolbox','ident','iddemos',...
'data', 'twobodiesdata'));

% Create an iddata object to store the multi-experiment data.
z1=iddata(y1,u1,0.005,'Tstart',0);
z2=iddata(y2,u2,0.005,'Tstart',0);
z3=iddata(y3,u3,0.005,'Tstart',0);
Z = merge(z1,z2,z3);

% Estimate a 5th order state-space model.
opt = n4sidOptions('Focus','simulation');
[M,x0] = n4sid(Z,5,opt);

To simulate the model using input u2, use x0(:,2) as the initial states. x0(:,2) is
computed to maximize the fit between the measured output, y2, and the response of M.

To compute initial states that maximizes the fit to the corresponding output y2, and
simulate the model using the second experiment:
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1 Extract the initial states that correspond to the second experiment for simulation.

X0est = x0(:,2);
2 Open the System Identification Toolbox library by typing the following command at

the MATLAB prompt.

slident
3 Open a new Simulink model window. Then, drag and drop an Idmodel block from the

library into the model window.
4 Open the Function Block Parameters dialog box by double-clicking the Idmodel

block. Specify the following block parameters:

a In the Model variable field, type M to specify the estimated model.
b In the Initial state field, type X0est to specify the estimated initial states. Click

OK.
5 Drag and drop an Iddata Source block into the model window. Then, configure the

model, as shown in the following figure.

6 Simulate the model for 2 seconds, and compare the simulated output ysim with the
measured output ymeasured using the Scope block.

See Also
IDNLARX Model | IDNLHW Model

More About
• “Simulating and Predicting Model Output” on page 17-9
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System Identification App

• “Steps for Using the System Identification App” on page 21-2
• “Working with System Identification App” on page 21-3
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Steps for Using the System Identification App
A typical workflow in the System Identification app includes the following steps:

1 Import your data into the MATLAB workspace, as described in “Representing Data in
MATLAB Workspace” on page 2-9.

2 Start a new session in the System Identification app, or open a saved session. For
more information, see “Starting a New Session in the App” on page 21-3.

3 Import data into the app from the MATLAB workspace. For more information, see
“Represent Data”.

4 Plot and preprocess data to prepare it for system identification. For example, you can
remove constant offsets or linear trends (for linear models only), filter data, or select
data regions of interest. For more information, see “Preprocess Data”.

5 Specify the data for estimation and validation. For more information, see “Specify
Estimation and Validation Data in the App” on page 2-30.

6 Select the model type to estimate using the Estimate menu.
7 Validate models. For more information, see “Model Validation”.
8 Export models to the MATLAB workspace for further analysis. For more information,

see “Exporting Models from the App to the MATLAB Workspace” on page 21-10.
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Working with System Identification App

Starting and Managing Sessions
What Is a System Identification Session?

A session represents the total progress of your identification process, including any data
sets and models in the System Identification app.

You can save a session to a file with a .sid extension. For example, you can save different
stages of your progress as different sessions so that you can revert to any stage by simply
opening the corresponding session.

To start a new session, see “Starting a New Session in the App” on page 21-3.

For more information about the steps for using the System Identification app, see “Steps
for Using the System Identification App” on page 21-2.

Starting a New Session in the App

To start a new session in the System Identification app, type systemIdentification in
the MATLAB Command Window:

systemIdentification

Alternatively, you can start a new session by selecting the Apps tab of MATLAB desktop.
In the Apps section, click System Identification. This action opens the System
Identification app.
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Note Only one session can be open at a time.

You can also start a new session by closing the current session using File > Close
session. This toolbox prompts you to save your current session if it is not already saved.

Description of the System Identification App Window

The following figure describes the different areas in the System Identification app.
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Model BoardData Board

Select check
boxes to display
data plots.

Select check
boxes to display
model plots.

The layout of the window organizes tasks and information from left to right. This
organization follows a typical workflow, where you start in the top-left corner by
importing data into the System Identification app using the Import data menu and end in
the bottom-right corner by plotting the characteristics of your estimated model on model
plots. For more information about using the System Identification app, see “Steps for
Using the System Identification App” on page 21-2.

The Data Board area, located below the Import data menu in the System Identification
app, contains rectangular icons that represent the data you imported into the app.

The Model Board, located to the right of the <--Preprocess menu in the System
Identification app, contains rectangular icons that represent the models you estimated or
imported into the app. You can drag and drop model icons in the Model Board into open
dialog boxes.
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Opening a Saved Session

You can open a previously saved session using the following syntax:

systemIdentification(session,path)

session is the file name of the session you want to open and path is the location of the
session file. Session files have the extension .sid. When the session file in on the
matlabpath, you can omit the path argument.

If the System Identification app is already open, you can open a session by selecting File
> Open session.

Note If there is data in the System Identification app, you must close the current session
before you can open a new session by selecting File > Close session.

Saving, Merging, and Closing Sessions

The following table summarizes the menu commands for saving, merging, and closing
sessions in the System Identification app.

Task Command Comment
Close the current
session and start a
new session.

File > Close session You are prompted to save the
current session before closing it.

Merge the current
session with a
previously saved
session.

File > Merge session You must start a new session and
import data or models before you
can select to merge it with a
previously saved session. You are
prompted to select the session file to
merge with the current. This
operation combines the data and the
models of both sessions in the
current session.

Save the current
session.

File > Save Useful for saving the session
repeatedly after you have already
saved the session once.
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Task Command Comment
Save the current
session under a
new name.

File > Save As Useful when you want to save your
work incrementally. This command
lets you revert to a previous stage, if
necessary.

Deleting a Session

To delete a saved session, you must delete the corresponding session file.

Managing Models
Importing Models into the App

You can import System Identification Toolbox models from the MATLAB workspace into
the System Identification app. If you have Control System Toolbox software, you can also
import any models (LTI objects) you created using this toolbox.

The following procedure assumes that you begin with the System Identification app
already open. If this window is not open, type the following command at the prompt:

systemIdentification

To import models into the System Identification app:

1 Select Import from the Import models list to open the Import Model Object dialog
box.

2 In the Enter the name field, type the name of a model object. Press Enter.
3 (Optional) In the Notes field, type any notes you want to store with this model.
4 Click Import.
5 Click Close to close the Import Model Object dialog box.

Viewing Model Properties

You can get information about each model in the System Identification app by right-
clicking the corresponding model icon.

The Data/model Info dialog box opens. This dialog box describes the contents and the
properties of the corresponding model. It also displays any associated notes and the
command-line equivalent of the operations you used to create this model.
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Tip To view or modify properties for several models, keep this window open and right-
click each model in the System Identification app. The Data/model Info dialog box updates
when you select each model.

Renaming Models and Changing Display Color

You can rename a model and change its display color by double-clicking the model icon in
the System Identification app.

The Data/model Info dialog box opens. This dialog box describes both the contents and
the properties of the model. The object description area displays the syntax of the
operations you used to create the model in the app.

To rename the model, enter a new name in the Model name field.

You can also specify a new display color using three RGB values in the Color field. Each
value is between 0 to 1 and indicates the relative presence of red, green, and blue,
respectively. For more information about specifying default data color, see “Customizing
the System Identification App” on page 21-14.

Tip As an alternative to using three RGB values, you can enter any one of the following
letters in single quotes:

'y' 'r' 'b' 'c' 'g' 'm' 'k'

These represent yellow, red, blue, cyan, green, magenta, and black, respectively.

Finally, you can enter comments about the origin and state of the model in the Diary And
Notes area.

To view model properties in the MATLAB Command Window, click Present.

Organizing Model Icons

You can rearrange model icons in the System Identification app by dragging and dropping
the icons to empty Model Board rectangles.

Note You cannot drag and drop a model icon into the data area on the left.
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When you need additional space for organizing model icons, select Options > Extra
model/data board in the System Identification app. This action opens an extra session
window with blank rectangles. The new window is an extension of the current session and
does not represent a new session.

Tip When you import or estimate models and there is insufficient space for the icons, an
additional session window opens automatically.

You can drag and drop model icons between the main System Identification app and any
extra session windows.

Type comments in the Notes field to describe the models. When you save a session, as
described in “Saving, Merging, and Closing Sessions” on page 21-6, all additional
windows and notes are also saved.

Deleting Models in the App

To delete models in the System Identification app, drag and drop the corresponding icon
into Trash. You can also use the Delete key on your keyboard to move items to the
Trash. Moving items to Trash does not permanently delete these items.

To restore a model from Trash, drag its icon from Trash to the Model Board in the
System Identification app. You can view the Trash contents by double-clicking the Trash
icon.
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Note You must restore a model to the Model Board; you cannot drag model icons to the
Data Board.

To permanently delete all items in Trash, select Options > Empty trash.

Exiting a session empties Trash automatically.

Exporting Models from the App to the MATLAB Workspace

The models you create in the System Identification app are not available in the MATLAB
workspace until you export them. Exporting is necessary when you need to perform an
operation on the model that is only available at the command line. Exporting models to
the MATLAB workspace also makes them available to the Simulink software or another
toolbox, such as the Control System Toolbox product.

To export a model to the MATLAB workspace, do one of the following:

• Drag and drop the corresponding icon to the To Workspace rectangle.
• Right-click the icon to open the Data/model Info dialog box. Click Export to export the

model.

When you export models to the MATLAB workspace, the resulting variables have the
same name as in the System Identification app.
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Working with Plots
Identifying Data Sets and Models on Plots

You can identify data sets and models on a plot by color: the color of the line in the data
or model icon in the System Identification app matches the line color on the plots.

You can also display data tips for each line on the plot by clicking a plot curve and holding
down the mouse button.

Note You must disable zoom by selecting Style > Zoom before you can display data tips.
For more information about enabling zoom, see “Magnifying Plots” on page 21-12.

The following figure shows an example of a data tip, which contains the name of the data
set and the coordinates of the data point.

Data Tip on a Plot
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Changing and Restoring Default Axis Limits

There are two ways to change which portion of the plot is currently in view:

• Magnifying plots
• Setting axis limits

Magnifying Plots

Enable zoom by selecting Style > Zoom in the plot window. To disable zoom, select Style
> Zoom again.

Tip To verify that zoom is active, click the Style menu. A check mark should appear next
to Zoom.

You can adjust magnification in the following ways:

• To zoom in default increments, left-click the portion of the plot you want to center in
the plot window.

• To zoom in on a specific region, click and drag a rectangle that identifies the region for
magnification. When you release the mouse button, the selected region is displayed.

• To zoom out, right-click on the plot.

Note To restore the full range of the data in view, select Options > Autorange in the
plot window.

Setting Axis Limits

You can change axis limits for the vertical and the horizontal axes of the input and output
channels that are currently displayed on the plot.

1 Select Options > Set axes limits to open the Limits dialog box.
2 Specify a new range for each axis by editing its lower and upper limits. The limits

must be entered using the format [LowerLimit UpperLimit]. Click Apply. For
example:

[0.1 100]
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Note To restore full axis limits, select the Auto check box to the right of the axis
name, and click Apply.

3 To plot data on a linear scale, clear the Log check box to the right of the axis name,
and click Apply.

Note To revert to base-10 logarithmic scale, select the Log check box to the right of
the axis name, and click Apply.

4 Click Close.

Note To view the entire data range, select Options > Autorange in the plot window.

Selecting Measured and Noise Channels in Plots

Model inputs and outputs are called channels. When you create a plot of a multivariable
input-output data set or model, the plot only shows one input-output channel pair at a
time. The selected channel names are displayed in the title bar of the plot window.

Note When you select to plot multiple data sets, and each data set contains several input
and output channels, the Channel menu lists channel pairs from all data sets.

You can select a different input-output channel pair from the Channel menu in any
System Identification Toolbox plot window.

The Channel menu uses the following notation for channels: u1->y2 means that the plot
displays a transfer function from input channel u1 to output channel y2. System
Identification Toolbox estimates as many noise sources as there are output channels. In
general, e@ynam indicates that the noise source corresponds to the output with name
ynam.

For example, e@y3->y1 means that the transfer function from the noise channel
(associated with y3) to output channel y2 is displayed. For more information about noise
channels, see “Separation of Measured and Noise Components of Models” on page 4-38.

Tip When you import data into the System Identification app, it is helpful to assign
meaningful channel names in the Import Data dialog box. For more information about
importing data, see “Represent Data”.
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Grid and Line Styles in Plots

There are several Style options that are common to all plot types.
Grid Lines

To toggle showing or hiding grid lines, select Style > Grid.
Solid or Dashed Lines

To display currently visible lines as a combination of solid, dashed, dotted, and dash-
dotted line style, select Style > Separate linestyles.

To display all solid lines, select Style > All solid lines. This choice is the default.

All line styles match the color of the corresponding data or model icon in the System
Identification app.

Opening a Plot in a MATLAB Figure Window

The MATLAB Figure window provides editing and printing commands for plots that are
not available in the System Identification Toolbox plot window. To take advantage of this
functionality, you can first create a plot in the System Identification app, and then open it
in a MATLAB Figure window to fine-tune the display.

After you create the plot, as described in “Plot Models in the System Identification App”
on page 17-7, select File > Copy figure in the plot window. This command opens the plot
in a MATLAB Figure window.

Printing Plots

To print a System Identification Toolbox plot, select File > Print in the plot window. In
the Print dialog box, select the printing options and click OK.

Customizing the System Identification App
Types of App Customization

The System Identification app lets you customize the window behavior and appearance.
For example, you can set the size and position of specific dialog boxes and modify the
appearance of plots.

You can save the session to save the customized app state.
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You might choose to edit the file that controls default settings, as described in “Modifying
idlayout.m” on page 21-15 (advanced usage).

Saving Session Preferences

Use Options > Save preferences to save the current state of the System Identification
app. This command saves the following settings to a preferences file, idprefs.mat:

• Size and position of the System Identification app
• Sizes and positions of dialog boxes
• Four recently used sessions
• Plot options, such as line styles, zoom, grid, and whether the input is plotted using

zero-order hold or first-order hold between samples

You can only edit idprefs.mat by changing preferences in the app.

The idprefs.mat file is located in the same folder as startup.m, by default. To change
the location where your preferences are saved, use the midprefs command with the new
path as the argument. For example:

midprefs('c:\matlab\toolbox\local\')

You can also type midprefs and browse to the desired folder.

To restore the default preferences, select Options > Default preferences.

Modifying idlayout.m

You might want to customize the default plot options by editing idlayout.m (advanced
usage).

To customize idlayout.m defaults, save a copy of idlayout.m to a folder in your
matlabpath just above the ident folder level.

Caution Do not edit the original file to avoid overwriting the idlayout.m defaults
shipped with the product.

You can customize the following plot options in idlayout.m:

• Order in which colors are assigned to data and model icons
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• Line colors on plots
• Axis limits and tick marks
• Plot options, set in the plot menus
• Font size

Note When you save preferences using Options > Save preferences to idprefs.mat,
these preferences override the defaults in idlayout.m. To give idlayout.m precedence
every time you start a new session, select Options > Default preferences.
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Diagnostics and Prognostics

• “Time Series Prediction and Forecasting for Prognosis” on page 22-2
• “Fault Detection Using Data Based Models” on page 22-16
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Time Series Prediction and Forecasting for Prognosis
This example shows how to create a time series model and use the model for prediction,
forecasting, and state estimation. The measured data is from an induction furnace whose
slot size erodes over time. The slot size cannot be measured directly but the furnace
current and consumed power are measured. It is known that as the slot size increases,
the slot resistance decreases. The ratio of measured current squared to measured power
is thus proportional to the slot size. You use the measured current-power ratio (both
current and power measurements are noisy) to create a time series model and use the
model to estimate the current slot size and forecast the future slot size. Through physical
inspection the induction furnace slot size is known at some points in time.

Load and Plot the Measured Data

The measured current-power ratio data is stored in the
iddata_TimeSeriesPrediction MATLAB file. The data is measured at hourly intervals
and shows that over time the ratio increases indicating erosion of the furnace slot. You
develop a time series model using this data. Start by separating the data into an
identification and a validation segment.

load iddata_TimeSeriesPrediction
n = numel(y);
ns = floor(n/2);
y_id = y(1:ns,:);
y_v = y((ns+1:end),:);
data_id = iddata(y_id, [], Ts, 'TimeUnit', 'hours');
data_v  = iddata(y_v, [], Ts, 'TimeUnit', 'hours', 'Tstart', ns+1);

plot(data_id,data_v)
legend('Identification data','Validation data','location','SouthEast');
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Model Identification

The slot erosion can be modelled as a state-space system with noise input and measured
current-power ratio as output. The measured current-power ratio is proportional to the
system state, or

Where  the state vector, contains the slot size;  is the measured current-power ratio;
 noise and  are to be identified.
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Use the ssest() command to identify a discrete state-space model from the measured
data.

sys = ssest(data_id,1,'Ts',Ts,'form','canonical')

sys =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + K e(t)
       y(t) = C x(t) + e(t)
 
  A = 
          x1
   x1  1.001
 
  C = 
       x1
   y1   1
 
  K = 
            y1
   x1  0.09465
 
Sample time: 1 hours
  
Parameterization:
   CANONICAL form with indices: 1.
   Disturbance component: estimate
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using SSEST on time domain data "data_id".
Fit to estimation data: 67.38% (prediction focus)   
FPE: 0.09575, MSE: 0.09348                          

The identified model minimizes the 1-step ahead prediction. Validate the model using a 10
step ahead predictor, i.e., given  use the model to predict . Note that the
error between the measured and predicted values, , are used to make
the  prediction.

Use the 10 step ahead predictor for the identification data and the independent validation
data.
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nstep = 10;
compare(sys,data_id,nstep)  % comparison of 10-step prediction to estimation data
grid('on');

figure; compare(sys,data_v,nstep)  % comparison to validation data
grid('on');
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The above exercise Both data sets show that the predictor matches the measured data.

Forecasting is used to further verify the model. Forecasting uses the measured data
record  to compute the model state at time step n. This value is used as
initial condition for forecasting the model response for a future time span. We forecast the
model response over the time span of the validation data and then compare the two. We
can also compute the uncertainty in forecasts and plot +/- 3 sd of their values.

MeasuredData = iddata(y, [], Ts, 'TimeUnit', 'hours'); % = [data_id;data_v]
t0 = MeasuredData.SamplingInstants;

Horizon = size(data_v,1); % forecasting horizon
[yF, ~, ~, yFSD]  = forecast(sys, data_id, Horizon);
% Note: yF is IDDATA object while yFSD is a double vector
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t = yF.SamplingInstants; % extract time samples
yFData = yF.OutputData;      % extract response as double vector
plot(MeasuredData)
hold on
plot(t, yFData, 'r.-', t, yFData+3*yFSD, 'r--', t, yFData-3*yFSD, 'r--')
hold off
title('Forecasted response over the validation data''s time span')
grid on

The plot shows that the model response with confidence intervals (indicated by the red
colored dashed curves) overlap the measured value for the validation data. The combined
prediction and forecasting results indicate that the model represents the measured
current-power ratio.
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The forecasting results also show that over large horizons the model variance is large and
for practical purposes future forecasts should be limited to short horizons. For the
induction furnace model a horizon of 200 hours is appropriate.

Finally we use the model to forecast the response 200 steps into future for the time span
of 502-701 hours.

Horizon = 200; % forecasting horizon
[yFuture, ~, ~, yFutureSD] = forecast(sys, MeasuredData, Horizon);
t = yFuture.SamplingInstants; % extract time samples
yFutureData = yFuture.OutputData;      % extract response as double vector
plot(t0, y,...
   t, yFutureData, 'r.-', ...
   t, yFutureData+3*yFutureSD, 'r--', ...
   t, yFutureData-3*yFutureSD, 'r--')
title('Forecasted response (200 steps)')
grid on
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The blue curve shows the measured data that spans over 1-501 hours. The red curve is
the forecasted response for 200 hours beyond the measured data's time range. The red
dashed curves shows the 3 sd uncertainty in the forecasted response based on random
sampling of the identified model.

State Estimation

The identified model matches the measured current-power ratio but we are interested in
the furnace slot size which is a state in the model. The identified model has an arbitrary
state that can be transformed so that the state has meaning, in this case the slot size.

Create a predictor for the arbitrary state. The identified model covariances need to be
translated to the predictor model using the translatecov() command. The
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createPredictor() function simply extracts the third output argument of the
predict() function to be used with translatecov().

type createPredictor
est = translatecov(@(s) createPredictor(s,data_id),sys)

function pred = createPredictor(mdl,data)
%CREATEPREDICTOR Return 1-step ahead predictor.
%
%   sys = createPredictor(mdl,data)
%
%   Create a 1-step ahead predictor model sys for the specified model mdl
%   and measured data. The function is used by
%   |TimeSeriedPredictionExample| and the |translatecov()| command to
%   translate the identified model covariance to the predictor.

% Copyright 2015 The MathWorks, Inc.
[~,~,pred] = predict(mdl,data,1);

est =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t)
       y(t) = C x(t) + D u(t)
 
  A = 
           x1
   x1  0.9064
 
  B = 
            y1
   x1  0.09465
 
  C = 
       x1
   y1   1
 
  D = 
       y1
   y1   0
 
Sample time: 1 hours
  
Parameterization:
   CANONICAL form with indices: 1.
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   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The model est is a 1-step ahead predictor expressed in the same state coordinates as the
original model sys. How do we transform the state coordinates so that the model's state
corresponds to the (time dependent) slot size? The solution is to rely on actual, direct
measurements of the slot size taken intermittently. This is not uncommon in practice
where the cost of taking direct measurements is high and only be done periodically (such
as when the component is being replaced).

Specifically, transform the predictor state, , to , so that  where  the
measured current-power ratio, and  is the furnace slot size. In this example, four direct
measurements of the furnace slot size, sizeMeasured, and furnace current-power ratio,
ySizeMeasured, are used to estimate . In transforming the predictor the predictor
covariances also need to be transformed. Hence we use the translatecov() command
to carry out the state coordinate transformation.

Cnew = sizeMeasured\ySizeMeasured;
est  = translatecov(@(s) ss2ss(s,s.C/Cnew),est)

est =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t)
       y(t) = C x(t) + D u(t)
 
  A = 
           x1
   x1  0.9064
 
  B = 
           y1
   x1  0.9452
 
  C = 
           x1
   y1  0.1001
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  D = 
       y1
   y1   0
 
Sample time: 1 hours
  
Parameterization:
   CANONICAL form with indices: 1.
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The predictor is now expressed in the desired state coordinates. It has one input that is
the measured system output (the furnace current-power ratio) and one output that is the
predicted system output (the furnace slot size). The predictor is simulated to estimate the
system output and system state.

opts = simOptions;
opts.InitialCondition = sizeMeasured(1);
U = iddata([],[data_id.Y; data_v.Y],Ts,'TimeUnit','hours');
[ye,ye_sd,xe] = sim(est,U,opts);

Compare the estimated output and slot size with measured and known values.

yesdp   = ye;
yesdp.Y = ye.Y+3*ye_sd;
yesdn   = ye;
yesdn.Y = ye.Y-3*ye_sd;
n = numel(xe);
figure, plot([data_id;data_v],ye,yesdp,'g',yesdn,'g')
legend('Measured output','Estimated output','99.7% bound','location','SouthEast')
grid('on')
figure, plot(tSizeMeasured,sizeMeasured,'r*',1:n,xe,1:n,yesdp.Y/est.C,'g',1:n,yesdn.Y/est.C,'g');
legend('Measured state','Estimated state','99.7% bound','location','SouthEast')
xlabel('Time (hours)')
ylabel('Amplitude');
grid('on')
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Using Prediction and Forecasting for Prognosis

The combination of predictor model and forecasting allow us to perform prognosis on the
induction furnace.

The predictor model allows us to estimate the current furnace slot size based on
measured data. If the estimated value is at or near critical values an inspection or
maintenance can be scheduled. Forecasting allows us to, from the estimated current
state, predict the future system behaviour allowing us to predict when an inspection or
maintenance may be needed.
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Further the predictor and forecast model can be re-identified as more data becomes
available. In this example one data set was used to identify the predictor and forecast
models but as more data is accumulated the models can be re-identified.

See Also
compare | forecast | predict

More About
• “Perform Multivariate Time Series Forecasting” on page 17-25
• “Fault Detection Using Data Based Models” on page 22-16
• “Introduction to Forecasting of Dynamic System Response” on page 14-36
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Fault Detection Using Data Based Models
This example shows how to use a data-based modeling approach for fault detection. This
example requires Statistics and Machine Learning Toolbox™.

Introduction

Early detection and isolation of anomalies in a machine's operation can help to reduce
accidents, reduce downtime and thus save operational costs. The approach involves
processing live measurements from a system's operation to flag any unexpected behavior
that would point towards a newly developed fault.

This example explores the following fault diagnosis aspects:

1 Detection of abnormal system behavior by residual analysis
2 Detection of deterioration by building models of a damaged system
3 Tracking system changes using online adaptation of model parameters

Identifying a Dynamic Model of System Behavior

In a model based approach to detection, a dynamic model of the concerned system is first
built using measured input and output data. A good model is able to accurately predict
the response of the system for a certain future time horizon. When the prediction is not
good, the residuals may be large and could contain correlations. These aspects are
exploited to detect the incidence of failure.

Consider a building subject to impacts and vibrations. The source of vibrations can be
different types of stimuli depending upon the system such as wind gusts, contact with
running engines and turbines, or ground vibrations. The impacts are a result of impulsive
bump tests on the system that are added to excite the system sufficiently. Simulink model
idMechanicalSystem.slx is a simple example of such a structure. The excitation
comes from periodic bumps as well as ground vibrations modeled by filtered white noise.
The output of the system is collected by a sensor that is subject to measurement noise.
The model is able to simulate various scenarios involving the structure in a healthy or a
damaged state.

sysA = 'idMechanicalSystem';
open_system(sysA)
% Set the model in the healthy mode of operation
set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','Normal')
% Simulate the system and log the response data
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sim(sysA)
ynormal = logsout.getElement('y').Values;

The input signal was not measured; all we have recorded is the response ynormal. Hence
we build a dynamic model of the system using "blind identification" techniques. In
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particular, we build an ARMA model of the recorded signal as a representation of the
system. This approach works when the input signal is assumed to be (filtered) white
noise. Since the data is subject to periodic bumps, we split the data into several pieces
each starting at the incidence of a bump. This way, each data segment contains the
response to one bump plus random excitations - a situation that can be captured using a
time series model, where the effect of the bump is attributed to suitable initial conditions.

Ts = 1/256;  % data sample time
nr = 10;     % number of bumps in the signal
N = 512;     % length of data between bumps
znormal = cell(nr,1);
for ct = 1:nr
   ysegment = ynormal.Data((ct-1)*N+(1:500));
   z = iddata(ysegment,[],Ts);
   znormal{ct} = z;  % each segment has only one bump
end
plot(znormal{:}) % plot a sampling of the recorded segments
title('Measured Response Segements')
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Split the data into estimation and validation pieces.

ze = merge(znormal{1:5});
zv = merge(znormal{6:10});

Estimate a 7th order time-series model in state-space form using the ssest() command.
The model order was chosen by cross validation (checking the fit to validation data) and
residual analysis (checking that residuals are uncorrelated).

nx = 7;
model = ssest(ze, nx, 'form', 'canonical', 'Ts', Ts);
present(model)  % view model equations with parameter uncertainty

                                                                              
model =                                                                       
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  Discrete-time identified state-space model:                                 
    x(t+Ts) = A x(t) + K e(t)                                                 
       y(t) = C x(t) + e(t)                                                   
                                                                              
  A =                                                                         
                       x1                  x2                  x3             
   x1                   0                   1                   0             
   x2                   0                   0                   1             
   x3                   0                   0                   0             
   x4                   0                   0                   0             
   x5                   0                   0                   0             
   x6                   0                   0                   0             
   x7  0.5548 +/- 0.04606   -2.713 +/- 0.2198    5.885 +/- 0.4495             
                                                                              
                       x4                  x5                  x6             
   x1                   0                   0                   0             
   x2                   0                   0                   0             
   x3                   1                   0                   0             
   x4                   0                   1                   0             
   x5                   0                   0                   1             
   x6                   0                   0                   0             
   x7    -8.27 +/- 0.5121    9.234 +/- 0.3513   -7.956 +/- 0.1408             
                                                                              
                       x7                                                     
   x1                   0                                                     
   x2                   0                                                     
   x3                   0                                                     
   x4                   0                                                     
   x5                   0                                                     
   x6                   1                                                     
   x7   4.263 +/- 0.02599                                                     
                                                                              
  C =                                                                         
       x1  x2  x3  x4  x5  x6  x7                                             
   y1   1   0   0   0   0   0   0                                             
                                                                              
  K =                                                                         
                      y1                                                      
   x1  1.025 +/- 0.01401                                                      
   x2  1.444 +/-  0.0131                                                      
   x3  1.907 +/- 0.01271                                                      
   x4  2.385 +/- 0.01203                                                      
   x5  2.857 +/- 0.01456                                                      
   x6   3.26 +/-  0.0222                                                      
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   x7  3.552 +/-  0.0336                                                      
                                                                              
Sample time: 0.0039063 seconds                                                
                                                                              
Parameterization:                                                             
   CANONICAL form with indices: 7.                                            
   Disturbance component: estimate                                            
   Number of free coefficients: 14                                            
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.
                                                                              
Status:                                                                       
Termination condition: Near (local) minimum, (norm(g) < tol).                 
Number of iterations: 7, Number of function evaluations: 15                   
                                                                              
Estimated using SSEST on time domain data "ze".                               
Fit to estimation data: [99.07 99.04 99.15 99.05 99.04]% (prediction focus)   
FPE: 0.6242, MSE: [0.5974 0.6531 0.5991 0.5871 0.6496]                        
More information in model's "Report" property.                                

The model display shows relatively small uncertainty in parameter estimates. We can
confirm the reliability by computing the 1-sd (99.73%) confidence bound on the estimated
spectrum of the measured signal.

h = spectrumplot(model);
showConfidence(h, 3)
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The confidence region is small, although there is about 30% uncertainty in the response
at lower frequencies. The next step in validation is to see how well the model predicts the
responses in the validation dataset zv. We use a 25-step ahead prediction horizon.

compare(zv, model, 25) % Validation against one dataset
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The plot shows that the model is able to predict the response in the first experiment of
the validation dataset 25 time steps (= 0.1 sec) in future with > 85% accuracy. To view
the fit to other experiments in the dataset, use the right-click context menu of the plot
axes.

The final step in validating the model is to analyze the residuals generated by it. For a
good model, these residuals should be white, i.e., show statistically insignificant
correlations for non-zero lags:

resid(model, zv)
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The residuals are mostly uncorrelated at nonzero lags. Having derived a model of the
normal behavior we move on to investigate how the model can be used to detect faults.

Fault Detection by Residual Analysis Using Model of Healthy State

Fault detection is tagging of unwanted or unexpected changes in observations of the
system. A fault causes changes in the system dynamics owing either to gradual wear and
tear or sudden changes caused by sensor failure or broken parts. When a fault appears,
the model obtained under normal working conditions is unable to predict the observed
responses. This causes the difference between the measured and predicted response (the
residuals) to increase. Such deviations are usually flagged by a large squared-sum-of-
residuals or by presence of correlations.
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Put the Simulink model in the damaged-system variant and simulate. We use a single
bump as input since the residual test needs white input with possibly a transient owing to
initial conditions.

set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','DamagedSystem');
set_param([sysA,'/Pulse'],'Period','5120') % to force only one bump
sim(sysA)
y = logsout.getElement('y').Values;

resid(model, y.Data)
set_param([sysA,'/Pulse'],'Period','512') % restore original
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The residuals are now larger and show correlations at non-zero lags. This is the basic idea
behind detection of faults - creating a residual metric and observing how it changes with
each new set of measurements. What is used here is a simple residual based on 1-step
prediction error. In practice, more advanced residuals are generated that are tailor-made
to the application needs.

Fault Detection Using Models of Normal and Deteriorated State

A more detailed approach to fault detection is to also identify a model of the faulty
(damaged) state of the system. We can then analyze which model is more likely to explain
the live measurements from the system. This arrangement can be generalized to models
for various types of faults and thus used for not just detecting the fault but also
identifying which one ("isolation"). In this example, we take the following approach:
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1 We collect data with system operating in the normal (healthy) and a known wear-and-
tear induced end-of-life state.

2 We identify a dynamic model representing the behavior in each state.
3 We use a data clustering approach to draw a clear distinction between these states.
4 For fault detection, we collect data from the running machine and identify a model of

its behavior. We then predict which state (normal or damaged) is most likely to
explain the observed behavior.

We have already simulated the system in its normal operation mode. We now simulate the
model idMechanicalSystem in the "end of life" mode. This is the scenario where the
system has already deteriorated to its final state of permissible operation.

set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','DamagedSystem');
sim(sysA)
y = logsout.getElement('y').Values;
zfault = cell(nr,1);
for ct = 1:nr
   z = iddata(y.Data((ct-1)*N+(1:500)),[],Ts);
   zfault{ct} = z;
end
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We now create a set of models, one for each data segment. As before we build 7th order
time series models in state-space form. Turn off covariance computation for speed.

mNormal =  cell(nr,1);
mFault = cell(nr, 1);
nx = order(model);
opt = ssestOptions('EstimateCovariance',0);
for ct = 1:nr
   mNormal{ct} = ssest(znormal{ct}, nx, 'form', 'canonical', 'Ts', Ts, opt);
   mFault{ct} = ssest(zfault{ct}, nx, 'form', 'canonical', 'Ts', Ts, opt);
end

Verify that the models mFault are a good representation of the faulty mode of operation:

compare(merge(zfault{:}), mFault{:}, 25)
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Normal and faulty estimated spectra are plotted below.

Color1 = 'k'; Color2 = 'r';
ModelSet1 = cat(2,mNormal,repmat({Color1},[nr, 1]))';
ModelSet2 = cat(2,mFault,repmat({Color2},[nr, 1]))';

spectrum(ModelSet1{:},ModelSet2{:})
axis([1  1000  -45  40])
title('Output Spectra (black: normal, red: faulty)')
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The spectrum plot shows the difference: the damaged mode has its primary resonances
amplified but the spectra are otherwise overlapping. Next, we create a way to
quantitatively distinguish between the normal and the faulty state. We can use data
clustering approaches such as:

• Fuzzy C-Means Clustering. See fcm() in Fuzzy Logic Toolbox.
• Support Vector Machine Classifier. See fitcsvm () in Statistics and Machine

Learning Toolbox.
• Self-organizing Maps. See selforgmap() in Neural Network Toolbox.

In this example, we use the Support Vector Machine classification technique. The
clustering of information from the two types of models (mNormal and mFault) can be
based on different kinds of information that these models can provide such as the
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locations of their poles and zeroes, their locations of peak resonances or their list of
parameters. Here, we classify the modes by the pole locations corresponding to the two
resonances. For clustering, we tag the poles of the healthy state models with 'good' and
the poles of the faulty state models with 'faulty'.

ModelTags = cell(nr*2,1);  % nr is number of data segments
ModelTags(1:nr) = {'good'};
ModelTags(nr+1:end) = {'faulty'};
ParData = zeros(nr*2,4);
plist = @(p)[real(p(1)),imag(p(1)),real(p(3)),imag(p(3))]; % poles of dominant resonances
for ct = 1:nr
   ParData(ct,:) =  plist(esort(pole(mNormal{ct})));
   ParData(nr+ct,:) = plist(esort(pole(mFault{ct})));
end
cl = fitcsvm(ParData,ModelTags,'KernelFunction','rbf', ...
   'BoxConstraint',Inf,'ClassNames',{'good', 'faulty'});
cl.ConvergenceInfo.Converged

ans =

  logical

   1

cl is an SVM classifier that separates the training data ParData into good and faulty
regions. Using the predict method of this classifier one can assign an input nx-by-1
vector to one of the two regions.

Now we can test the classifier for its prediction (normal vs damaged) collect data batches
from a system whose parameters are changing in a manner that it goes from being
healthy (mode = 'Normal') to being fully damaged (mode = 'DamagedSystem') in a
continuous manner. To simulate this scenario, we put the model in 'DeterioratingSystem'
mode.

set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','DeterioratingSystem');
sim(sysA)
ytv = logsout.getElement('y').Values; ytv = squeeze(ytv.Data);
PredictedMode = cell(nr,1);
for ct = 1:nr
   zSegment = iddata(ytv((ct-1)*512+(1:500)),[],Ts);
   mSegment = ssest(zSegment, nx, 'form', 'canonical', 'Ts', Ts);
   PredictedMode(ct) = predict(cl, plist(esort(pole(mSegment))));
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end

I = strcmp(PredictedMode,'good');
Tags = ones(nr,1);
Tags(~I) = -1;
t = (0:5120)'*Ts;  % simulation time
Time = t(1:512:end-1);
plot(Time(I),Tags(I),'g*',Time(~I),Tags(~I),'r*','MarkerSize',12)
grid on
axis([0 20 -2 2])
title('Green: Normal, Red: Faulty state')
xlabel('Data evaluation time')
ylabel('Prediction')
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The plot shows that the classifier predicts the behavior up to about the mid-point to be
normal and in a state of fault thereafter.

Fault Detection by Online Adaptation of Model Parameters

The preceding analysis used batches of data collected at different times during the
operation of the system. An alternative, often more convenient, way of monitoring the
health of the system is to create an adaptive model of its behavior. The new
measurements are processed continuously and are used to update the parameters of a
model in a recursive fashion. The effect of wear and tear or a fault is indicated by a
change in the model parameter values.
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Consider the wear-and-tear scenario again. As the system ages, there is a greater
"rattling" which manifests itself as excitation of several resonant modes as well as a rise
in the system's peak response. This scenario is described in model
idDeterioratingSystemEstimation which is same as the 'DeterioratingSystem'
mode of idMechanicalSystem except that the impulsive bumps that were added for
offline identification are not present. The response of the system is passed to a "Recursive
Polynomial Model Estimator" block which has been configured to estimate the parameters
of an ARMA model structure. The actual system starts in a healthy state but deteriorates
to end-of-life conditions over a time span of 200 seconds.

initial_model = translatecov(@(x)idpoly(x),model);
sysB = 'idDeterioratingSystemEstimation';
open_system(sysB);

The "ARMA model" block has been initialized using the parameters and covariance data
from the estimated model of normal behavior derived in the previous section after
conversion to polynomial (ARMA) format. The translatecov() function is used so that
the parameter covariance data is also converted. The block uses a "Forgetting factor"
algorithm with the forgetting factor set to slightly less than 1 to update the parameters at
each sampling instant. The choice of forgetting factor influences how rapidly the system
updates. A small value means that the updates will have high variance while a large value
will make it harder for the estimator to adapt to fast changes.

The model parameters estimate is used to update the output spectrum and its 3-sd
confidence region. The system will have clearly changed when the spectrum's confidence
region does not overlap that of the healthy system at frequencies of interest. A fault
detection threshold is shown using a black line in the plot marking the maximum allowed
gains at certain frequencies. As changes in the system accumulate, the spectrum drifts
across this line. This serves as a visual indicator of a fault which can be used to call for
repairs in real-life systems.
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Run the simulation and watch the spectrum plot as it updates.

sim(sysB)

The running estimates of model parameters are also used to compute the system pole
locations which are then fed into the SVM classifier to predict if the system is in the
"good" or "fault" state. This decision is also displayed on the plot. When the normalized
score of prediction is less than .3, the decision is considered tentative (close to the
boundary of distinction). See the script idARMASpectrumPlot.m for details on how the
running estimate of spectrum and classifier prediction is computed.

It is possible to implement the adaptive estimation and plotting procedure outside
Simulink using the recursiveARMA() function. Both the "Recursive Polynomial Model
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Estimator" block as well as the recursiveARMA() function support code generation for
deployment purposes.

The classification scheme can be generalized to the case where there are several known
modes of failure. For this we will need multi-group classifiers where a mode refers to a
certain type of failure. These aspects are not explored in this example.

Conclusions

This example showed how system identification schemes combined with data clustering
approaches can assist in detection and isolation of faults. Both sequential batch analysis
as well as online adaptation schemes were discussed. A model of ARMA structure of the
measured output signal was identified. A similar approach can be adopted in situations
where one has access to both input and output signals, and would like to employ other
types of model structures such as the State-space or Box-Jenkins polynomial models.

In this example, we found that:

1 Correlations in residuals based on a model of normal operation can indicate onset of
failure.

2 Gradually worsening faults can be detected by employing a continuously adapting
model of the system behavior. Preset thresholds on a model's characteristics such as
bounds on its output spectrum can help visualize the onset and progression of
failures.

3 When the source of a fault needs to be isolated, a viable approach is to create
separate models of concerned failure modes beforehand. Then a clustering approach
can be used to assign the predicted state of the system to one of these modes.

See Also

Related Examples
• “Perform Multivariate Time Series Forecasting” on page 17-25
• “Time Series Prediction and Forecasting for Prognosis” on page 22-2
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